Office of Research and Development Publications

A PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC (PBPK/PD) MODEL FOR ESTIMATION OF CUMULATIVE RISK FROM EXPOSURE TO THREE N-METHYL CARBAMATES: CARBARYL, ALDICARB, AND CARBOFURAN

Citation:

XIAOFEI, Z., M. S. OKINO, J. B. KNAAK, A. M. TSANG, F. W. POWER, J. XUE, L. S. HARRISON, C. B. THOMPSON, AND C. C. DARY. A PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC (PBPK/PD) MODEL FOR ESTIMATION OF CUMULATIVE RISK FROM EXPOSURE TO THREE N-METHYL CARBAMATES: CARBARYL, ALDICARB, AND CARBOFURAN. Presented at 2007 Society of Toxicology Annual Meeting, Charlotte , NC, March 25 - 29, 2007.

Impact/Purpose:

Model Development

The overall goal of this work is to develop a modeling system that will enable risk assessors to apply PBPK/PD models to research and regulatory problems. The specific aim is to achieve Agency recognition of PBPK/PD modeling systems, such as ERDEM, as computational tools for risk characterization, research design, and diagnosis of resource allocation.

The key aspects of this research are to:

1. Add a multi-run graphical-user-interface (GUI) in the ERDEM "Front End" to assist the user in defining model input and to improve multi-run capability so that suites of parameter values can be run to speed up the parameter fitting process. Add intra-cellular and uncertainty analysis capability to the graphical-user-interface (GUI) in the ERDEM "Front End." Add the interface for additional compartments and subsystems as needed.(Sub-Task: Model Graphical User Interface and Development GUI)

2. Develop a repository in the ERDEM Front End database to store exposure time histories for processing ERDEM model runs. This Exposure/Time History Repository/Bio-monitoring Interface is expected to help users input various exposure model parameters into a generic PBPK model to process ADME functions simultaneously with a pharmacodynamic (PD) component to determine target tissue dose and effects, e.g., acetyl cholinesterase (AChE) inhibition (Sub-Task: Model Exposure/Time History Repository).

3. Generate Quantitative Structure Activity Relationship (QSAR) databases for chemicals of interest to test ADME and PD mechanisms and make predictions about activity for chemicals where data is lacking. These QSARs may be used to probe the in silico biological layers in ERDEM to examine ADME and PD mechanisms at the organism (e.g., body burden and lethality), tissue and organ, and cellular and sub-cellular levels (Sub-Task: QSAR and Intracellular modeling).

4. Provide exposure and risk assessment specialist's computational modeling tools to establish commonality among dermal exposure and dose related algorithms used in risk assessment. Recognition of the need for a "harmonization" of approaches arose through publication of international reports on dermal absorption (OECD, 2004a, 2004b, 2004c and WHO, 2005) and national colloquiums EPA, 2005 and AIHA, 2005) on dermal exposure methods comparisons (Sub-Task: Dermal Exposure to Dose Harmonization).

5. Develop symbolic solutions to PBPK models for application to risk assessment.

Description:

A physiologically-based pharmacokinetic (PBPK) model for a mixture of N-methyl carbamate pesticides was developed based on single chemical models. The model was used to compare urinary metabolite concentrations to levels from National Health and Nutrition Examination Survey (NHANES III) based on inputs from the Stochastic Human Exposure Dose Simulation (SHEDS) model.

Record Details:

Record Type:DOCUMENT( PRESENTATION/ ABSTRACT)
Product Published Date:03/25/2007
Record Last Revised:12/13/2006
Record ID: 159805