Science Inventory

Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

Citation:

Bowden, J. H., T. L. OTTE, C. G. NOLTE, AND M. OTTE. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling. Journal of Climate. American Meteorological Society, Boston, MA, 25(8):2805-2823, (2012).

Impact/Purpose:

The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

Description:

This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (R-2) data are downscaled to 36 km 3 36 km by nudging only at the lateral boundaries, using gridpoint (i.e., analysis) nudging and using spectral nudging. Seven annual simulations are conducted and evaluated for 1988 by comparing 2-m temperature, precipitation, 500-hPa geopotential height, and 850-hPa meridional wind to the 32-km North American Regional Reanalysis (NARR). Using interior nudging reduces the mean biases for those fields throughout the CONUS compared to the simulation without interior nudging. The predictions of 2-m temperature and fields aloft behave similarly when either analysis or spectral nudging is used. For precipitation, however, analysis nudging generates monthly precipitation totals, and intensity and frequency of precipitation that are closer to observed fields than spectral nudging. The spectrum of 250-hPa zonal winds simulated by the WRF model is also compared to that of the R-2 and NARR. The spatial variability in theWRFmodel is reduced by using either form of interior nudging, and analysis nudging suppresses that variability more strongly than spectral nudging. Reducing the nudging strengths on the inner domain increases the variability but generates larger biases. The results support the use of interior nudging on both domains of a two-way nest to reduce error when the inner nest is not otherwise dominated by the lateral boundary forcing. Nevertheless, additional research is required to optimize the balance between accuracy and variability in choosing a nudging strategy.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:04/15/2012
Record Last Revised:07/31/2012
OMB Category:Other
Record ID: 234244