Science Inventory

RISK ASSESSMENT OF FOOD ALLERGENICITY BY A DATA BASE APPROACH

Impact/Purpose:

We will make a concerted effort to improve our approach for risk assessment by developing methods for rapidly identifying the locations and structural characteristics of conformational IgE epitopes. Experimental evidence suggests that conformational epitopes are important for food allergies. For instance, in the last few years much of the increase in the frequency of allergic reactions to foods is due to the recognition of oral allergy syndromes (OAS). These food reactions occur in patients who have become sensitized to inhaled (typically plant) proteins. When these patients ingest foods that contain proteins to which their IgE antibodies cross-react they develop immediate symptoms in the oral cavity and pharynx. Most of these reactions only occur on exposure to fresh fruits and vegetables and not cooked foods. This strongly suggests that the structures recognized on the food protein represent conformational epitopes on the non-denatured proteins.

We will make a concerted effort to improve our approach for risk assessment by developing methods for rapidly identifying the locations and structural characteristics of conformational IgE epitopes. Experimental evidence suggests that conformational epitopes are important for food allergies. For instance, in the last few years much of the increase in the frequency of allergic reactions to foods is due to the recognition of oral allergy syndromes (OAS). These food reactions occur in patients who have become sensitized to inhaled (typically plant) proteins. When these patients ingest foods that contain proteins to which their IgE antibodies cross-react they develop immediate symptoms in the oral cavity and pharynx. Most of these reactions only occur on exposure to fresh fruits and vegetables and not cooked foods. This strongly suggests that the structures recognized on the food protein represent conformational epitopes on the non-denatured proteins.

Description:

The overall goal of the proposal is the further development of our Structural Database of Allergenic Proteins (SDAP) (http://fermi.utmb.edu/SDAP/ exit EPA) and of its bioinformatics tools to estimate the potential allergenicity of novel recombinant food proteins. SDAP was developed as part of a long-standing collaborative project between the PI and co-investigators at UTMB. The research project will develop bioinformatics research tools to assess human allergenicity of proteins in genetically engineered foods, and experimentally test these software tools with pollen allergens. Our main hypothesis is that we can find sequence and structural motifs specific for each allergen family, which can be archived in a searchable data base. The data base can then be used to estimate the risk of allergenicity, associated with new food proteins.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:10/01/2006
Completion Date:09/30/2009
Record ID: 169451