Science Inventory

NANOTECHNOLOGY: A NOVEL APPROACH TO PREVENT BIOCIDE LEACHING

Impact/Purpose:

The primary objective of this proposal is to develop a practical and effective approach to prepare biocide-loaded nanoparticles (organic and copper-based biocides) that can be efficiently introduced into wood to reduce or eliminate biocide leach into sensitive environments. Preventing biocide loss to leach is also expected to increase the useful lifetime of wood products while using less biocide. To accomplish this objective the nanoparticle must be constructed to serve as a protective reservoir for the biocide that prevents its loss by leach or by degradation, but that also releases biocide into the wood in a controlled manner at a rate that maintains the minimal amount of biocide required within the wood for wood preservation.

Description:

This project will demonstrate the environmental benefits of introducing biocide into wood using hydrophobic nanoparticles as a delivery vehicle and controlled release device for organic and inorganic biocides. The primary benefits expected from use of nanoparticles as controlled release devices for biocide in wood are an increased service life of wood and a reduction of biocide loss to leach, which is expected to allow wood to be effectively protected with lesser amounts of biocide than is used now. These benefits are expected to be realized by using a new and more efficient nanoparticle preparation to give a slow biocide release rate coupled with good nanoparticle stability in aqueous suspensions These features will allow the nanoparticles to be delivered efficiently into wood, but once in wood maintain a slow release rate. Successful completion of this project will benefit all ecosystems containing preserved wood. Even greater benefits are expected for wetlands and other moist ecosystems through reduction of biocide contamination, and in forest ecosystems harvested for wood by extending the service life of preserved wood and wood products.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:07/01/2008
Completion Date:08/30/2009
Record ID: 136206