Science Inventory

MECHANISTIC DOSIMETRY MODELS OF NANOMATERIAL DEPOSITION IN THE RESPIRATORY TRACT

Description:

Accurate health risk assessments of inhalation exposure to nanomaterials will require dosimetry models that account for interspecies differences in dose delivered to the respiratory tract. Mechanistic models offer the advantage to interspecies extrapolation that physicochemical properties of particles and species differences in ventilation, airway architecture and physiological parameters can be incorporated explicitly to describe inhaled dose. The objective of this research is to extend existing, verified mechanistic models of particle deposition in the respiratory tract of rats and humans to both cover the range of size for nanoparticles and nanotubes. Deposition mechanisms are described based on first principles and semi-empirically as required. Semi-empirical models of penetration from the upper respiratory tract (URT) can also be used to describe regional deposition fraction in the URT and could be extended to localized modeling. The approach includes model verification with experimental data obtained both in human and rat casts of the upper respiratory tract as well as in vivo studies of respiratory tract deposition.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:11/15/2005
Completion Date:11/15/2007
Record ID: 143628