Science Inventory

Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models

Citation:

Zhang, W., S. L. Capps, Y. Hu, A. NENES, S. NAPELENOK, AND A. G. RUSSELL. Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models. Geoscientific Model Development . Copernicus Publications, Katlenburg-Lindau, Germany, 5(2):355-368, (2012).

Impact/Purpose:

The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

Description:

The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-specific approach has been applied, and the sensitivities of activity coefficients and water content are explicitly computed. Stand-alone tests are performed for ISORROPIA by comparing the sensitivities (first- and second-order) computed by HDDM and the brute force (BF) approximations. Similar comparison has also been carried out for CMAQ sensitivities simulated using a week-long winter episode for a continental US domain. Second-order sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium) with respect to domain-wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis elucidates poorly understood nonlinear responses of secondary inorganic aerosols to their precursors and competing species. Adding second-order sensitivity terms to the Taylor series projection of the nitrate concentrations with a 50% reduction in domain-wide NOx or SO2 emissions rates improves the prediction with statistical significance.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:03/23/2012
Record Last Revised:04/03/2012
OMB Category:Other
Record ID: 238965