EPA Science Inventory

Methylation of Arsenic by Recombinant Human Wild-Type Arsenic (+3 Oxidation State) Methyltransferase and its Methionine 287 Threonine (M287T) Polymorph

Citation:

Thomas, D., L. Ding, R. Saunders, Z. Drobna, F. Walton, P. Xun, AND M. Styblo. Methylation of Arsenic by Recombinant Human Wild-Type Arsenic (+3 Oxidation State) Methyltransferase and its Methionine 287 Threonine (M287T) Polymorph. TOXICOLOGY AND APPLIED PHARMACOLOGY. Academic Press Incorporated, Orlando, FL, 264(1):121-30, (2012).

Description:

ABSTRACT Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAsIII) or methylarsonous acid (MAsIII) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPH or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAsIII to MAsIII, methylarsonic acid (MAsV), dimethylarsinous acid (DMAsIII), and dimethylarsinic acid (DMAsV); MAsIII was converted to DMAsIII and DMAsV. Although neither enzyme required GSH to support methylation of iAsIII or MAsIII, addition of 1 mM GSH decreased Km and increased Vmax estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, Vmax and Km values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1 mM GSH, significantly more DMAsIII was produced from iAsIII in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1 mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAsIII. AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic.

Purpose/Objective:

The study identified differences in the kinetics properties of methylation reactions catalyzed by WT and M287T AS3MT. These differences suggest that phenotypic differences in arsenic methylation capacity disease susceptibility can be linked to specifice molecular changes that affects the catalytic function of AS3MT. Improved estimates of genetically determined disease susceptibility are of potential benefit to the agency in risk assessments.

URLs/Downloads:

Record Details:

Record Type: DOCUMENT (JOURNAL/PEER REVIEWED JOURNAL)
Start Date: 11/15/2012
Completion Date: 11/15/2012
Record Last Revised: 03/22/2013
Record Created: 11/07/2012
Record Released: 11/07/2012
OMB Category: Other
Record ID: 247467

Organization:

U.S. ENVIRONMENTAL PROTECTION AGENCY

OFFICE OF RESEARCH AND DEVELOPMENT

NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LAB

INTEGRATED SYSTEMS TOXICOLOGY DIVISION

PHARMACOKINETICS BRANCH