Science Inventory

NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY

Citation:

Bhattacharyya, D., J. A. Hestekin, P. Brushaber, L. Cullen, L. G. Bachas, AND S K. Sikdar*. NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY. W.J. Koros (ed.), JOURNAL OF MEMBRANE SCIENCE. Elsevier BV, AMSTERDAM, Netherlands, 141(1):121-135, (1998).

Impact/Purpose:

information

Description:

Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane pore surfaces. The use of microfiltration (0.2-06 um) membrane-based sorbents containing multiple functional groups is a novel technique to achieve high metal sorption under convective flow conditions. For our studies, both commercial membranes and laboratory prepared cellulose membranes containing aldehyde groups were used for the attachment of poly-amino acids. Cellulose membranes were prepared by converting cellulose acetate Microfiltration Membranes; Aldehyde Derivatization; Poly-L-Glutamic Acid Functionalization; Metal Sorption; Cellulosemicrofiltration membranes to cellulose (using alkali treatment), subsequent oxidation of hydroxyl groups to aldehyde using sodium periodate, and attachment of poly-L-glutamic acid via Schiff base chemistry. Extensive experiments (pH 3-6) were conducted (under convective flow mode) with the derivatized membranes involving the heavy metals: lead, cadmium, nickel, copper, and selected mixtures with calcium in aqueous solutions. Metal sorption results were found to be a function of derivatization (aldehydes) density of membranes and degree of attachment of the polyfunctional groups, number of functional groups per chain, membrane surface area, and the type of metals to be sorbed. We have obtained metal sorption capacities as high as 1.5 g metal/g membrane. Of course, depending on the desired goals the membrane containing metal could be regenerated or stabilized for appropriate disposal.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:04/01/1998
Record Last Revised:11/18/2008
OMB Category:Other
Record ID: 106827