

#### Causal Bayesian networks in assessments of wildfire risks: opportunities for ecological risk assessment and management

#### Mace G Barron<sup>1</sup>, Matthew A Thompson<sup>2</sup>, and John F Carriger<sup>3</sup>

<sup>1</sup>Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, FL USA <sup>2</sup>Human Dimensions Program, USDA Forest Service, Fort Collins, Colorado, USA <sup>3</sup>Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, USA

The views expressed in this presentation are those of the authors and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency or USDA Forest Service. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government, Forest Service or the EPA.





### The need for causal networks

- Wildfire risks and losses increased last 100 years
  - population expansion, land use and management practices, global climate change
- Extensive efforts modeling the probability and severity of wildfires
- Fewer efforts examining causal linkages between wildfires and impacts on ecological receptors and critical habitats







# "How to model causal linkages of wildfire frequency and severity on ecological systems?

Changes to renewal and succession patterns Direct impacts to wildlife and vegetation species and composition

Changes to soil composition

Runoff to aquatic systems



### **Bayesian networks (BN) in causal analysis**

- BNs: probabilistic tools for graphing and evaluating causal knowledge and uncertainties in complex systems
  - graphical model: variables as nodes in a directed acyclic graph
  - predict likelihood: possible known causes that contributed to an event
- Only limited application to the quantitative assessment of ecological risks and impacts of wildfires



## **Bayesian networks as probability calculators**



| Factory | Works over 5000 | Works less than 5000 |
|---------|-----------------|----------------------|
| Х       | 99              | 1                    |
| Y       | 95              | 5                    |





# **Bayesian inference**

#### **Predictive inference**



#### **Diagnostic inference**





# Example BNs in Wildfire Analyses

| Problem context                                                       | Example variables/nodes                                                                                                                                                           | Reference(s)                                                                             |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Fire occurrence prediction                                            | Population, distance from roads, distance<br>from settlements, topography, temperature,<br>precipitation, land cover                                                              | Bashari et al. (2016); Dlamini<br>(2010); Sevinc et al. (2020)                           |
| Fire behavior modeling                                                | Wind direction, fire weather, forest canopy characteristics, fuel model                                                                                                           | Norman et al. (2010)                                                                     |
| Housing loss prediction                                               | Fire behavior, fire weather, burned area, distance<br>to fire station, land cover, housing type and<br>construction, housing density                                              | Papakosta et al. (2017)                                                                  |
| Wildlife habitat characteristics<br>and vulnerability                 | Habitat suitability, fire size, fire likelihood, time<br>since fire, recolonization potential, genetic risk,<br>population demographics, vegetation cover,<br>predator occurrence | Falke et al. (2015); Hradsky<br>et al. (2017); Zeigler<br>et al. (2019)                  |
| Vegetation response to wildfire                                       | Fire frequency, vegetation type                                                                                                                                                   | Loftin et al. (2018)                                                                     |
| Reduced risk to homes and<br>infrastructure due to fuel<br>mitigation | Housing density, vegetation type, fire weather,<br>fire size, presence of fuel breaks, fuel treatment<br>rate, fire danger index, suppression response                            | Cirulis et al. (2020); Penman<br>and Cirulis (2020); Penman<br>et al. (2014, 2015, 2020) |



### **Bayesian networks in causal analysis**

- Opportunities for using Bayesian networks for assessing wildfire impacts to ecological systems
  - explored through levels of causal representation and scenario examination



| 1168                       | Integrated Environmental Assessment and Management — Volume 17, Number 6—pp. 1168–1178<br>Received: 18 December 2020   Returned for Revision: 8 February 2021   Accepted: 14 April 2021 |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special Seri               | es                                                                                                                                                                                      |
| Causal Baye<br>Opportuniti | sian networks in assessments of wildfire risks:<br>es for ecological risk assessment and management                                                                                     |

# Red Cockaded Woodpecker Habitat Restoration





### **Spotted Owl Habitat Protection**





### **Spotted Owl Habitat Protection**



#### **Decision Analysis**



# Utility of BNs in Wildfire Ecological Risk Assessment and Management



Causal diagrams provide tools for supporting assessment and decision making



Bayesian networks provide the calculus necessary for including uncertainties in causal relationships



Establishing a causal hierarchy for assessment and decision making models for environmental applications will benefit future environmental assessment and management endeavors



# **Questions?**





