Science Inventory

KNUDSEN CELL REACTOR FOR CATALYST RESEARCH RELATED TO HYDROGEN TECHNOLOGIES

Description:

Hydrogen has been identified as a viable sustainable alternative to fossil fuels. Hydrogen as an energy source is ecologically feasible, socially desirable, and with continued research and development promises to become economically viable. The faculty advisors listed in this proposal have recently formed an interdisciplinary research team to develop and characterize new bimetallic nanoparticle catalysts for use in evolving hydrogen technologies. The P3 award is both ideally suited and timely to enable a student design group to contribute to this interdisciplinary research effort. The tangible product of the students’ contribution will be a detailed design for a full-scale Knudsen cell reactor along with the fabrication and testing of a sample holder and a semi-instrumented reactor shell. The remainder of the Knudsen cell reactor will be built per the students’ design with funding from other sources. The construction and application of a Knudsen cell reactor will allow careful measurement of the temperature dependence of gas uptake coefficients, activity coefficients, surface coverages, and reaction rate constants of new catalysts proposed for use in hydrogen technologies.

The students will adhere to the established Engineering Science Department’s capstone design experience requirements and milestones schedule. This schedule includes five reports and four presentations, two of which will be delivered to the entire Engineering Science Department student body. The nature of the capstone design project includes consideration of factors such as: sustainability, manufacturability, health and safety as well as political, societal, environmental, and economic impacts. Therefore, the students will naturally address the potential benefits resulting from their design project with respect to the prosperity of the planet and its people.

The students’ design will be evaluated by the three faculty advisors (one in the Engineering Science Department and two in the Chemistry Department) on a continuous basis, and periodically by several other engineering science faculty members during student presentations. The performance of the sample holder and reactor shell will be rigorously tested through a series of parametric tests. Successful completion of the Knudsen cell reactor will provide the foundation for the experiments necessary to characterize and develop new catalysts to support a sustainable hydrogen economy that will ultimately benefit the planet and its inhabitants.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:09/30/2005
Completion Date:05/30/2006
Record ID: 143104