Office of Research and Development Publications

An Assessment of the Exposure of Americans to Perflourooctane Sulfonate: A Comparison of Estimated Intake with Values Inferred from NHANES Data

Citation:

EGEGHY, P. P. AND M. LORBER. An Assessment of the Exposure of Americans to Perflourooctane Sulfonate: A Comparison of Estimated Intake with Values Inferred from NHANES Data. Journal of Exposure Science and Environmental Epidemiology . Nature Publishing Group, London, Uk, 21(2):150-168, (2011).

Impact/Purpose:

The National Exposure Research Laboratory′s (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA′s mission to protect human health and the environment. HEASD′s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA′s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

Description:

To better understand human exposure to perfluorinated compounds (PFCs), a model that assesses exposure to perfluorooctane sulfonate (PFOS) and its precursors from both an intake and a body burden perspective and combines the two with a simple pharmacokinetic (PK) model is demonstrated. Exposure pathways were modeled under ‘‘typical’’ and ‘‘contaminated’’ scenarios, for young children and adults. A range of intakes was also estimated from serum concentrations of PFOS reported in the National Health and Nutrition Examination Survey (NHANES) using a first-order 1-compartment PK model. Total PFOS intakes (medians summed over all pathways) were estimated as: 160 and 2200 ng/day for adults and 50 and 640 ng/day for children under typical and contaminated scenarios, respectively. Food ingestion appears to be the primary route of exposure in the general population. For children, the contribution from dust ingestion is nearly as great as from food ingestion. Pathway-specific contributions span several orders of magnitude and exhibit considerable overlap. PK modeling suggests central tendency PFOS intakes for adults range between 1.6 and 24.2 ng/kg-bw/day, and the forward-based intake estimates are within this range. The favorable comparison reported between the forward-modeled and the back-calculated range of intake predictions lends validity to the proposed framework.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:03/01/2011
Record Last Revised:03/17/2011
OMB Category:Other
Record ID: 212606