Science Inventory

SEASONAL VARIATIONS IN RIVER DISCHARGE AND NUTRIENT EXPORT TO A NORTHEASTERN PACIFIC ESTUARY

Citation:

SIGLEO, A. C. AND W. E. FRICK. SEASONAL VARIATIONS IN RIVER DISCHARGE AND NUTRIENT EXPORT TO A NORTHEASTERN PACIFIC ESTUARY. ESTUARINE, COASTAL AND SHELF SCIENCE. Elsevier Science Ltd, New York, NY, 73(3-4):368-378, (2007).

Impact/Purpose:

A main objective of this task is to combine empirical and physical mechanisms in a model, known as Visual Beach, that

  • is user-friendly
  • includes point and non-point sources of contamination
  • includes the latest bacterial decay mechanisms
  • incorporates real-time and web-based ambient and atmospheric and aquatic conditions
  • and has a predictive capability of up to three days to help avert potential beach closures.
The suite of predictive capabilities for this software application can enhance the utility of new methodology for analysis of indicator pathogens by identifying times that represent the highest probability of bacterial contamination. Successful use of this model will provide a means to direct timely collection of monitoring samples, strengthening the value of the short turnaround time for sampling. Additionally, in some cases of known point sources of bacteria, such as waste water treatment plant discharges, the model can be applied to help guide operational controls to help prevent resulting beach closures.

Description:

Seasonal variations in dissolved nitrogen and silica loadings were related to seasonal variability in river discharge. Dissolved nutrient concentrations measured weekly at three stations in the Yaquina River, Oregon from 1999 through 2001, and then monthly in 2002 were used as the basis for developing a nutrient loading regression as part of a larger agency program for evaluating nutrient processes. Because realistic models of nutrient transport require dense data sets to capture both long and short term fluctuations in nutrient concentrations, data at one freshwater station also were collected hourly for the same years using an in-stream monitor. The effects of storm events on dissolved nutrient transport were examined during three storms, including one in a high rainfall-discharge year, and two in average years, one of which followed a drought year. During the drought year (WY2001), total dissolved nitrate input was considerably less than in wetter years. Dissolved nitrate concentrations, however, were unusually high in the first winter storm runoff after the drought. The freshwater dissolved nitrate nitrogen loads varied from 40,380 kg day 1 during a high flow storm event to 0.11 kg day-1 during late summer, low flow conditions. Dissolved silica dynamics differed from those of nitrate because during storm events, silica concentrations in the Yaquina River decreased to near zero at the storm height, probably due to dilution by near surface or overland flow, and later recovered. During the time interval studied, over 94% of the dissolved nitrate and silica were transported from the watershed during the winter months of greater rainfall, indicating that seasonality and river flow are primary factors when considering nutrient loadings from this watershed system.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:03/26/2007
Record Last Revised:10/02/2007
OMB Category:Other
Record ID: 165965