

The Hydrologic Implications Of Unique Urban Soil Horizon Sequencing On The Functions Of Passive Green Infrastructure

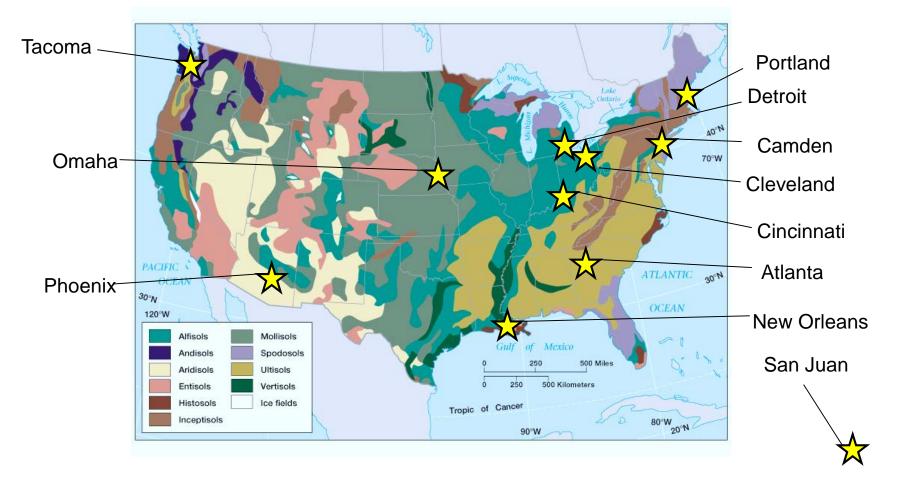
WD Shuster, (USEPA-ORD), LA Schifman (NRC), DL Herrmann (ORISE)

Office of Research and Development Water Systems Division

Available land for water management

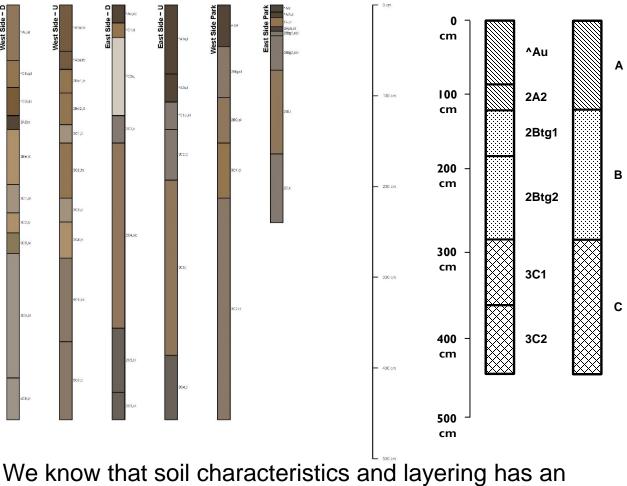
- Vacant-lots are well-integrated into the urban fabric
- Serve as <u>passive green infrastructure</u> to absorb rainfall, prevent runoff formation, and regulate, diminish runoff flow into sewer collection system, avoid sewer malfunctions

<u>Subject</u>: Urban core areas with a long, unique history Native>Development> Demolition>Pastoral


Urban Soils as a basis for Gl

- Disturbance history has affected the way urban soils are layered
- Changes in structure predict changes in function(s)
- Use actual field measurements to understand these changes under urbanization
- Basic Urban soils are not mapped for many urban centers, GI target areas
- Practical Hydrologic suitability of urban park, vacant land soils

May <u>minimize</u> risks of unintended consequences (e.g., return flow), <u>maximize</u> ecosystem services


Cover 10/12 major soil orders

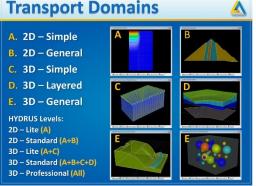
Urban Soil Assessments

impact on how water moves through the soil

<u>Above</u> – tension infiltrometer, double-ring unit <u>Left</u> – "Amoozemeter" measures sub-surface hydraulic conductivity (proxy for drainage)

Urban and reference pedons

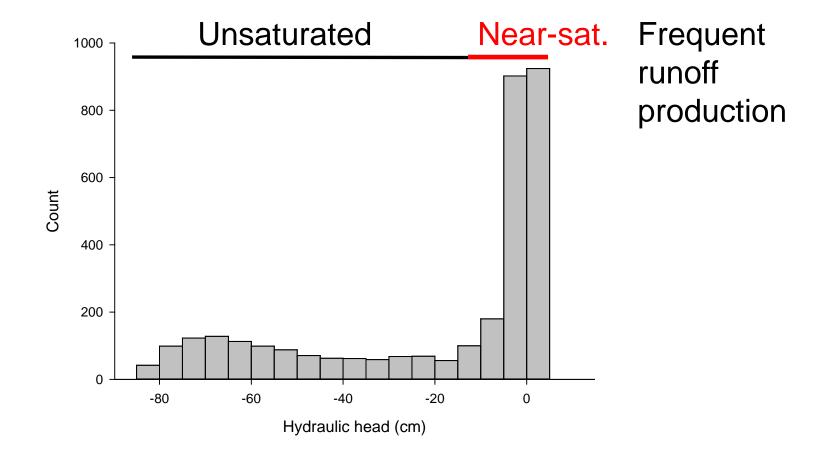
Compared to reference pedons (A-B-C), we found that urban soil profiles were missing B horizons, with deeper A, shallower C horizons


<u>A-C Predominant</u>

City	Urban pedons	Soil series	Reference pedons
Atlanta	14	7	12
Camden	23	4	7
Cincinnati	43	5	22
Cleveland	72	9	28
Detroit	57	13	28
New Orleans	20	6	11
Omaha	36	6	24
Phoenix	11	4	9
Portland, Maine	20	9	20
San Juan	21	8	12
Tacoma	15	4	8
Total	332	75	181

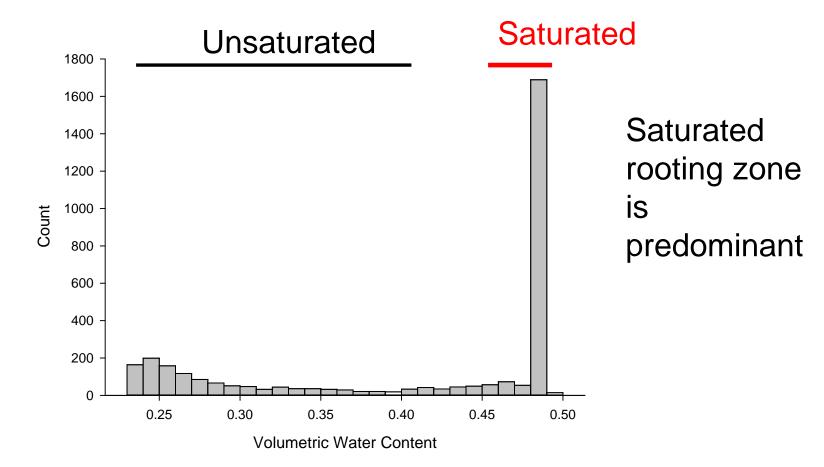
Concept and approach

- Target ecosystem services:
- Supporting: *Plant Growth* (how often does rooting zone water content approach wilting point?);
- Regulating: Runoff Formation (how often does hydraulic head at soil surface approach zero?)
- Use HYDRUS model with a combination of ROSETTA predictions for van Genucten parameters, and actual field data for horizon texture, thickness, and surface, subsurface K



Concept and approach

- Compare histograms-freq. distributions of HYDRUS hydraulic head, water content outputs among reference and urbanized pedons
- Portland ME soil pedon sample set employed for this conceptual approach
- Forced HYDRUS model with different, representative hourly-resolution rainfall records from long-term NCDC records for Portland ME airport



Example output: urbanized Portland ME A-C sequence

Example output: urbanized Portland ME A-C sequence

Conclusions and ongoing work

- We determined how urbanization processes altered the sequence of soil horizons
- An unsaturated zone hydrologic model was used to simulate hydraulic head and water content at different soil depths
- Case study: urbanized soil profiles show low capacity for rendering supporting (plant-available soil water), and regulating (runoff mitigation) ecosystem services
- Model stability issues for reference profiles

Thanks, and any questions?

<u>Thanks to</u>: our consulting USDA-NRCS Soil Scientists: Carl Fuller, Eric Gano, Jeff Glanville, Manuel Matos, Maxine Levin, Rich Shaw Stephon Thomas, Steve Baker; Ryan Stuart, Virginia Tech, and to all of the citizens and agencies in the cities that we worked in.

<u>Disclaimer</u>: The views in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

ORÏSE

OAK RIDGE INSTITUTE FOR SCIENCE AND EDUCATION

