Science Inventory

BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, LEPOMIS MACROCHIRUS, AND VIBRO FISCHERI

Citation:

ALLEN, JOEL J., J. M. LAZORCHAK, R. SINHA, D. MACKE, L. HECKMAN, AND N. MUHAMMED. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, LEPOMIS MACROCHIRUS, AND VIBRO FISCHERI. Presented at Society of Environmental Toxicology and Chemistry, Baltimore, MD, November 12, 2005.

Impact/Purpose:

To inform the public

Description:

The research presented here is a continuation of work designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (WQEWS). Source waters of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as drinking water. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic contamination events (both unintentional and intentional). Water quality managers need continuous, time-relevant information regarding the status of water quality in both source waters and distribution systems. Biological systems are necessary for the monitoring of water quality because there is no machine or analytical approach available capable of quantifying toxicity. Only an organism in its own environment can integrate all factors that contribute to stress. A major effort of this research is the development of a sensitivity response matrix for various water quality monitoring systems(WQMS). The goal is to develop a toxicological context for the use of innovative biological techniques for the monitoring of water quality. This research is ongoing at the U.S. EPA EWSL, T&E Facility, Cincinnati, OH. EWSL and the T&E Facility are capable of supporting development, testing, and evaluation of biologically based water quality monitoring systems and physical/chemical sensors. WQMSs currently under study at the EWSL are 1.DaphTox (Macroinvertebrate swimming behavior, BBE) 2.AlgaeTox (Photosynthetic efficiency, BBE) 3.Bivalve Monitor (Bivalve gape behavior, University of North Texas/U.S. EPA), 4.Real-Time Environmental Protection System (Fish ventilatory behavior, USACEHR/GeoCenters), and 5.ToxControl(Microlan). Results to date demonstrate that these sensors are quite sensitive over relatively short durations. The DaphTox is capable of detecting <150 μg/L Cadmium during a 2 hour exposure. The Fish Ventilatory system can detect <31.25μg/L Copper over similar durations. Results will be compared with relevant acute effective concentrations. Complete results for the toxicants will be presented.

Record Details:

Record Type:DOCUMENT( PRESENTATION/ POSTER)
Product Published Date:11/12/2005
Record Last Revised:07/25/2008
OMB Category:Other
Record ID: 140644