Office of Research and Development Publications

The Reliability of Using Urinary Biomarkers to Estimate Human Exposures to Chlorpyrifos and Diazinon

Citation:

MORGAN, M. K., L. S. SHELDON, C. W. CROGHAN, P. A. JONES, J. C. Chuang, AND N. K. WILSON. The Reliability of Using Urinary Biomarkers to Estimate Human Exposures to Chlorpyrifos and Diazinon. Journal of Exposure Science and Environmental Epidemiology . Nature Publishing Group, London, Uk, 21(3):280-290, (2011).

Impact/Purpose:

The National Exposure Research Laboratory′s (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA′s mission to protect human health and the environment. HEASD′s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA′s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

Description:

A few studies have reported concurrent levels of chlorpyrifos (CPF) and diazinon (DZN) and their environmentally occurring metabolites, 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMP), in food and in environmental media. This information raises questions regarding the reliability of using these same metabolites, TCP and IMP, as urinary biomarkers to quantitatively assess the everyday exposures of children to CPF and DZN, respectively. In this study, we quantified the distributions of CPF, DZN, TCP, and IMP in several environmental and personal media at the homes and day-care centers of 127 Ohio preschool children and identified the important sources and routes of their exposures. The children were exposed to concurrent levels of these four chemicals from several sources and routes at these locations. DZN and IMP were both detected above 50% in the air and dust samples. CPF and TCP were both detected in greater than 50% of the air, dust (solid), food, and hand wipe samples. TCP was detected in 100% of the urine samples. Results from our regression models showed that creatinine levels (<0.001), and dietary (P<0.001) and inhalation (P<0.10) doses of TCP were each significant predictors of urinary TCP, collectively explaining 27% of the urinary TCP variability. This information suggests that measurement of urinary TCP did not reliably allow quantitative estimation of the children’s everyday environmental exposures to CPF.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:05/01/2011
Record Last Revised:05/06/2011
OMB Category:Other
Record ID: 209623