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Executive Summary 

Overview 
Recovery following a large-scale chemical, 
biological, radiological, or nuclear (CBRN) 
incident requires a holistic approach and 
clear understanding of the intricate and 
interconnected processes associated with 
characterizing hazards, decontaminating 
affected sites, and managing resultant 
wastes. Without such an approach, inferior 
decisions may be made, which in turn could 
result in an undesirable outcome (e.g., 
increases in cost, time, and health risks).  
The ability to implement full-scale disaster 
response exercises with minimal resources 
and maximum control and realism is of great 
interest to the emergency response 
community. However, in-person exercises 
are expensive, time consuming, difficult to 
organize, and limited in scope. Currently, 
the U.S. Environmental Protection Agency 
lacks modeling and decision support 
systems to test, train, and evaluate strategic 
approaches to chemical, biological, 
radiological, or nuclear response and 
cleanup scenarios outside of such large-scale 
demonstrations or real-world incidents. 
There is a significant need for developing a 
simulator capable of visually depicting 
hypothetical disaster response and recovery 
scenarios and using these simulations to 
train responders/decision makers. The 
Environmental Protection Agency is, 
therefore, evaluating the use of three-
dimensional commercial-off-the-shelf 
(COTS) game engines for facilitating 
modeling, decision making, training, and 
exercise efforts for chemical, biological, 
radiological, or nuclear incidents. Today’s 
game engines rival or exceed the capabilities 
of traditional research modeling platforms: 
they are capable of modeling, accurately and 
in real time, physical systems and 
conditions, such as object collisions and the 

dynamics of fluids, particles, and light. The 
modification of these engines to simulate a 
few selected scenarios/proxy events could 
offer significant cost savings in the 
development of future decision support 
systems and environmental modeling tools.  
The purpose of this study was to synthesize 
existing knowledge and related research to 
evaluate the use of 3D COTS game engines 
for facilitating the modeling of four CBRN 
incident proxy scenarios: transport of liquids 
on outdoor surfaces; dispersion of 
particulate matter; explosive blast physics 
for conducting damage and impact 
assessments; and effects of urban geometry 
on radiation attenuation. The work and 
conclusions presented as part of this study 
were empirical and observational; no 
scientific experiments were performed. 

Methodology 
The study consisted of two components: 
(1) a literature review to identify relevant 
sources of information to evaluate the use of 
game engines for facilitating modeling 
efforts related to a chemical, biological, 
radiological, or nuclear incident; and 
(2) testing of possible game engine and 
plug-in solutions for four proxy scenarios: 

• Transport of liquids on outdoor surfaces 
• Dispersion of particulate matter 
• Explosive blast physics for conducting 

damage and impact assessments 
• Effects of urban geometry on radiation 

attenuation. 
The following criteria were used to evaluate 
the software products capable of answering 
the research questions pertaining to the 
above proxy scenarios: 
1. Publicly available commercial-off-the-

shelf product. 
2. Free of coding errors. 
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3. Supports two or more different particles 
interacting with other particles. 

4. Simulates collisions with other 
geometry in the engine. 

5. Quickly and reliably runs a simulation 
with at least two sets of 10,000 
particles. 

6. Integrates fluid dynamics, including 
physics. 

7. Integrates smoke dynamics, including 
physics. 

8. Runs in real time within a game engine 
and works with built-in systems. 

9. Accurately simulates real-world fluid 
dynamics. 

10. Uses particles to calculate fluid 
dynamics. 

11. Retrieves particle information when the 
simulation is paused. 

12. Uses different types of fluid simulation 
algorithms. 

13. Gathers data about each particle 
efficiently enough to maintain the 
simulation and output data on a per-
frame basis. 

14. Uses large-scale fluid simulations. 

Results 

Game Engines 

Game engines are the core component 
necessary for a game program to run 
properly. Core game engine components 
may include a rendering engine, a physics 
engine, sound, scripting, animation, artificial 
intelligence, memory management, and 
more. In addition to the core components of 
game engines, many game engine plug-ins 
have been developed; these are pieces of 
software designed to be added (plugged-in) 
to an existing piece of software to extend its 
capabilities. Because we are evaluating a use 
of game engines outside traditional game 
development, it is also of interest to what 
extent the different game engines have been 
utilized in other, non-gaming fields. 

Increased focus on the use of game engines 
for non-gaming applications should lead to 
increased development of plugins and 
modifications for those purposes.  
Based on the literature search, the two most 
widely used open-source game engines with 
the greatest potential for application to 
chemical, biological, radiological, or nuclear 
incident modeling are Unity Engine and 
Unreal Engine. Both are widely used, free or 
likely to be low cost in the proposed 
application, offer extensive features, and 
have the potential to address these scenarios. 
They are similar in many respects but differ 
the most in three areas: (1) codebase (C++ 
vs. C#), (2) rendering customization, and (3) 
ease of use. However, none of these 
differences are likely to have a significant 
impact on the choice of engine. Ultimately, 
the choice between Unity and Unreal will 
depend on the availability of built-in or 
plug-in systems that address the specific 
needs of applying game engines to the 
simulation of chemical, biological, 
radiological, or nuclear events. 
In addition to these two game engines, we 
also consider the use of a third possibility: a 
standalone executable software package 
called SPlisHSPlasH, which is not a game 
engine but otherwise meets all the criteria 
listed above.  

Possible Applications 

Current commercial-off-the-shelf game 
engine technology is not sufficiently 
advanced to permit real-time, accurate 
modeling of blast physics or radiation 
attenuation. However, fluid simulation 
technology, which can be applied to both 
liquid transport and particle dispersion, is 
progressing rapidly, and a higher degree of 
fidelity is currently possible for fluid 
simulation than for blast physics and 
radiation attenuation. Eight specific 
applications for fluid simulation were 
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evaluated: three for Unity, four for Unreal, 
and one for SPlisHSPlasH. Of these, only 
one, ObiFluid for Unity, can handle both 
liquid transport and particle dispersion, and 
it is the most promising of the eight 
applications reviewed. Therefore, we created 
several case studies using ObiFluid to 
illustrate how it might be used to model 
chemical, biological, radiation, and nuclear 
incidents. 

Conclusions and Next Steps 
Based on the literature review, no single 
commercial solution exists that addresses all 
four scenarios (liquid transport, particle 
dispersion, blast physics, and radiological 
attenuation). Although several potential 
solutions include some important aspects, 
ultimately critical criteria are missing from 
each one. Recommendations for individual 
scenarios are as follows: 

• Liquid Transport and Particle 
Dispersion would best be modeled using 
ObiFluid (Unity Engine plug-in); this 
plug-in is the best current option for 

rendering particle-based fluid dynamics 
within a game engine.  

• Blast Physics showing real-time 
destruction with accurately modeled 
physics is not currently possible. It 
would, however, be possible to model 
real-time destruction that is visually 
convincing but does not incorporate real-
world physics into the physics model. 

• Radiation Attenuation cannot currently 
be completely rendered in real time 
within a 3D game engine. Surface 
penetration is not possible; however, it is 
possible to model surface attenuation. A 
custom light-based system built on the 
Unity Engine is recommended.  

Once test environments have been 
established based on the above 
recommendations, experts in chemical, 
biological, radiation, and nuclear incidents 
should evaluate each implementation’s 
potential to address the study goals as well 
as the technical knowledge and skills needed 
to use the software effectively. 
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Foreword 
The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the 
Nation’s land, air, and water resources. Under a mandate of national environmental laws, the 
Agency strives to formulate and implement actions leading to a compatible balance between 
human activities and the ability of natural systems to support and nurture life. To meet this 
mandate, EPA’s research program is providing data and technical support for solving 
environmental problems today and building a science knowledge base necessary to manage our 
ecological resources wisely, understand how pollutants affect our health, and prevent or reduce 
environmental risks in the future.  
The Center for Environmental Solutions and Emergency Response (CESER) within the Office of 
Research and Development (ORD) conducts applied, stakeholder-driven research and provides 
responsive technical support to help solve the Nation’s environmental challenges. The Center’s 
research focuses on innovative approaches to address environmental challenges associated with 
the built environment. We develop technologies and decision-support tools to help safeguard 
public water systems and groundwater, guide sustainable materials management, remediate sites 
from traditional contamination sources and emerging environmental stressors, and address 
potential threats from terrorism and natural disasters. CESER collaborates with both public and 
private sector partners to foster technologies that improve the effectiveness and reduce the cost 
of compliance, while anticipating emerging problems. We provide technical support to EPA 
regions and programs, states, tribal nations, and federal partners, and serve as the interagency 
liaison for EPA in homeland security research and technology. The Center is a leader in 
providing scientific solutions to protect human health and the environment.  
The purpose of this study was to synthesize existing knowledge and research related to 
evaluating the use of three-dimensional commercial-off-the-shelf game engines for facilitating 
the modeling of four chemical, biological, radiological, or nuclear (CBRN) incident proxy 
scenarios. The modification of these engines to simulate CBRN scenarios could offer significant 
cost savings in the development of future decision support systems and environmental modeling 
tools when compared to in-person exercises (which are expensive, time consuming, difficult to 
organize, and limited in scope). 
Gregory Sayles, Director  
Center for Environmental Solutions and Emergency Response 
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1.0 Introduction 
Recovery following a large-scale chemical, biological, radiological, or nuclear (CBRN) incident 
requires a holistic approach and clear understanding of the intricate and interconnected processes 
associated with characterizing hazards, decontaminating affected sites, and managing resultant 
wastes. Without such an approach, inferior decisions may be made, which in turn could result in 
an undesirable outcome (e.g., increases in cost, time, and health risks).  
The ability to implement full-scale disaster response exercises with minimal resources and 
maximum control and realism is of great interest to the emergency response community. The 
significance of disaster response training and exercise activities on emergency personnel are well 
documented throughout literature (Alharthi et al., 2018; Hsu et al., 2013). These activities 
encourage teamwork, increase the value of training and equipment, and develop realistic 
perceptions of job risk. Emergency responder expertise is the cumulative result of periodic 
training and in-person exercise. The impacts of these activities are bolstered with increasing 
realism. 
Nevertheless, in-person exercises—especially full-scale disaster exercises that walk a trainee 
through a CBRN event—are expensive, time consuming, difficult to organize, and limited in 
scope. Furthermore, the processes involved in planning and conducting exercises have remained 
largely the same for decades. 
Currently, EPA lacks modeling and decision support systems to test, train, and evaluate strategic 
approaches to CBRN response and cleanup scenarios outside of large-scale demonstrations or 
real-world incidents. In place of in-person exercises, simulated training amplifies real-world 
experiences, providing a means to evaluate problem-solving and decision-making skills, 
technical and functional expertise, and communication and team-based competencies (Lateef, 
2010). Therefore, there is a significant need for a simulator capable of visually depicting 
hypothetical CBRN disaster response and recovery scenarios and using these simulations to train 
responders/decision makers. The potential application and impact of such a simulation tool 
would be far-reaching: EPA could use it to evaluate decontamination methods prior to 
implementation in the field, develop computer-assisted strategies using artificial intelligence, and 
train personnel on the use of EPA modeling and decision support tools in simulated 
environments. 
EPA is, therefore, evaluating the use of three-dimensional (3D) commercial-off-the-shelf 
(COTS) game engines for facilitating modeling, decision making, training, and exercise efforts 
for CBRN incidents. Today’s 3D COTS game engines rival or exceed the capabilities of 
traditional research modeling platforms: they are capable of modeling—accurately and in real 
time—physical systems and conditions such as object collisions and the dynamics of fluids, 
particles, and light. The modification of these engines to simulate a few selected scenarios/proxy 
events to model common CBRN incidents could offer significant cost savings in the 
development of future decision support systems and environmental modeling tools. In addition, 
due to the popularity of video games, technologically advanced virtual reality (VR) hardware and 
software are now economically viable on a large scale.  
The purpose of this study was to synthesize existing knowledge and research related to 
evaluating the use of 3D COTS game engines for facilitating the modeling of four CBRN 
incident proxy scenarios: transport of liquids on outdoor surfaces; dispersion of particulate 
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matter; explosive blast physics for conducting damage and impact assessments; and effects of 
urban geometry on radiation attenuation.  
This document presents the methodology applied and the results of this study. Researchers 
conducted a literature review to identify available game engines and supporting packages 
(Section 3), evaluated two selected game engines (Section 4); assessed their modeling 
capabilities (Section 5); and identified potential emergency response applications (Section 6). 
This report describes key elements and considerations that are necessary for 3D gaming 
solutions, as well as additional elements that would be useful but are not critical to effective 
simulations. These findings provide EPA with a better understanding of considerations for future 
efforts that employ 3D COTS game engines for modeling environmental events.  

2.0 Quality Assurance/Quality Control 
The work and conclusions presented as part of this study were empirical and observational; no 
scientific experiments were performed. Technical area leads evaluated the quality of the 
information collected by this effort (i.e., secondary data) and, based on their expert opinion, 
determined if the information should be documented within the literature review. Collected 
literature was evaluated according to the simulation requirements as defined in Section 3. All 
supporting documentation of the secondary data considered worthy for inclusion are cited. 
However, no experimental confirmation of secondary data (e.g., accuracy, precision, 
representativeness, completeness, comparability) was conducted as part of this study. 
Quality control was conducted concurrently with the literature review. Any literature or software 
and associated plug-ins that were deemed relevant to this study were then tested and evaluated 
by researchers. The process involved setting up test environments in two game engines—Unity 
Engine and Unreal Engine—for each plug-in, and within standalone software as relevant, over 
the course of three to six months, depending on the software. Researchers reviewed each other’s 
work, and any literature deemed worthy could not be included until both reviewers had evaluated 
it. Quality for each piece of literature was evaluated and re-evaluated throughout the study 
duration. 

3.0 Literature Review and Software 
Evaluation Basis 

A literature review was conducted to identify relevant articles, reports, and other information to 
evaluate the use of 3D COTS game engines for facilitating modeling efforts related to a CBRN 
incident. To identify relevant literature, researchers conducted keyword searches in Google, on 
trade websites and message boards, and in the Unity Asset Store; reviewed sources cited in 
literature identified; and reviewed the project team’s existing reference library.  
Literature was shared among and reviewed by project team members to identify available 
software and plug-ins potentially relevant to modeling the four selected proxy scenarios related 
to CBRN incidents:  

• Liquid Transport: Transport of liquids on outdoor surfaces 
• Particle Dispersion: Dispersion of particulate matter 
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• Blast Physics: Explosive blast physics for conducting damage and impact assessments 
• Radiation Attenuation: Effects of urban geometry on radiation attenuation. 

The following criteria were used to evaluate the software products capable of answering the 
research questions pertaining to the above proxy scenarios: 

1. Publicly available for download and installation: Game engine and add-on package 
and/or plug-in for modeling CBRN must be commercially available off-the-shelf for use, 
and not exist only within publications. 

2. Software implementations free of errors in the code when built or executed: 
Required for maintaining functional software and modeling implementations. 

3. Supports two or more different particles interacting with other particles: Required 
for modeling dispersion, transport, explosive blasts, and radiation attenuation. 

4. Simulates collisions with other geometry in the engine: Allows modeled events to 
have an impact on other objects in the engine. 

5. Runs a simulation with at least two sets of 10,000 particles relatively quickly and 
reliably: Required for maintaining simulations that can be accurately modeled and 
altered as fluid simulations increase in accuracy as the particle count increases. 

6. Integrates fluid dynamics, including physics: Required for modeling liquid transport. 

7. Integrates smoke dynamics, including physics: Required for modeling dispersion. 
8. Runs in real time within a game engine and works with built-in systems: Required 

for study goals and integration with interactive software. 

9. Accurately simulates real-world fluid dynamics: Required for study goals. 

10. Uses particles instead of meshes to calculate fluid dynamics: Required to accurately 
model fluid dynamics. 

11. Retrieves particle information when the simulation is paused: Required for outputting 
particle data at any given point of time. 

12. Uses different types of fluid simulation algorithms: Allows for integration of various 
fluid dispersion models. 

13. Gathers data about each particle efficiently enough to maintain the simulation and 
output data on a per-frame basis: Required for usability and study goals. 

14. Uses large-scale fluid simulations: Desirable as fluid dispersion pertaining to CBRN 
events occurs on a large scale. 

The first criterion, that the software be commercially available off-the-shelf, was absolute: 
developing new game engine software specifically for this use would be cost-prohibitive. 
Software deemed at least moderately capable of meeting the remaining study criteria was 
installed on computers, tested, and summarized, and relevant information is included in this 
report. 
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4.0 Game Engines 
Game engines are the core component necessary for a game 
program to run properly. Core game engine components may 
include a rendering engine, a physics engine, sound, scripting, 
animation, artificial intelligence, memory management, and more. 
Game engines may offer an intuitive user interface, which may 
include an integrated development environment (IDE), to 
facilitate building video games and lets developers test revisions 
in rapid succession while assembling a game or simulation. Most 
importantly, game engines often allow developers to reuse and 
adapt the same engine and some of their own previously written 
code to produce additional games or simulations without having to 
create a custom engine and all new code for each new product. In 
addition to the core components of game engines, many game 
engine plug-ins have been developed; these are pieces of software 
designed to be added (plugged-in) to an existing piece of software 
to extend its capabilities.  
Within the context of game engines, it is helpful to understand, at a basic level, the difference 
between an “object-oriented” design and a “data-oriented” design.1 Object-oriented design 
defines objects and assigns types of data and functionality to these objects, mirroring how we 
interact with the real world. Object-oriented design is intuitive and in widespread use; however, 
in the context of video games, it also makes highly inefficient use of CPU and memory, and so 
can impact performance and make it difficult to reuse functions. An alternative that is becoming 
more widely used is data-oriented design, which is focused on structuring data to align as closely 
as possible to how and in what sequence it will be used, doing much of the work upfront and 
making it possible for functions to be more general, more efficient, applicable to larger chunks of 
data, and reusable. This helps avoid hardware constraints and improve performance; it also takes 
full advantage of multicore processors now common in gaming computers. 
Because we are evaluating a use of game engines outside traditional game development, it is also 
of interest to what extent the different game engines have facilitated their use in other, non-
gaming, fields. A greater focus and commitment to unorthodox applications suggests greater 
availability of resources for informing such applications.  
Based on the literature search, the two most widely used open-source game engines with the 
greatest potential for application to CBRN incident modeling are Unity Engine 
(https://unity.com/) and Unreal Engine (https://www.unrealengine.com/en-US/). This section 
compares them within the context of the goals of this study. The two are direct competitors and 
have many near-identical features. In addition, we consider the use of a third possibility 
identified in the literature search, a standalone executable software package called SPlisHSPlasH 
(https://www.interactive-graphics.de/SPlisHSPlasH/doc/html/index.html), which is not a game 
engine but otherwise meets all the criteria listed in Section 3. 

 

Basic Game Engine 
Terminology 

Game engines place basic, 
representative objects into 
an enclosed environment and 
then perform a variety of 3D 
transformations on them to 
create visual simulations.  
The objects are called 
GameObjects in Unity and 
Actors in Unreal Engine. 
The environment in which 
they are placed may be 
called a Scene (Unity), Level 
(Unreal), or Map (Unreal). 

1 We are indebted to Jonathan Mines’ piece on Medium, Data-Oriented vs Object-Oriented Design, March 20, 
2018, for the information incorporated in this summary (https://medium.com/@jonathanmines/data-oriented-vs-
object-oriented-design-50ef35a99056). 

https://unity.com/
https://www.unrealengine.com/en-US/
https://www.interactive-graphics.de/SPlisHSPlasH/doc/html/index.html
https://medium.com/@jonathanmines/data-oriented-vs-object-oriented-design-50ef35a99056
https://medium.com/@jonathanmines/data-oriented-vs-object-oriented-design-50ef35a99056
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4.1 Unity Engine 
Unity Engine is a game engine that can deploy to most 
popular operating systems and platforms. Unity’s codebase is 
in C# with some in C++. 
Unity offers traditional object-oriented design but is 
transitioning toward the more efficient data-oriented design 
(https://unity.com/roadmap/unity-platform/dots). Within 
Unity, this is called data-oriented technology stack (DOTS). 
DOTS is still in development and currently functions as an 
extension to the traditional Unity Engine. DOTS is intended 
to enable developers to take full advantage of multicore 
processors, transitioning development from object-oriented 
scripting to data-oriented scripting and avoiding hardware 
constraints, resulting in performance gains and better 
optimization.  
Unity is known for extending its application into fields beyond game development, such as 
automotive, manufacturing, robotics, architecture, film, and other fields. Unity also provides 
libraries and application programming interfaces (APIs) for unorthodox hardware and devices 
that are outside the field of game development, such as simulation of human physiology and 
electrocardiogram (ECG) sensors. Additionally, Unity is well documented and has a vast library 
of official and unofficial tutorials. 

Unity Overview 
Version Used: 2020.1.17 
Pricing: basic version is free; 
Pro is $1,800/yr/user, not clear 
if that would be needed. May 
also charge royalties. 
Market Share: 48%; used for 
50% of mobile games, 70% of 
top 1,000 mobile games 
User Community: ~200K on 
official subreddit 
Codebase: mostly C# 
Open source? No 

4.2 Unreal Engine 
Unreal Engine  is a popular open-source game engine 
developed by Epic Games 
(https://portal.productboard.com/epicgames/1-unreal-engine-
public-roadmap/tabs/24-unreal-engine-4-27-summer-2021). 
Unreal focuses on high-fidelity and photorealistic graphics 
for immersive experiences, and it uses a visual programming 
language called Blueprints, which is arguably easier for 
programming novices. Unreal supports object-oriented 
design and its code base is entirely C++. 
Unreal is primarily known for game development, although it 
is beginning to extend its application into the architecture and 
automotive industries. 

Unreal Overview 
Version Used: Unreal Engine 4 
Pricing: free; 5% of royalties 
once game published; not clear 
how this would impact EPA’s 
proposed use 
Market Share: 13%; used for 
most AAA-studio game 
development (high-profile, non-
mobile games) 
User Community: ~100K on 
official subreddit 
Codebase: C++ 
Open source? Yes 

4.3 SPlisHSPlasH 
SPlisHSPlasH (hereafter referred to as SplishSplash) is an open-source library for physics-based 
simulation of fluids developed by the Interactive Computer Graphics group of University of 
Freiburg. It is important to note that SplishSplash is not a game engine but a standalone C++-
based tool that incorporates a series of different pressure solver solutions and allows for multiple 
types of particle representations for objects within a scene in real time; this means that different 
surfaces behave differently and are able to utilize different physical properties.  

https://portal.productboard.com/epicgames/1-unreal-engine-public-roadmap/tabs/24-unreal-engine-4-27-summer-2021
https://portal.productboard.com/epicgames/1-unreal-engine-public-roadmap/tabs/24-unreal-engine-4-27-summer-2021
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SplishSplash is not integrated into a game engine, nor is it offered as a plug-in for Unity or 
Unreal. Thus, it would have to be either used as a standalone or integrated into a game engine by 
creating a wrapper (a piece of software that contains, or “wraps around,” another piece of 
software); this latter option would require an extensive level of effort. However, it offers a 
potential path forward, so we have included it in our review. 

4.4 Comparison of Game Engines  
Both Unity and Unreal are potential options for use in modeling CBRN events. They are similar 
in many respects, but differ the most in three areas: 

• Codebase: Many external plug-ins and standalone tools are written in C++ instead of C#. 
Because Unreal’s codebase and libraries are in C++, it can incorporate these natively 
without reducing performance. By contrast, Unity is based in C#, and while it can 
incorporate C++ libraries and tools, doing so requires real-time translation between the 
two languages. That translation takes processing power away from rendering and other 
tasks, thus degrading performance. 

• Rendering: Unity’s rendering engine is more customizable than Unreal’s. The Unity 
Scriptable Rendering Pipeline allows developers to customize how the engine renders 
within the viewport and what rendering techniques are used. By cutting rendering 
features that would slow performance, this customization improves runtimes. By contrast, 
Unreal’s rendering engine permits only limited customization, and what it does allow has 
less impact than Unity’s more complete customization options.  

• Ease of Use: Unity is generally considered easier to use for a beginner, having a more 
intuitive interface than Unreal. However, Unreal has more built-in starter resources. 
Unreal also does not offer the same level of documentation and extended reality (XR) 
support as Unity. 

Both are widely used, free or likely to be low cost in the proposed application, offer extensive 
features, and have the potential to address these scenarios. Ultimately, the choice between Unity 
and Unreal will come down to the availability of built-in or plug-in systems that address the 
specific needs of applying game engines to the simulation of CBRN events, rather than 
overarching issues with the engines themselves.  

5.0 Assessment of 3D Game Engines to 
Simulate Physical Hazards  

In this section, we turn to the specifics of applying game engines to the four proxy scenarios 
defined in Section 3: liquid transport, particle dispersion, blast physics, and radiation attenuation. 
As both liquids and particle groups behave as fluids and are modeled similarly, liquid transport 
and particle dispersion are grouped together in the following section. 

5.1 Simulation of Fluids (Liquid Transport and Particle 
Dispersion) 

Liquid transport models are realized by computational physics models that have been adapted 
specifically for hydrodynamics. These systems are in the realm of fluid mechanics known as 
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computational fluid dynamics (CFD). CFD represents liquid molecule clusters as a particle, 
which will be affected by external physics interacting with the particle and properties of the 
liquid itself to determine how a liquid could theoretically interact in an environment. Particle 
dispersion can be modeled within the closely related field of computational gas dynamics 
(CGD), which is used to map gaseous matter (both particulate and vapor) and to simulate 
interactions within the gas, with other gases, or with other types of matter. 
There are several types of CFD algorithms; one of the most useful and accessible is the smoothed 
particle hydrodynamics (SPH) method. SPH works within a bounding box and can simulate 
fluids as particles within that space, along with interactions from other solids and liquid particle 
types. This ability to simulate fluids as particles is important because most water in games and 
simulations is only the surface of the body of water, which is not sufficient to capture 
information on depth and collisions of particles. The SPH method can also be used to solve CGD 
problems by adjusting the mass of the particle and how gravity affects particles. 
Various prototype packages designed to work within game engines have been partially 
developed to visualize models in real time for fluid simulation (both liquid transport and particle 
dispersion). Plug-ins for game engines have also been created that could help model both proxy 
scenarios. Possible reasons for developing these plug-ins include furthering the field of particle 
simulations, creating water simulations with accurate real time fluid dynamics, adopting a 
technological advantage over the competition, or making simulations available to a wider 
audience.  

5.2 Simulation of Blast Physics 
We found no documented use cases for 3D modeling of accurate blast physics in real time inside 
of game engines, although web-based modeling programs exist for getting values of a blast 
radius for both radiological- and chemical-based explosions (Wellerstein, 2020). These are 
typically not visualized (i.e., only exist as data models), and if they are, they are usually rendered 
on a 2D map or surface with rough estimates within a blast range; this would not be a high-
fidelity 3D rendering. Several big-budget video games do incorporate simulated explosions, as 
explained below, but this is usually merely a visualization or special effect. 
Visualizing explosive blast models in a 3D game engine seems possible. Most simulations for 
explosions are rough estimates of the blast radius, blast power, and radiation left/decay over 
time. With the correct calculations, the area affected by a nuclear blast can be simulated. That 
said, real time simulations of building destruction are not possible with current algorithms and 
available computational power. Destructions in game engines are generally not rendered 
accurately or in real time. For example, faults in walls are commonly calculated using algorithms 
that are not true to the actual science of how a building’s structure would be affected by a blast 
(Stack Exchange, 2011). It would take simulations of this nature roughly 4 to 6 hours per 
building to render using a finite element method (van Gestel, 2011). As it stands, real time 
explosions and building destructions are possible within game engines so long as real-world 
physics are not taken into consideration.  
Modeling building destruction with accurate physics is feasible outside of game engines. For 
example, the Extreme Loading for Structures software offers blast design and analysis, but this is 
not calculated and rendered in real time, does not allow for importing custom assets, and 
simulations are contained within the software and cannot be exported (Applied Science 
International, 2021). Based on the research for this report, modeling blast physics accurately in 
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real time within a game engine is not currently possible but could be rendered in a more 
simplified manner. 

5.3 Simulation of Radiation Attenuation 
The modeling technique used to calculate radiation attenuation is iterative and considers the 
depth of the object per pixel; this is performed in distance steps (i.e., how far away an object is 
from the starting point, from closest to farthest). Distance step calculations are performed 
sequentially and cannot move forward until the previous depth is determined. This process is 
problematic because at every frame, the calculation is completed per incremental distance, while 
the raytracing (a rendering technique for simulating light transport on objects in a 3D space) is 
recalculated per distance step while taking the previous distance step into account. Ultimately, 
attenuation models cannot be completed within real time simulations because of this intensive 
calculation process. As a result, while attenuation calculations are accurate for real-world 
conditions, they are not possible with real time calculations.  
Both Unity and Unreal have all the core features needed to create simulations for radiological 
models. However, the required computational power for simulating such models is a hindrance. 
All model simulations require high-performance multithreading CPUs, state-of-the-art graphics 
processing units (GPUs), and GPU computational processing frameworks given the number of 
parallel computations. Additionally, the models require custom shading frameworks: both 
engines provide shading frameworks but not to the degree needed. As it stands, this is not 
possible within a game engine because this process cannot be calculated and rendered in real 
time. However, it may be feasible to render radiological attenuation if limited to a surface-only 
simulation or if other elements are scaled back. 

5.4 Summary of Physical Hazard Assessment Possibilities 
Current game engine technology is not sufficiently advanced to permit real time, accurate 
modeling of blast physics or radiation attenuation. However, fluid simulation technology, which 
can be applied to both liquid transport and particle dispersion, is progressing rapidly, and a 
higher degree of fidelity is currently possible for fluid simulation than for blast physics and 
radiation attenuation. It seems likely that it is only a matter of time until accurate, real time 
particle-based CFD is feasible within a game engine. In Section 6, we explore the possible 
applications for fluid simulation. 

6.0 Possible Applications for Fluid Simulation 
In this section, we discuss potential applications for CFD in Unity (Section 6.1) and Unreal 
(Section 6.2). In addition, we consider the use of a third possibility, a standalone executable 
software package called SPlisHSPlasH (Section 6.3), which is not a game engine but otherwise 
meets all the criteria listed in Section 3. Finally, Section 6.4 summarizes the findings. Table 1 
summarizes the applications evaluated. 



9 

Table 1. Applications for Fluid Simulation Evaluated 

Application Section 
Liquid 

Transport 
Particle 

Dispersion 

Unity: NVIDIA FleX 6.1.1 x  

Unity: ECS-Job System SPH 6.1.2 x  

Unity: ObiFluid 6.1.3 x X 

Unreal Water 6.2.1 x  

Unreal: CPP Fluid Particles and SPH Liquid 6.2.2 x  

Unreal: NVIDIA FleX and Cataclysm 6.2.3 x  

Unreal: NVIDIA Flow 6.2.4  X 

SPlisHSPlasH 6.3 x  

6.1 Unity  
Unity does not have a built-in water/fluid dynamics system, so any possible solution will be 
based on plug-ins. The following sections outline plug-ins that are currently available for use 
within Unity for modeling CFD. Subheadings indicate whether the plug-in is evaluated for liquid 
transport, dispersion, or both. 
6.1.1 NVIDIA FleX (Liquid Transport) 

FleX is a position-based fluid for real time visual effects (NVIDIA, 2018). FleX uses a unified 
particle representation for all object types that, according to NVIDIA, enables new effects where 
different simulated substances can interact with each other seamlessly. FleX is a plug-in for 
Unity Engine that is readily available. FleX only allows for single-threaded implementations 
(which creates a computational bottleneck) and is reliant on NVIDIA’s scripting libraries. 
FleX can render a variety of object types (including particles, fluids, gases, rigid or deformable 
bodies, cloth, and rope) and processes (including phase transition and adhesion). Figure 1 shows 
an example of a FleX simulation involving a fluid and rigid bodies. However, for the purposes of 
modeling CBRN events, FleX has two significant shortcomings: 

• It cannot be used to simulate interactions between different types of fluids: all fluid 
simulations are controlled by a single, unified solver, so all simulated parameters (e.g., 
velocity, viscosity) apply to every simulated fluid in the scene. Even though FleX 
supports multiple types of objects, it is ultimately limited by this inability to implement 
different kinds of fluid simulations at once. 

• Simulated fluids rendered with FleX do not behave realistically, even when 
contained in small spaces: This is due to the relatively low limit of particles (roughly 
5,000) and the requirement that all fluid simulations adhere to a unified solver, as 
mentioned above.  

In summary, FleX cannot be used as currently developed for modeling CBRN events. If NVIDIA 
develops it further, increasing the particle limit and allowing more than one solver, it would then 
be potentially useful for modeling liquid transport, dispersion, and radiological particles with a 
transporting fluid, but these upgrades are not an adaptation a third party could implement. 
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Figure 1. NVIDIA FleX Showing Rigid Bodies Interacting within a Fluid Simulation 

 
Source: NVIDIA (2018) 

6.1.2 Unity-ECS-Job-System-SPH (Liquid Transport) 

Unity-ECS-Job-System-SPH is an open-source, SPH simulation using Unity’s new data-oriented 
design implementation, DOTS (described in Section 4; ECS in the plug-in name is a reference to 
Unity’s Entity Component System, which is the core of DOTS). It exists only as a proof-of-
concept for DOTS, with a single Unity Scene and a set number of particles within this single 
environment. The system uses simple geometry (cubes and spheres) to model movement and 
collisions and does not address complex simulations with multiple types of fluid interactions in 
real time (Montes, 2018). As a limited proof-of-concept, it does not provide a complete system 
for simulating liquid transport for the purposes of this project. 
6.1.3 ObiFluid (Liquid Transport and Particle Dispersion) 

ObiFluid is a Unity plug-in for simulating fluids and gases based on the SPH fluid simulation 
model for movement and physics (see Figure 2). It uses a rendering technique called screen 
space fluid, which blends particles in a space to look more like the fluid the system is trying to 
represent using a combination of depth information, screen space curvature flow, and noise to 
create the results. ObiFluid contains most, if not all, of the features needed for simulating 
particles being affected by liquid transport, but not radiation attenuation. This is possible because 
ObiFluid is based on several published physics simulations that are grounded in real-world 
physics, including position-based fluids, real time collision detection, and shape deformation.2 

 
2 For a comprehensive list of published academic research articles that have been used in Obi, see 

http://obi.virtualmethodstudio.com/references.html. 

http://obi.virtualmethodstudio.com/references.html
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Figure 2. SPH Fluid Simulation of Water Flowing from a Faucet to a Bowl That Can 
Be Tilted 

 
Source: Captured by RTI researchers within Unity Engine  

In ObiFluid, users can track particle movement and retrieve collision data from particles and 
geometry. This differentiates ObiFluid from the other plug-ins, which tend to hide collision 
information behind the scenes. Collisions are essential for saving particle information when 
interacting with geometry and seeing the movement and velocity over time when colliding with 
other objects. 
ObiFluid includes all the particle features needed to get an accurate representation of both water 
and smoke simulations. It also allows the user to put constraints on the simulation and change the 
fidelity of the results. Some of these constrainable values include iterations of friction, collision, 
density, and stretch shearing.  
ObiFluid is also highly optimized for performance. Most of the plug-in uses multithreaded and 
GPU-based code, meaning that many of these calculations occur in parallel instead of running 
one calculation at a time. Calculations running concurrently allow for future scalability and 
performance gains, as trends in hardware development show parallel computing speed increases 
faster than single-core clock speeds. 
The one disadvantage to this plug-in is the scale at which the simulations can run. The system is 
capable of processing approximately 5,000 particles before it starts to experience significant 
performance issues because the collisions require a significant amount of processing power. This 
cannot be avoided and is needed to get information from the particles. Additionally, particles are 
bound to the same solver implementation to collide and interact with other particles, which is a 
limitation similar to NVIDIA FleX and its unified solver. 
A series of case studies that demonstrate the capabilities of ObiFluid are described in Section 7. 

6.2 Unreal 
The developers of Unreal Engine are experimenting with incorporating CFD and SPH into 
Unreal; they have published technical demonstrations of particle-based fluid simulations within 
Unreal that maintain high performance (Zhu, 2021).  
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6.2.1 Unreal Water (Liquid Transport) 

Unreal Water (Unreal 4.26 and newer) is an 
integrated solution for simulating water bodies, 
primarily rivers, lakes, and oceans. This plug-in is 
a collection of modeling and rendering tools that 
use spline-based3 workflows to create a unified 
water editing experience. It features a combined 
shading and rendering pipeline, as well as surface 
meshing that automatically supports gameplay 
physics and fluid simulation. Water bodies are 
plane- and tile-based, and waveforms are 
simulated on the object’s mesh. What this means 
is that Unreal Water is easy to implement, 
customize, and iterate in a package that is natively 
integrated into the engine and maintains a high 
degree of performance.   
Because the water body objects are created using 
splines, users have a variety of useful options 
available for working with them: 

• Move, rotate, scale, and duplicate 
• Easily create new spline points 
• Adjust water speed, depth, and audio 

features per point 
• Access a context-sensitive menu for each 

point and enable visualizers to adjust 
water properties on the fly 

• Automatically interact with and reshape 
the simulation landscape nondestructively. 

Unreal Water comes with a built-in Gerstner wave 
simulation for lake and ocean waves. Each water 
body can have its own set of wave parameters (see 
Figure 3). Additionally, these parameters can be 
saved as a water wave asset and subsequently applied to multiple bodies of water. The Water 
plug-in can affect wave simulations by attenuating water depth, the number of waves, wave 
height, steepness, and several additional parameters. 
In games, the fluid simulation tool can interact with characters, vehicles, and weapons. This 
interaction adds to the realism and feel of the game world by creating ripples, splashing, and 
foam effects. Forces are applied to the fluid simulation using force impulses that are controlled 
on a per-object basis. For example, objects can apply force to fluid simulations as they pass 

 

Figure 3. Wave Simulation 
Parameters in Unreal Water 

 
Source: Captured by RTI researchers  

within Unreal Engine 

3 Splines are a type of mathematical curve. In Unreal Water, each point on the spline is represented with an 
interactable node for user control. 
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through the water, projectiles can create splashes, and ripples can reflect off the shoreline and be 
affected by river flow maps. 
The plug-in includes two sets of equations for modeling the flow below a pressure surface in a 
fluid: Shallow Water and the less expansive Ripple Solver. The main difference between the two 
within Unreal is that Shallow Water can render sea foam and simulate water bodies draining into 
other water bodies  downhill. Ripple Solver cannot simulate water movement to the same degree 
as Shallow Water, but it is substantially more stable within the engine.  
All ocean, lake, and river water bodies are rendered using a single water mesh object. This 
special object automatically generates the needed mesh for each water body in a simulation 
based on their splines so that overlapping water body objects share the same mesh and water 
flows seamlessly across the transition.  
The level of detail and all wave animations are handled using a quadtree structure (i.e., a data 
structure used to partition a 2D space by recursively subdividing it into four quadrants) and 
traversing it in each frame to generate an optimized set of visible tiles. Figure 4 demonstrates the 
concept inside Unreal Engine. 
Figure 4. Unreal Water with Enabled Quadtree Structure 

 
Source: Captured by RTI researchers within Unreal Engine 

Water rendering contains several properties for customizing the look and feel of water body 
objects: 

• An underwater post-process material is applied based on the location of the user’s camera 
to allow for partial and full submersion in a water body and simulates underwater light 
diffraction. 

• Specified transitions between rivers and other water bodies are material driven. 
Transition materials can be specified on each river object to be automatically assigned to 
transitions between rivers and lakes and between rivers and oceans.  

• Rendering custom caustic materials (the envelope of rays that are reflected or refracted 
by a topological space) is possible via caustics generation tools and can be applied to 
shallow water surfaces. 
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Although the water mesh object can be customized and controlled by developers, the properties 
for customizing Unreal Water are too expansive to discuss in this document and can be found in 
the Unreal Engine documentation.4 
Ultimately, Unreal Water is not particle- or physics-based, which are requirements for accurately 
simulating CFD. Water is rendered on a flat plane, and all wave motions are simulated visually. 
Any physical interactions would require manually scripting via the Unreal visual scripting 
language (Blueprints) or C++ and would be additional components to the water bodies. Water 
properties are not true to life for many reasons, in part because Unreal measures and renders all 
game objects on a significantly smaller scale than reality. For example, one experiment included 
an ocean with a depth of 2.5 meters at the deepest point. It is important to note that this is not a 
flaw in the engine or the water plug-in; rather, this is a feature to ensure the system performs 
well in a gaming context. Additionally, it does not allow different kinds of fluids; this system is 
built specifically for water bodies. Unreal Water is the easiest option to set up and iterate on, but 
it is not viable for this project because any physical components of water movement would not 
be part of the water simulation.  
6.2.2 CPP Fluid Particles and SPHLiquid (Liquid Transport) 

CPP Fluid Particles (in which CPP stands for C++) is an open-source implementation built by 
one researcher based on several SPH papers (Bender and Koshier, 2015; Macklin and Müller, 
2013; Becker and Teschner, 2013; Akinci et al., 2013; He et al., 2014) adapted to Unreal by a 
second researcher. It uses C++ and CUDA (a parallel computing platform developed by NVIDIA 
that enables software programs to perform calculations using both the CPU and GPU). 
SPHLiquid is an open-source Unreal Engine plug-in for CPP Fluid Particles and requires a 
custom version of CPP Fluid Particles. Put simply, this can theoretically model CFD within 
Unreal Engine. 
SPHLiquid is ultimately not a solution for this project because it requires building the custom 
version of CPP Fluid Particles, which is beyond both the available level of effort for this project 
and the experience of the project team. In addition, it offers no instructions on how to integrate it 
into Unreal Engine once built. More importantly, the time required to make this a functional 
plug-in renders it unusable. There is also no guarantee that once built this solution would 
perform well, be flexible, and incorporate the required project parameters.  
6.2.3 NVIDIA FleX and Cataclysm (Liquid Transport) 

NVIDIA offered several plug-ins for Unreal Engine via NVIDIA GameWorks (a collection of 
game engine plug-ins centered around simulating water, smoke, and more) including FleX and 
Cataclysm. Although NVIDIA has taken GameWorks offline, it still provides documentation and 
instructions for accessing their GameWorks repository 
(https://developer.nvidia.com/gameworks-source-github).  
FleX is a particle-based simulation technique for real time visual effects (Figure 5). Unlike the 
Unity version, which is a plug-in, FleX for Unreal requires installing a custom version of the 
engine that is no longer available from NVIDIA’s repositories. We were able to install a backup 
of FleX and the needed custom version of Unreal via an independent repository for the purposes 
of this review, but that is not a practical long-term approach. FleX uses a unified particle 

 
4 https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/Water/  

https://developer.nvidia.com/gameworks-source-github
https://docs.unrealengine.com/4.26/en-US/BuildingWorlds/Water/
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representation for all object types; according to NVIDIA, this feature enables new effects where 
different simulated substances can interact with each other seamlessly.  
This version of FleX is substantially more efficient than the Unity version and offers more 
sample levels as well. That said, the main issues with FleX for Unreal are the same as the Unity 
Engine version—it cannot be used to simulate interactions between different types of fluids, 
because all fluid simulations are controlled by a unified solver, and the relative low limit on the 
number of particles means simulated fluids rendered with FleX do not behave realistically. 
Ultimately, FleX is an outdated rendering solution from 2013–2014. For these reasons, NVIDIA 
FleX is also untenable on Unreal. 
Cataclysm was a technical demonstration designed to reach the scale of water simulation needed 
to flood a city with realistic visuals (NVIDIA, 2016). According to NVIDIA, Cataclysm can 
simulate up to 2 million liquid particles in real time. However, Cataclysm was never intended for 
full release, and the demonstration version is not available for download. Additionally, even if 
Cataclysm were available, it would require extremely powerful hardware. Therefore, Cataclysm 
is not a solution for this project.  
Figure 5. NVIDIA FleX Running in 

Unreal Engine 

 

 
Source: Captured by RTI researchers within Unreal 
Engine 

Figure 6. NVIDIA Flow Smoke 
Simulation Enveloping 
a Sphere 

 
Source: Captured by RTI researchers within Unreal 
Engine 

6.2.4 NVIDIA Flow (Particle Dispersion) 

Flow is NVIDIA’s offering for smoke, fire, and combustible fluid simulations. Flow is available 
as a standalone executable simulation or as part of the same custom version of Unreal Engine 
with FleX. Flow uses voxels, values on a regular grid in 3D space that are commonly used to 
represent terrain in games and simulations. The simulation data are stored on small textures 
within the grid and exported to be rendered.  
Flow is visually impressive: simulations behave and interact with objects realistically (Figure 6). 
It is also customizable and straightforward to set up. If Flow were available to use with Unity, 
then Flow, coupled with ObiFluid, would be a strong option due to Flow’s robust smoke 
simulations and ObiFluid’s CFD prowess. However, Flow is only available as a standalone 
executable or within a custom version of Unreal Engine that is no longer supported by NVIDIA. 
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Integration of Flow into Unity Engine would require a significant level of effort, and ultimately, 
the entire development team cannot switch to a new engine for one project and one plug-in.  

6.3 SPlisHSPlasH (Liquid Transport) 
SplishSplash is based on the SPH method and incorporates state-of-the-art pressure solvers to 
affect fluid behaviors (Bender et al., 2020). SplishSplash may be an ideal tool for liquid 
transport. It uses a wide variety of particle solvers that are selectable on the fly by the user and 
backed by research; it models several types of fluid dynamics at runtime; fluid simulations are 
highly customizable, with multiple fluid properties exposed and editable in an easy-to-use user 
interface; and scenes are based on JSON (JavaScript Object Notation) files, a type of file that 
stores simple data structures and objects. The use of JSON means that writing new simulations is 
extremely easy and fast. In addition, it can freeze the simulation and output particle information 
per frame. Users can select particles with a mouse click to highlight specific particles, and 
information on each particle is displayed in the command line. SplishSplash also maintains a 
high level of performance and can output simulations as rendered videos. 
SplishSplash is exceedingly capable at CFD, with realistic particle-based simulations, which 
include multiple types of fluids with unique physical properties. Particles within the simulation 
are color-coded based on user-selectable parameters, such as velocity, to illustrate physical 
behaviors further. Parameters can be easily adjusted within the user interface of SplishSplash in 
real time, and before and after a simulation. In addition, writing new test environments was an 
easy process because of its use of JSON scripts. Figure 7 shows a viscous bunny model falling 
into a simulated body of water that was created in under an hour.  
The ideal solution for creating dynamic CFD simulations within a game engine would involve 
taking the time to adapt SplishSplash for either Unity or Unreal. This would be a challenging 
project requiring developers with experience writing C++ upwards of 1 to 2 years to complete. 
For that reason, it is not currently feasible but should be considered in the future. 
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Figure 7. Images from SplishSplash Experiments 

 
(a) The “bunny” and fluid body at simulation start. Note the parameters to the left. 

   
(b) Bunny and fluid 

moments before impact. 
(c) Bunny and fluid at point of impact; red, orange, and 

magenta particles indicate high velocity. 
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7.0 Case Studies 
The most promising of the applications reviewed for simulating CBRN incidents is ObiFluid for 
Unity. This section presents case studies that demonstrate possible implementations of ObiFluid 
for the four scenarios considered here. Some are sample scenarios that come packaged with 
ObiFluid and were slightly modified for demonstration.5 The case studies were developed using 
a high-end computer (e.g., 2.2 GHz CPU, 32 GB RAM) with a GPU. 

7.1 Particle Dispersion (Smoke and Water) 
This dispersion prototype (Figure 8) demonstrates how sediment is carried by moving water, 
including deposition of particles. This prototype has two particle systems at play—water falls 
from the faucet, pooling on the floor, and smoke particles emit from the white cube to the left. 
As the smoke is emitted from the cube, the particles follow a path that causes interactions with 
the water; some of the particles are then deposited at the base of the environment due to the 
simulated forces from the water falling. Remaining smoke particles continue to rise in the 
environment, and are either dampened by the fluid simulation, or collide with the faucet itself. 
This prototype demonstrates how dispersion moves sediment from one location to another; 
unfortunately, for now this is only possible on a smaller scale due to current limitations with 
ObiFluid and real time fluid simulations, but we could explore scaling other GameObjects down 
to a smaller size to see if that is visually convincing. 
Figure 8. Dispersion of Simulated Smoke Particles from Water as it Pours from the 

Faucet 

 

 
5 Videos of all case study prototypes can be found at [public link to be added]. 
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7.2 Liquid Transport 
7.2.1 Fluid Maze 

Fluid Maze is the most gamified example scenario in ObiFluid (Figure 9). Users are tasked with 
using the A and D keys on their keyboard to move fluid particles to the end of a maze with the 
highest level “purity” possible. The challenge (aside from moving the liquid, which behaves 
realistically) comes from orange and green cubes in the maze that tint the fluid with either an 
orange or green color, lowering the fluid’s overall purity percentage, as shown in the upper right 
of the user interface. Fluid Maze can be seen as a rudimentary demonstration of liquid 
transport—the fluid simulation is collecting and carrying the orange and green contaminants 
(visually this is just a color change of the fluid) if it passes over either of the contaminated 
objects. The game even accounts for this by letting users try again should their purity level fall 
too low upon completion. 
7.2.2 Fluid Viscosity 

Two examples in ObiFluid demonstrate its ability to simulate viscous fluids. The first, “Raclette” 
(Figure 10a), simulates a viscous fluid falling onto a floating pink cube that has parameters to 
simulate heat levels, and a second, lower cube to lower the fluid’s temperature. As the fluid falls, 
its color changes as it interacts with the cubes as a visualization of this change in temperature, 
and the fluid’s simulated properties change—this causes the fluid to become less viscous as it 
slides onto the lower cube. This demo can illustrate how dispersion can leave behind fluid bodies 
as it passes over a surface. 
The second viscosity demo (Figure 10b) simulates a goo-like substance being poured over a 
spherical object. Unlike the Raclette demo, the fluid’s viscosity does not change as it interacts 
with the sphere—instead it clings to the sphere before pooling at the ground. Altering the 
viscosity parameters changes how quickly the simulated fluid pools at the bottom. Similar to the 
Raclette demo, this is an example of fluid remaining on a surface. 
7.2.3 Fluid Mixing 

The final two examples simulate fluid particles interacting and colliding as they are poured into a 
contained area. The first (Figure 11a) is similar to SplishSplash in that the fluid particles change 
color as collisions happen. As blue and yellow fluid bodies are poured into the environment, the 
demo changes the two fluids’ colors based on the velocity of each particle during collisions. 
After a few violent moments of simulated wave crashes, the fluid bodies settle at the bottom with 
multiple colors. 
The second fluid mixing demo (Figure 11b) has additional objects within the environment—two 
ramps, a sphere, and a cube—the latter two have simulated properties of buoyancy. The water 
enters in two ways—the maroon fluid passes over the ramps and the blue fluid is angled to pour 
off the leftmost wall. As the fluids crash into each other, the force of the collision impacts the 
cube, the sphere, and both fluids. The sphere and cube are realistically pushed around by the 
water bodies and bob up and down as determined by their buoyancy. This demo could be a good 
illustration for testing air filters.  
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Figure 9. Fluid Maze 

  
(a) Start of the scenario (b) After moving some of the fluid over the 

orange “contaminant” 

 
(c) After interacting with the green 

“contaminant.” Note the greatly reduced 
purity and changes to the fluid’s coloration 

  

 

Figure 10. Fluid Viscosity  

(a) Raclette demo (b) Goo-like substance 
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Figure 11. Fluid Mixing 

 
(a) Fluid particles change color as the blue and yellow fluids collide. 

 
(b) Fluid mixing with buoyancy; cube and sphere are physically manipulated by the blue and red 

fluids. 
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7.3 Blast Physics 
Figure 12 shows a progressive series of images from the developed blast physics demo. The 
demo uses ObiFluid and Unity’s physics capabilities to simulate a radial blast within a 3D 
environment. The red sphere represents the blast location and the cube in the center represents a 
structure that can be affected by the blast. The cube structure is composed of many soft body 
particle blocks (normally used for fluid simulations) and underwent a process to determine the 
appropriate distribution of soft body particles to represent the structure. When the bomb button is 
pressed (top button in the lower right of the UI, see Figure 12) a simplified blast calculation is 
performed from the blast location, and the cube structure is broken and scattered across the 
environment into separate blocks. While the demo provides a good starting point for simulating 
blast physics, available game technology is not currently sufficiently advanced to simulate blast 
physics in complex environments. 

7.4 Radiation Attenuation 
Figure 13 shows a before and after image from the developed radiation attenuation demo. The 
demo simulates radiation traveling outward from a point source in all directions. The green 
sphere represents the location of the radiation point source. The environment also contains 
various simple primitive objects that can receive radiation as well as occlude other objects from 
receiving radiation. The gradient displayed in the lower left of each image provides a simple 
colorization of the relative amount of radiation that an object receives based on its proximity to 
the radiation source (purple being closest to the source and light blue being furthest from the 
source). The inverse square law is used to attenuate radiation from the point source to each of the 
objects affected by radiation. This demo helps to show how current game technology can be used 
to effectively show radiation attenuation in a 3D environment, and future developments can build 
upon our work. 
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Figure 12. Blast Physics  

 
(a) The simulation environment of the blast physics demo. 

 
 

 
(c) Another snapshot of the environment during a blast. 

 

(b) Snapshot of the environment during a blast.

(d) The simulation environment after the blast has completed. 

 



24 

Figure 13. Radiation Attenuation 

 
(a) The simulation environment of the radiation attenuation demo. 
 

 
(b) Captured radiation for the environment. 

8.0 Conclusions and Next Steps 
Full-scale, in-person disaster training exercises are costly, time consuming, limited in scope, and 
have remained largely unchanged for several decades. Furthermore, EPA does not have the 
capabilities to adequately test, train, and evaluate strategical approaches to CBRN response and 
cleanup scenarios outside of large-scale demonstrations or real-world incidents. Game engines 
are a potential platform for modeling these simulations using built-in systems and plug-ins that 
can simulate collisions, fluids, particle behaviors, and lighting.  
This study examined the feasibility of using  two popular game engines—Unity Engine 
2020.1.17 and Unreal Engine 4—to model four proxy scenarios related to CBRN incidents: (1) 
transport of liquids on outdoor surfaces, (2) dispersion of particulate matter, (3) explosive blast 
physics for conducting damage and impact assessments, and (4) effects of urban geometry on 
radiation attenuation.  
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We first evaluated general approaches to modeling the four scenarios (Section 5). No solutions 
were identified that could currently adequately address blast physics or radiation attenuation, 
largely due to the considerable computational demands of real-time, complex simulation and 
rendering for these scenarios.  
For simulation of fluids (i.e., liquid transport and particle dispersion), we identified existing 
plug-ins that might be useful (Section 6). Table 2 shows the relevant plug-ins evaluated and 
identifies which meet the criteria described in Section 3. None meet all the evaluation criteria; 
however, one—ObiFluid for Unity—does show significant promise. 

Table 2. Engine Implementations and Plug-ins 
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1 Publicly available X X X X X X  X X 

2 Error-free X   X X     X X X 

3 Two or more different particles interacting X  X  X  X X X 

4 Collisions with other geometry X X X X X X X X X 

5 At least two sets of 10,000 particles   X     X X    X 

6 Fluid dynamics, including physics X X X X X X X  X 

7 Smoke dynamics, including physics   X     X  

8 Runs in real time X X X X X X X X  

9 Accurate fluid dynamics X X X X X X X X X 

10 Particle-based fluid dynamics X X X  X X X X X 

11 Particle information available     X          X 

12 Multiple fluid simulation algorithms         X 

13 Efficient particle data management          

14 Large-scale fluid simulations           X    X 

Finally, we created simple demonstrations using the most promising tools identified (Section 7) 
to highlight current capabilities and future potential for modeling each scenario. These 
demonstrations lead us to recommendation the following next steps: 

1. Develop a test environment using ObiFluid (Unity Engine) to build simulations of 
liquid transport and particle dispersion. Liquid transport would be modeled in a 
simulation of two SPH-based fluid models consisting of a water body transporting 
radiological particles as the simulated fluids move within a contained environment. 
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Particle dispersion would be modeled by simulating the dispersal of particles that interact 
with surfaces while slowly depositing to the ground.  

2. Scope out a pared back blast physics simulation that does not incorporate real-
world physics.  As noted, showing real time destruction with accurately modeled physics 
is not currently possible. It would, however, be possible to model real time destruction 
that is visually convincing but does not incorporate real-world physics into the physics 
model, but instead, bases destructions on random fracturing patterns without taking the 
material the object is comprised of into consideration. Data from existing blast impacts 
on buildings could then be displayed in the user interface, suggesting to users that this 
model incorporates real-world physics and outcomes. Eschewing visual fidelity would 
not necessarily lend itself to a more accurate model but exploring more pared-back 
approaches could provide some guidance. 

3. Scope out a custom light-based system built on the Unity Engine that would estimate 
the level of attenuation as a function of blast yield and distance. Radiation attenuation 
cannot currently be completely rendered in real time within a 3D game engine. Surface 
penetration is not possible; however, it is possible to model surface attenuation.  

4. Engage experts in CBRN incidents to evaluate each implementation’s potential to 
address the study goals. This would include both the effectiveness of the simulation and 
the technical knowledge and skills needed to use the software effectively.  

5. Continue to monitor developments in game engine capabilities and improvements in 
computing power. Ultimately, the raw computational power needed to accurately model 
CBRN incidents within a game engine is simply not within the realm of possibility at this 
time. However, given historical improvements in computing power, we are confident that 
is only a matter of time. 
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Definitions 
Actor (Unreal Engine): an object that can be placed into a level. Actors belong to a generic 
class that supports 3D transformations such as translation, rotation, and scale. Actors can be 
created and destroyed through gameplay code (C++ or Blueprints, Unreal Engine’s visual 
scripting language). See also GameObject (Unity Engine). 
Bounding box (particle behavior): defined areas in a simulation that are checked for collisions 
between two objects. Simulations must remain within the bounding box. 
Caustics: the envelope of rays that are reflected or refracted by a topological space. In computer 
graphics, this is accomplished by raytracing the possible paths of a light beam.  
Computational fluid (or gas) dynamics (CFD/CGD): a group of computational physics 
methods to interpret how fluids (or gases) interact with themselves, other fluids (or gases), and 
other matter in different states. 
Compute Unified Device Architecture (CUDA): a parallel computing platform developed by 
NVIDIA that enables software programs to perform calculations using both the CPU and GPU. 
Data-oriented design: a program optimization approach used in video game development to 
optimize CPU cache usage and focusing on data layout and transformations.  
Data-Oriented Technology Stack/DOTS (Unity Engine): in Unity Engine, a new 
multithreaded data-oriented technology stack (DOTS) feature that enables developers to take full 
advantage of multicore processors, transitioning development from object-oriented scripting to 
data-oriented scripting; DOTS helps avoid hardware constraints, resulting in performance gains 
and better optimization. 
Entity Component System/ECS (Unity Engine): the core of Unity DOTS. ECS has three 
principal parts: (1) entities—the objects that populate a game, simulation, or program; (2) 
components—the data associated with entities, but organized by the data itself, rather than by 
entity or object; and (3) systems—the logic that transforms the component data from its current 
state to its next state (i.e., the instructions for the component data). 
Finite element method (FEM): a computational method for interpreting distortion and 
properties of a 3D object/volume colliding and interacting with other objects/volumes. The finite 
element method uses real-world physics and properties of both objects and takes several hours to 
days to compute, depending on the length and complexity of the interactions. Thus, it cannot be 
used in real time. 
GameObject (Unity Engine): a basic, representative object that can be placed in a level. It 
contains 3D transformations (translation, rotation, and scale) and can have components attached 
to it to give it functionality. Components are pieces of code that can be accessed by the game 
engine by reference to the GameObject. GameObjects can be spawned and destroyed through 
code (C#). See also Actor (Unreal Engine). 
Gerstner wave: an exact solution for periodic surface gravity waves. It describes a progressive 
wave of permanent form on the surface of an incompressible fluid of infinite depth. 
Level (Unreal Engine): a level is an enclosed environment that contains game objects. Also 
known as maps. See also scene (Unity Engine). 
Level of detail (LOD): the complexity of a 3D model representation. LOD can be decreased as 
the model moves away from the viewer or according to other metrics such as object importance 

https://en.wikipedia.org/wiki/3D_model
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and viewpoint-relative speed or position. LOD techniques increase the efficiency of rendering by 
decreasing the workload on graphics pipeline stages. The reduced visual quality of the model is 
often unnoticed because of the small effect on the appearance of objects when they are distant or 
moving fast.  
Material: defines how a surface should be rendered by including references to textures, tiling, 
color tint, transparency, and more. The parameters available to a material depend on the shader it 
uses; shaders are scripts that contain the mathematical calculations and algorithms for calculating 
the color of each pixel rendered, based on the lighting input and the material configuration.  
Mesh: a collection of polygons connected at their edges and vertices that define the 3D shape of 
an object.  
Object-oriented design: an approach to software design that uses a programming language 
structure in which data and their processing methods are defined as self-contained entities called 
“objects”. These languages provide a formal set of rules for creating and managing objects. C++ 
is an object-oriented programming language. 
Particle behaviors:  

Drag:  the longitudinal retarding force exerted by air or another fluid surrounding a moving 
object. 
Elasticity: the ability of an object or material to resume its normal shape after being stretched 
or compressed; stretchiness.  
Friction: the force resisting the relative motion of solid surfaces, fluid layers, and material 
elements sliding against each other.  
Surface tension: the tendency of liquid surfaces to shrink into the minimum surface area 
possible. 
Velocity: the rate of change of an object’s position with respect to a frame of reference; 
velocity is a function of time. 
Viscosity: the measure of a fluid’s resistance to deformation at a given rate. More informally, 
the fluid’s “thickness.” 
Vorticity: the local spinning motion of a continuum near some point, as would be seen by an 
observer located at that point and traveling along with the flow. More simply, it is the 
twirling motion of a fluid or air. 

Particle system: simulates fluids (such as liquids, smoke, and flames) by generating and 
animating many small 2D images in a simulated environment. In Unity Engine, this is referred to 
as Unity Particle System. In Unreal Engine, it is called Niagara. 
Particles: many small images that are simulated and rendered by a particle system to produce a 
visual effect. Particles may include physical properties such as mass and velocity. 
Plug-in: a piece of software that is added (plugged-in) to an existing piece of software to extend 
its capabilities.  
Position-based fluid: a computational-based physics model for particles within fluid dynamics 
that is structured by the particles’ positions at a given time. 
Pressure solvers: a class of methods used in computational fluid dynamics for numerically 
solving the Navier-Stokes equations (a set of partial differential equations that describe the 
motions of viscous fluid substances) normally used for incompressible flows. In fluid mechanics, 
incompressible flows do not exhibit significant changes in fluid density, and typically have a 

https://en.wikipedia.org/wiki/Graphics_pipeline


30 

ratio of the speed of the flow to the speed of sound less than 0.3. By contrast, compressible flows 
do exhibit significant changes in fluid density, with a ratio of the speed of flow to the speed of 
sound greater than 0.3. Types of pressure solvers include (1) weakly compressible SPH for free 
surface flows; (2) predictive-corrective incompressible SPH; (3) implicit incompressible SPH; 
(4) divergence-free SPH; and (5) projective fluids. 
Raytracing: a rendering technique for generating an image by following the path of light per 
pixel in the rendering viewport image and simulating light transport on objects in a 3D space. 
Real time: a system in which input data are processed within milliseconds so that output is 
available virtually immediately as feedback. In game engines, this could include physics 
interactions and graphical elements that are calculated and rendered during run time and can be 
manipulated. 
Ripple Solver: a set of equations for modeling fluid dynamics, similar to Shallow Water, albeit 
less expansive. 
Scene (Unity Engine): an enclosed environment that contains game objects. See also Level 
(Unreal Engine). 
Screen space fluid: a rendering technique to blend particles in a space to look more like the 
fluid the system is trying to represent. Uses a blend of depth information, screen space curvature 
flow, and noise to create the results. 
Shallow Water: a set of hyperbolic partial differential equations that describe the flow below a 
pressure surface in a fluid. The equations are used with Coriolis forces in atmospheric and 
oceanic modeling as a simplification of the primitive equations of atmospheric flow.  
Smoothed-particle hydrodynamics (SPH): a computational physics model within a boundary 
that simulates solid collisions and fluid flows with each particle. 
Spline: a piecewise polynomial (parametric) curve. Splines are popular curves in computer 
graphics because of the simplicity of their construction, their ease and accuracy of evaluation, 
and their capacity to approximate complex shapes through curve fitting and interactive curve 
design.  
Voxel: a value on a regular grid in 3D space. Common uses of voxels include representation of 
terrain in games and simulations. 

https://en.wikipedia.org/wiki/Coriolis_force
https://en.wikipedia.org/wiki/Primitive_equations
https://en.wikipedia.org/wiki/Parametric_curve
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Curve_fitting
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