Science Inventory

Reactive Nitrogen in Atmospheric Emission Inventories

Citation:

Reis, S., R. W. PINDER, M. Zhang, G. Lijie, AND M. A. Sutton. Reactive Nitrogen in Atmospheric Emission Inventories. Atmospheric Chemistry and Physics. Copernicus Publications, Katlenburg-Lindau, Germany, 9(19):7257-7677, (2009).

Impact/Purpose:

The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling Division (AMD) conducts research in support of EPA′s mission to protect human health and the environment. AMD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

Description:

Excess reactive Nitrogen (NT) has become one of the most pressing environmental problems leading to air pollution, acidification and eutrophication of ecosystems, biodiversity impacts, leaching of nitrates into groundwater and global warming. This paper investigates how current inventories cover emissions of Nr to the atmosphere in Europe, the United States of America, and The People's Republic of China. The focus is on anthropogenic sources, assessing the state-of-the-art of quantifying emissions of Ammonia (NH3), Nitrogen Oxides (NOx)and Nitrous Oxide (N2O), the different purposes for which inventories are compiled, and to which extent current inventories meet the needs of atmospheric dispersion modelling. The paper concludes with a discussion of uncertainties involved and a brief outlook on emerging trends in the three regions investigated is conducted. Key issues are substantial differences in the overall magnitude, but as well in the relative sectoral contribution of emissions in the inventories that have been assessed. While these can be explained by the use of different methodologies and underlying data (e.g. emission factors or activity rates), they may lead to quite different results when using the emission datasets to model ambient air quality or the deposition with atmospheric dispersion models. Hence, differences and uncertainties in emission inventories are not merely of academic interest, but can have direct policy implications when the development of policy actions is based on these model results. The level of uncertainty of emission estimates varies greatly between substances, regions and emission source sectors. This has implications for the direction of future research needs and indicates how existing gaps between modelled and measured concentration or deposition rates could be most efficiently addressed.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:10/15/2009
Record Last Revised:10/29/2009
OMB Category:Other
Record ID: 213144