Science Inventory

Integrated Carbon Credit Programs: A Biofuels Program in Madagascar That Links the Energy, Land Use and Transportation Sectors

Impact/Purpose:

Integrated biofuels programs that link the energy, land use and transport sectors hold significant promise for reducing greenhouse gases, improving public health and benefitting local livelihoods. An interdisciplinary team of University of Michigan faculty and students will develop a replicable approach for securing carbon credits in order to support the creation of integrated biofuels projects in developing countries.

Description:

We used rapid rural appraisal (RRA) techniques to gather information about these communities’ natural environment, histories, social dynamics and previous development interventions. Our researchers focused heavily on local agricultural practices, household needs and their connections to the regional economy. From our fieldwork, we learned that although farmers grow their own food (e.g., rice, cassava, beans), they need income to buy items and services they cannot generate themselves by growing and selling bananas, coffee, and other treebased fruits. Frequent major external events, including economic, political and natural events (i.e., cyclones) mean that these Malagasy are resourceful in shaping and living within their surroundings. They have a strong desire to improve their lives through development, but are also risk adverse given the small gap between a comfortable existence and a desperate one.
 
The tenuous state of the FCE railway, exacerbated by high fuel costs that prevent necessary maintenance work, has significant implications for the region. Besides supplying Madagascar’s urban areas with food, the FCE is the only source of lighting fuel and other products of primary necessity (PPN) for approximately 100,000 people who lack other forms of regional transportation. In addition, uncertainty over the ability to move local produce to market via the FCE has increased farmers’ incentive to abandon more sustainable tree-based cash crops in favor of slash-and-burn agriculture (tavy) to ensure their immediate food security. This shift in agricultural production, exacerbated by increasing demographic pressures, places this area’s remaining tropical forests in great peril. Degraded soil conditions from tavy also threaten the area’s long-term food security interests, thereby affecting social stability. Given present circumstances, reducing the FCE’s fuel costs appears to be the best option for improving its reliability. Jatropha oil has the potential to lessen the fuel costs of the FCE, which will lower greenhouse gases (GHGs) and provide additional income to farmers in the region.
 
It would be irresponsible to recommend that farmers in the region grow Jatropha curcas exclusively, due to the lack of a viable market and uncertainty over prices. However, many farmers already practice polycropping and some have even incorporated jatropha into their fields using it to fence off their land or as a tutor plant for vanilla or chili pepper plants. In spite of this, it is clear that they want and likely need additional technical training to design better arrangements and improve yields of all their produce. This will help assure both their food and economic security. In addition, villagers will need to learn how to press and filter jatropha oil that they can use in simple self-made lanterns. Switching from kerosene or other fossil fuels to jatropha not only would lessen GHGs and household costs better spent on education and healthcare, it could also improve indoor air quality by reducing particulate matter.

URLs/Downloads:

Final Progress Report

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:08/15/2008
Completion Date:08/14/2009
Record ID: 200846