

Nutrient Removal and Resource Recovery Effect on Life Cycle Cost and Environmental Impacts of Small Scale Wastewater Treatment

Presented at LCA XVII, Portsmouth NH - October 2-5, 2017

Ben Morelli<sup>1</sup>, Sarah Cashman<sup>1</sup>, Xin (Cissy) Ma<sup>2\*</sup>, Jay Garland<sup>3</sup>, Jason Turgeon<sup>4</sup>, Lauren Fillmore<sup>5</sup>, Diana Bless<sup>2</sup>, Michael Nye<sup>3</sup>

<sup>1</sup>Eastern Research Group <sup>2</sup>United States Environmental Protection Agency, National Risk Management Research Laboratory <sup>3</sup> United States Environmental Protection Agency, National Exposure Research Laboratory <sup>4</sup> United States Environmental Protection Agency, Region 1 <sup>5</sup>Water Environment & Reuse Foundation



Office of Research and Development

Date



# Bath NY Community & Wastewater Treatment

- Population: 5,600
- Flow Capacity: 1 MGD
- Legacy WWTP: CAS
- <u>Upgraded WWTP</u>: MLE biological treatment

MGD – Million gallons per day WWTP – Wastewater Treatment Plant CAS – Conventional Activated Sludge MLE – Modified-Ludak Ettinger





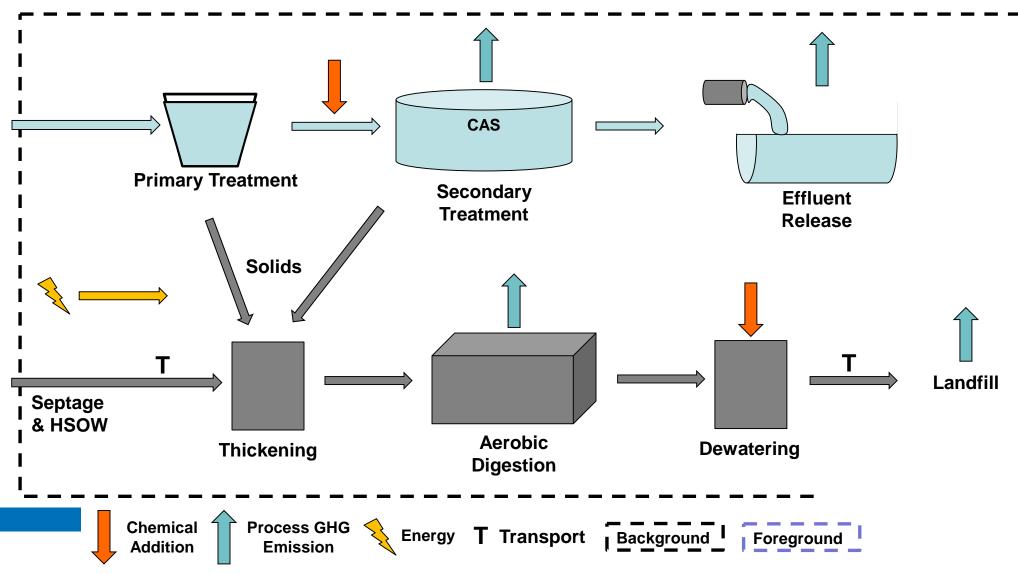
# **Goal & Scope**

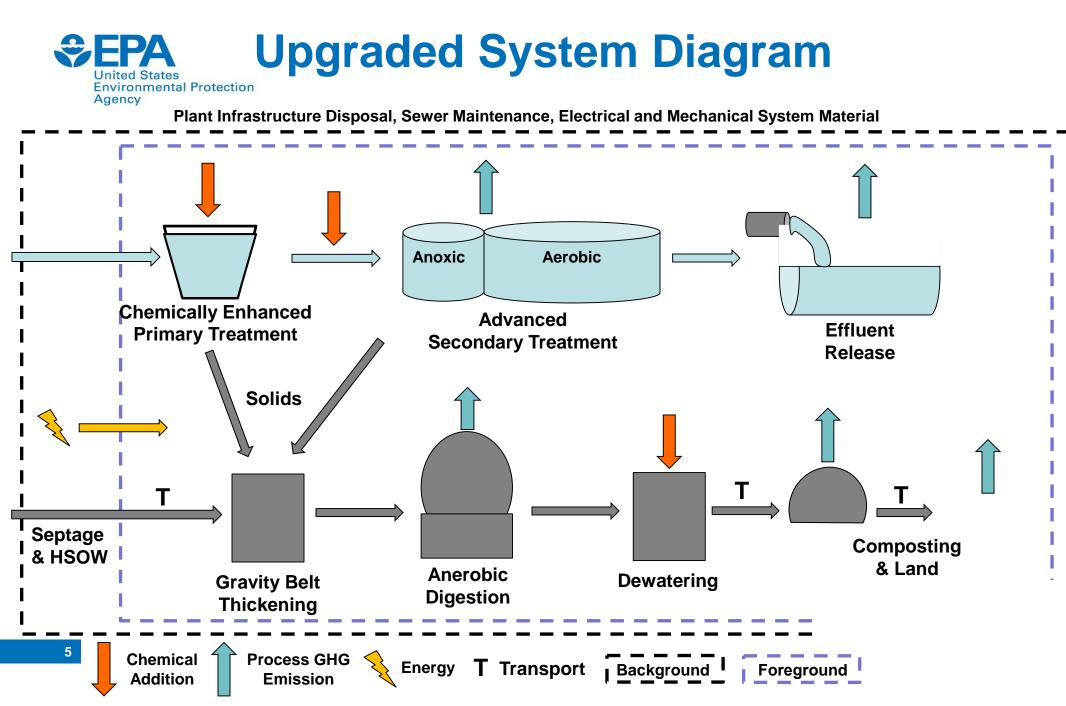
- Comparative analysis of legacy and upgraded WWTP
- Energy recovery potential and avoided product benefits of Anaerobic Digestion (AD) and land application of compost
  - Effect of adding High Strength Organic Waste (HSOW)
- Calculate life cycle costs of upgraded
- system





#### **Functional Unit**


1 cubic meter of treated wastewater with specified influent characteristics


\* Accepting additional HSOW and compost amendment does not increase treatment capacity. Results are normalized to 1 MGD flowrate.





Plant Infrastructure Disposal, Sewer Maintenance, Electrical and Mechanical System Material







### **Influent & Effluent Characteristics**

| Characteristic           | Influent | Legacy | Upgraded |
|--------------------------|----------|--------|----------|
|                          |          | (mg/L) |          |
| Suspended Solids         | 437      | 7.9    | 5        |
| Biological Oxygen Demand | 323      | 8.5    | 2.3      |
| Total Kjeldahl Nitrogen  | 56       | 16     | 4.4      |
| Ammonia                  | 32       | 6.7    | 3.6      |
| Total Phosphorus         | 8        | 0.7    | 0.6      |
| Nitrite                  | <1       | 2.8    | 0.8      |
| Nitrate                  | <1       | 13     | 14       |
| Organic Nitrogen         | 29       | 9      | 0.8      |
| Total Nitrogen           | 61       | 31     | 20       |

\* SPDES – State Pollutant Discharge Elimination System





### **Select LCI Calculations**

- <u>Electricity</u>: calculated using a record of equipment use, horsepower, and run time
- <u>Chemicals</u>: via provided dosage rates

#### Process GHGs

- N<sub>2</sub>O: based on TKN influent to secondary (Chandran 2012)
- Methane: based on BOD influent to secondary (IPCC 2006)
  - Assigns methane correction factor for specific treatment units (Legacy – Czepiel 1993, Upgraded – Daelman et al. 2013)





### **Select LCI Calculations continued...**

- Biogas Production (Upgraded Plant)
  - Based on Volatile Solids (VS) destruction assumption (ft<sup>3</sup>/day)
- Landfill Emissions (Legacy Plant)
  - Regional and national average gas capture performance
  - Degradation via a first-order decay model
- Composting Emissions (Upgraded Plant)
  - Methane (0.11%, 0.82%, 2.5% of C)
  - Nitrous Oxide (0.34%, 2.68%, 4.65% of N)
  - Ammonia (1.2%, 6.7%, 12.74% of N)
  - Carbon Monoxide (0.04% of C)





#### Life Cycle Costing

**Total Costs =**  $\Sigma$  (Annual Costs) +  $\Sigma$  (Capital Costs)

**Total Capital Costs =** Purchased Equipment Costs + Direct Costs + Indirect Costs

**Total Annual Costs =** Operation Costs + Replacement Labor Costs + Materials Costs + Chemical Costs + Energy Costs

**Net Present Value=** $\Sigma(Cost_x/(1+i)^x)$ 



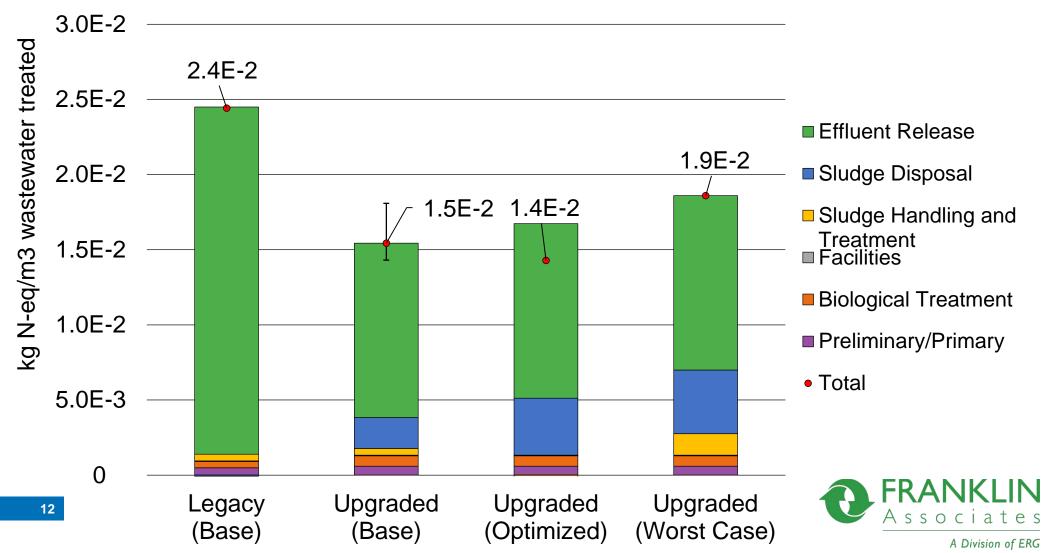


# Sensitivity & Scenario Analysis

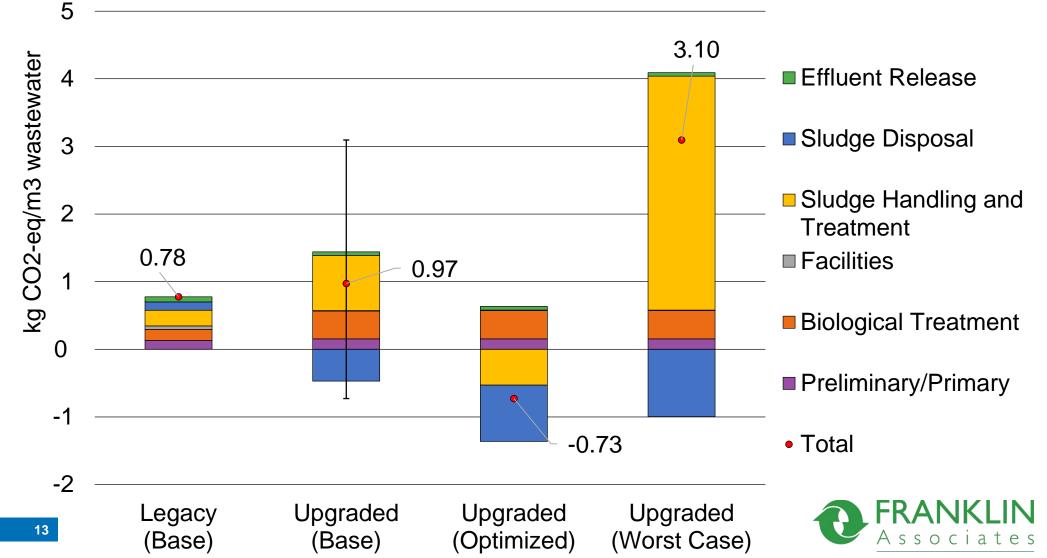
#### • High Strength Organic Waste Acceptance

| Scenario Type             |      |      | Scenario |                                 |
|---------------------------|------|------|----------|---------------------------------|
|                           |      |      |          |                                 |
| Anaerobic Digestion       | Low  | Base | High     | Units                           |
| Loading Rate              | 223  | 271  | 352      | kg VS/m³/day                    |
| Biogas Yield              | 0.75 | 0.94 | 2.18     | m <sup>3</sup> /kg VS destroyed |
| Volatile Solids Reduction | 45   | 60   | 65       | %                               |
| Methane Content of Biogas | 60   | 65   | 70       | % v/v                           |
| Biogas Heat Content       | 0.55 | 0.59 | 0.61     | MJ/ft <sup>3</sup>              |
| CHP Electrical Efficiency | 30   | 36   | 42       | %                               |
| CHP Thermal Efficiency    | 41   | 51   | 43       | %                               |
|                           |      |      |          |                                 |




### **Upgraded Base Scenario Summary**

- Includes all treatment upgrades with <u>no</u> acceptance of additional HSOW
- Industry standard biogas yield estimate (conservative)
- Middle estimate of potential compost emissions
- End-of-Life GHG emission estimates include amendment Carbon and Nitrogen
- Other process GHG emissions remain constant across scenarios



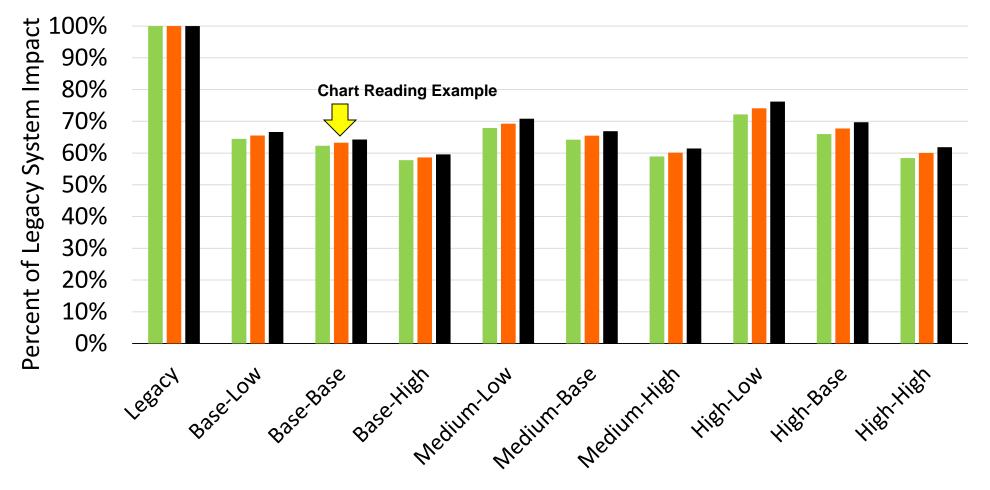



### **Eutrophication Potential** *Process Contribution*



#### Global Climate Change Potential United States Environmental Protection Agency Process Contribution

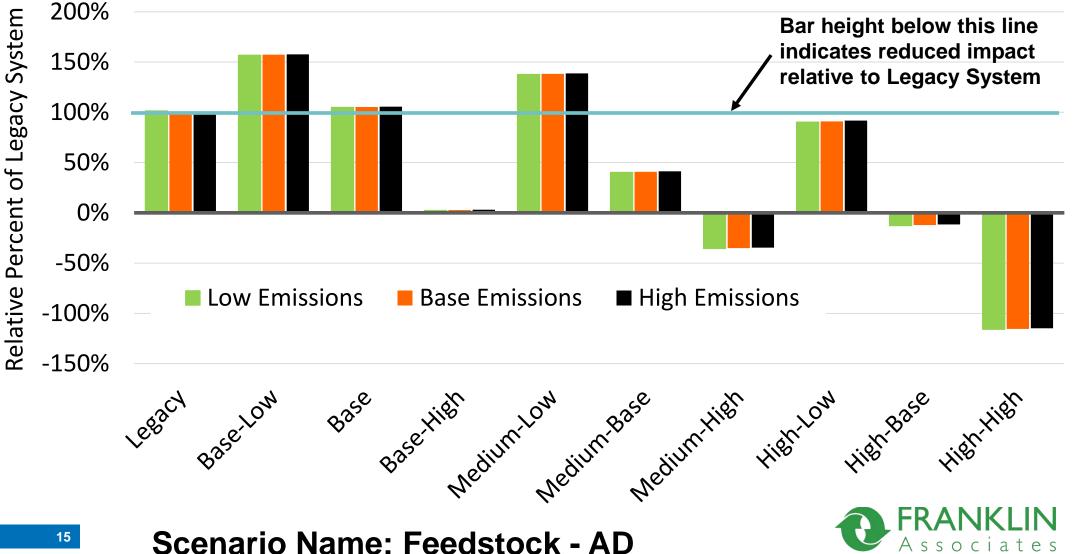



A Division of ERG



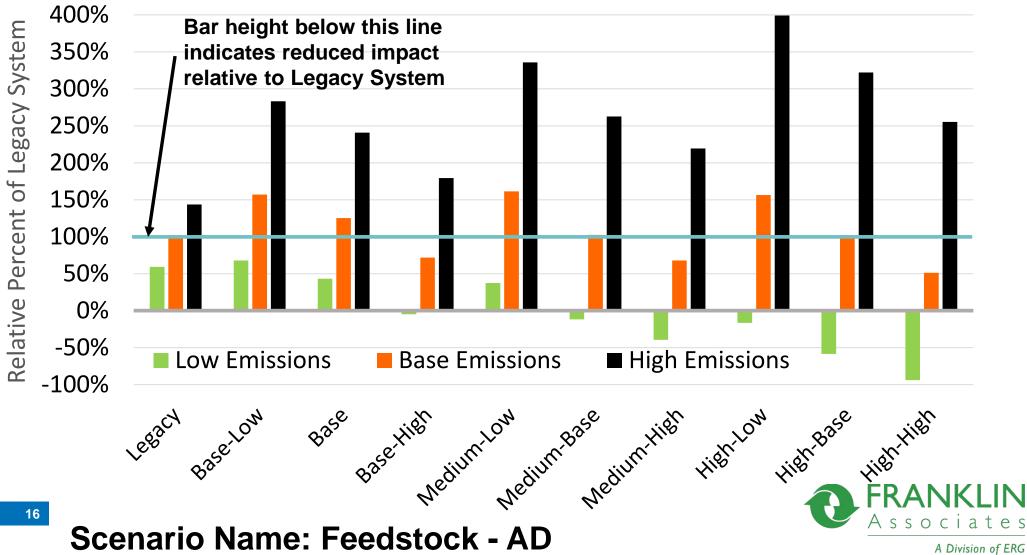
14

## **Eutrophication Scenarios**


#### Percent of Legacy System Impact

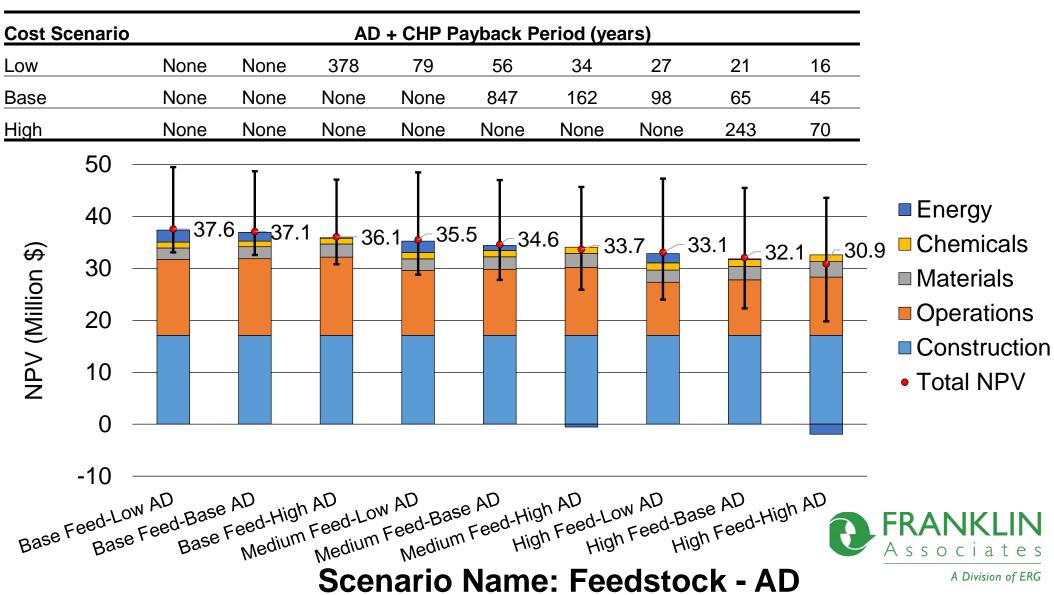





Scenario Name: Feedstock - AD

#### **Cumulative Energy Demand Scenarios** Percent of Legacy System Impact **Environmental Protection** Agency






#### **Global Climate Change Potential Scenarios**











|      | EOL  | Low    | Base   | High   | Low       | Base      | High      | Low       | Base      | High      | Low      | Base     | High     | Low         | Base        | High        | Low         | Base        | High        | Low        | Base       | High       | Low       | Base      | High      | Low       | Base      | High      | Low      | Base     | High     |
|------|------|--------|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|
| Feed | l-AD | Legacy | Legacy | Legacy | Base-Base | Base-Base | Base-Base | Base-High | Base-High | Base-High | Base-Low | Base-Low | Base-Low | Medium-Base | Medium-Base | Medium-Base | Medium-High | Medium-High | Medium-High | Medium-Low | Medium-Low | Medium-Low | High-Base | High-Base | High-Base | High-High | High-High | High-High | High-Low | High-Low | High-Low |
| GCCF | 0    |        | -      |        |           |           |           |           |           |           |          |          |          |             |             |             |             |             |             |            |            |            |           |           |           |           |           |           |          |          |          |
| EP   |      |        | -      |        |           |           |           |           |           |           |          |          |          |             |             |             |             |             |             |            |            |            |           |           |           |           |           |           |          |          |          |
| PMFP | )    |        | -      |        |           |           |           |           |           |           |          |          |          |             |             |             |             |             |             |            |            |            |           |           |           |           |           |           |          |          |          |
| SFP  |      |        | -      |        |           |           |           |           |           |           |          |          |          |             |             |             |             |             |             |            |            |            |           |           |           |           |           |           |          |          |          |
| ΑΡ   |      |        | -      |        |           |           |           |           |           |           |          |          |          |             |             |             |             |             |             |            |            |            |           |           |           |           |           |           |          |          |          |
| WU   |      |        | -      |        |           |           |           |           |           |           |          |          |          |             |             |             |             |             |             |            |            |            |           |           |           |           |           |           |          |          |          |
| FDP  |      |        | -      |        |           |           |           |           |           |           |          |          |          |             |             |             |             |             |             |            |            |            |           |           |           |           |           |           |          |          |          |
| CED  |      |        | -      |        |           |           |           |           |           |           |          |          |          |             |             |             |             |             |             |            |            |            |           |           |           |           |           |           |          |          |          |

18

Impact Reduction Net Negative Impact



Increase in Impact Impact More Than Doubled







- Clear Environmental Benefit of HSOW Acceptance
  - Maximize use of AD capacity
  - Low AD performance (avoidable), can lead to increases in environmental impact
- Benefit to Climate Change Potential depends strongly on composting system selection and management
- Simple payback of AD is challenging to achieve at smallscale, but the trend is towards decreasing cost
- Many impact categories positively influenced by avoided electricity and natural gas consumption
- Appropriate use of AD has the potential to reduce environmental impacts of achieving increased nutrient removal



#### **Disclaimer**

The opinions expressed in this presentation are those of the author. They do not reflect EPA policy, endorsement, or action, and EPA does not verify the accuracy or science of the contents of this presentation. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.





#### **Acknowledgements**

This research was part of the U.S. Environmental Protection Agency (U.S. EPA) Office of Research and Development's Safe and Sustainable Water Resources (SSWR) Program. The research was supported by U.S. EPA contracts EP-C-12-021 and EP-C-16-0015. Kim Miller and Guy Hallgren provided primary data on the Bath, NY wastewater treatment plant operations and infrastructure for both the legacy and upgraded systems investigated. Engineering design of treatment plant upgrades was performed by personnel from Conestoga-Rovers & Associates, now a division of GHD Inc. Lauren Fillmore and Lori Stone of Water Environment & Reuse Foundation (WE&RF) as well as Pradeep Jangbari of New York State Department of Environmental Conservation provided technical review comments. Jason Turgeon and Michael Nye of U.S. EPA helped develop the initial project scope. Janet Mosely and Jessica Gray of Eastern Research Group provided technical input and review of the life cycle inventory and cost analysis.





#### **Contact Information**

#### Xin (Cissy) Ma Ph.D, P.E.

Ma.cissy@epa.gov

**Ben Morelli** 

ben.morelli@erg.com

Sarah Cashman sarah.cashman@erg.com





#### **References Cited**

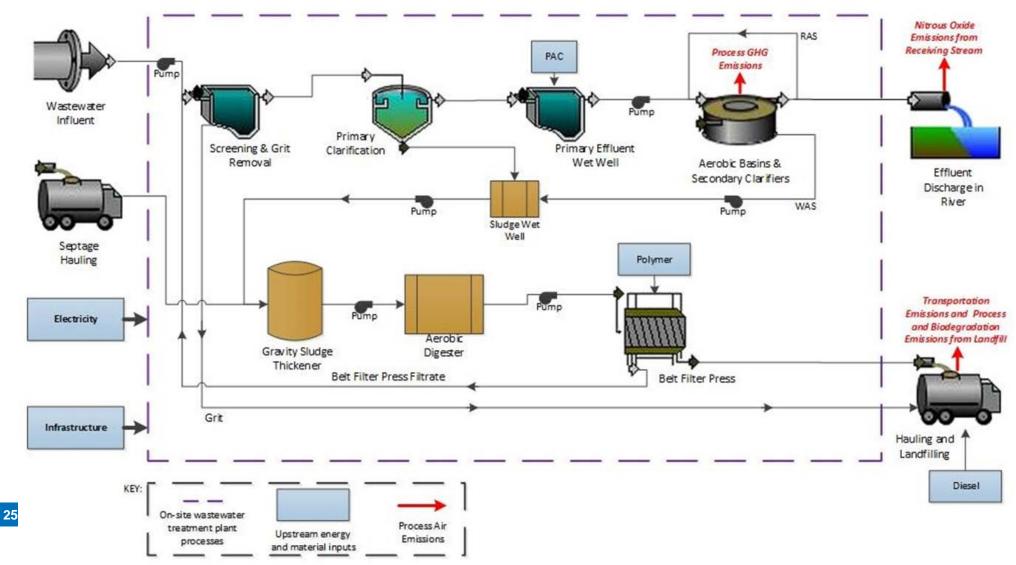
- Chandran, K. 2012. Greenhouse Nitrogen Emissions from Wastewater Treatment Operation: Phase I, Final Report. Water Environment Research Foundation. U4R07.
- Czepiel, P.M., P.M. Crill, and R.C. Harriss. 1993. Methane Emissions from Municipal Wastewater Treatment Processes. Environmental Science and Technology. 27: 2472-2477.
- Czepiel, P., P. Crill, and R. Harriss. 1995. Nitrous Oxide Emissions from Municipal Wastewater Treatment. Environmental Science and Technology. 29: 2352-2356.
- Daelman, M.R.J., E.M. Voorthuizen, L.G.J.M. van Dongen, E.I.P. Volcke, and M.C.M van Loosdrecht. 2013. Methane and Nitrous Oxide Emissions from Municipal Wastewater Treatment–Results from a Long-Term Study. Water Science and Technology. 67(10): 2350-2355.
- IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan
- ISO-NE (Independent System Operators New England). 2016. 2014 ISO New England Electric Generator Air Emissions Report. http://www.iso-ne.com/static-

assets/documents/2016/01/2014\_emissions\_report.pdf Accessed 30 August, 2016.

U.S. EPA (U.S. Environmental Protection Agency). 2016. Power Profiler Tool. https://www.epa.gov/energy/power-profiler Accessed 30 August, 2016.






### **SI. Impact Categories**

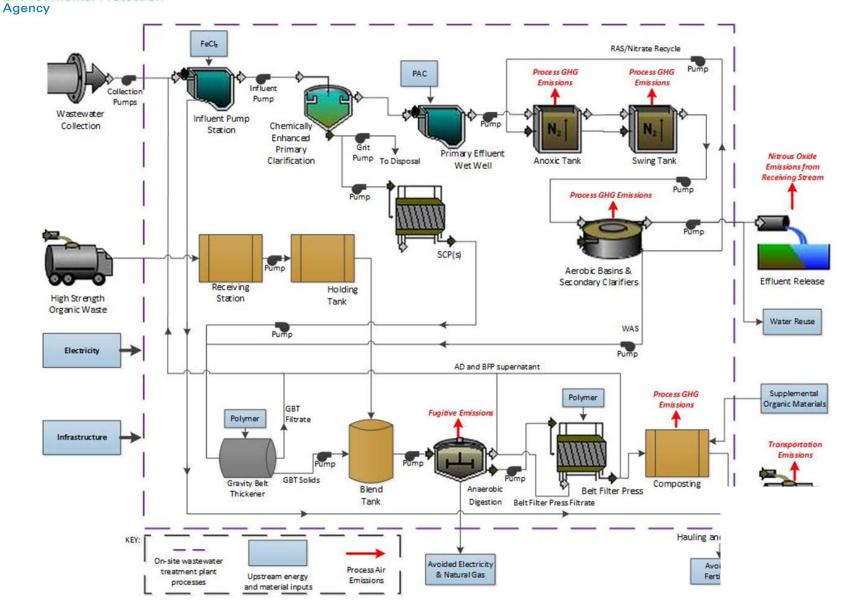
| Metric                                 | Method    | Unit                      |
|----------------------------------------|-----------|---------------------------|
| Cost                                   | LCCA      | USD 2014                  |
| Global Warming Potential               | TRACI 2.1 | kg CO <sub>2</sub> -eq.   |
| Eutrophication Potential               | TRACI 2.1 | kg N-eq.                  |
| Particulate Matter Formation Potential | TRACI 2.1 | kg PM <sub>2.5</sub> -eq. |
| Smog Formation Potential               | TRACI 2.1 | kg O <sub>3</sub> -eq.    |
| Acidification Potential                | TRACI 2.1 | kg SO <sub>2</sub> -eq.   |
| Water Use                              | ReCiPe    | m <sup>3</sup>            |
| Fossil Depletion Potential             | ReCiPe    | kg oil-eq.                |
| Cumulative Energy Demand               | Ecoinvent | MJ-eq.                    |





# SI. Legacy WWTP Flow Diagram






# **SI. Plant Upgrades**

- Chemically Enhanced Primary Clarification
- Modified Ludzack-Ettinger Biological Treatment
  - Currently Operational
- Gravity Belt Thickening
- Anaerobic Digestion
- Composting & Land Application



# SI. Upgraded WWTP Flow Diagram



**.⊛FPA** 

United States

**Environmental Protection** 



28

# **SI. Results Process Categories**

| Category Names                | Process                                                                            |
|-------------------------------|------------------------------------------------------------------------------------|
| Preliminary/Primary           | Wastewater collection; operation and infrastructure; m3 wastewater                 |
| Preliminary/Primary           | Influent Pump Station; wastewater treatment unit; at updated plant - US            |
| Preliminary/Primary           | Screening and Grit Removal - US                                                    |
| Preliminary/Primary           | Clear Cove Primary Clarification; wastewater treatment unit; at updated plant - US |
| Preliminary/Primary           | Primary Clarifier; wastewater treatment unit - US                                  |
| Sludge Handling and Treatment | ClearCove SCP; wastewater treatment unit; at updated plant - US                    |
| Preliminary/Primary           | Wet Well and Sump Station; wastewater treatment unit; at updated plant - US        |
| Biological Treatment          | Pre-Anoxic & Swing tank; wastewater treatment unit; at updated plant - US          |
| Biological Treatment          | Aeration Tanks; wastewater treatment unit - US                                     |
| Sludge Handling and Treatment | Waste Receiving and Holding; wastewater treatment unit; at updated plant - US      |
| Sludge Handling and Treatment | Gravity Belt Thickener; wastewater treatment unit; at updated plant - US           |
| Sludge Handling and Treatment | Sludge Thickener; wastewater treatment unit - US                                   |
| Sludge Handling and Treatment | Blend Tank; wastewater treatment unit; at updated plant - US                       |
| Sludge Handling and Treatment | Anaerobic Digestion; wastewater treatment unit; at updated plant - US              |
| Sludge Handling and Treatment | Aerobic Digester; wastewater treatment unit - US                                   |
| Sludge Handling and Treatment | Belt filter press; wastewater treatment unit - US                                  |
|                               | Biosolids composting; windrow composting; wastewater treatment unit; at updated    |
| Sludge Handling and Treatment | plant - US                                                                         |
| Sludge Disposal               | Land application of compost; wastewater treatment unit; at updated plant - US      |
| Sludge Disposal               | Sludge Disposal; wastewater treatment unit - US                                    |
| Effluent Release              | Effluent release; wastewater treatment unit; at surface water; m3 wastewater - US  |
| Facilities                    | Control Building; at wastewater treatment plant - US                               |



29

#### **SI. LCCA Scenario Parameters**

| Parameter Value                                      | Low Cost                | Base Cost    | High Cost    |
|------------------------------------------------------|-------------------------|--------------|--------------|
| Planning Period (years)                              | 30                      | 30           | 30           |
| Real Discount Rate (%)                               | 6%                      | 5%           | 3%           |
| Interest Rate (%) <sup>1</sup>                       | 0%                      | 0%           | 0%           |
| Electricity Cost (\$/kWh) <sup>1</sup>               | 0.077                   | 0.051        | 0.077        |
| Electricity Revenue (\$/kWh)                         | 0.077                   | 0.051        | 0.051        |
| Diesel Cost (\$/gal)                                 | 2                       | 2.7          | 3.5          |
| Natural Gas Cost (\$/MCF)                            | 4.5                     | 3.84         | 3.84         |
| Septage Disposal Fee (\$/gallon)                     | 0.01                    | 7.00E-03     | 7.00E-03     |
| High Strength Organic Waste (\$/gallon) <sup>2</sup> | 0.15                    | 0.06         | 0.03         |
| Compost Revenue (\$/yd <sup>3</sup> ) <sup>3</sup>   | 10                      | 5            | -            |
| Landfill Tipping Fee (\$/wet ton) <sup>1</sup>       | 50.8                    | 50.8         | 50.8         |
| Fraction of Biogas Heat Valued                       | Total Heat<br>Potential | Facility Use | Facility Use |
| Material and Maintenance Escalation                  | 2%                      | 3%           | 4%           |
| _abor Escalation                                     | 1%                      | 2%           | 3%           |
| Taxes/Salvage Escalation                             | 0%                      | 0%           | 0%           |
| Operations General Escalation                        | 1%                      | 2%           | 3%           |
| Fee Escalation                                       | 1%                      | 2%           | 2%           |
| Energy Escalation                                    | 2%                      | 2%           | 3%           |



#### **SI. New England Regional Grid Mix**

| Fuel Source      | Electrical Grid Mix (%) <sup>1,2</sup>                 |
|------------------|--------------------------------------------------------|
| Biomass          | 3.10%                                                  |
| Wind             | 1.90%                                                  |
| Solar            | 0.40%                                                  |
| Hydro            | 29%                                                    |
| Nuclear          | 29%                                                    |
| Gas              | 31%                                                    |
| Coal             | 5.50%                                                  |
| Total            | 100%                                                   |
| Notes/References | s: <sup>1</sup> U.S. EPA 2016 <sup>2</sup> ISO-NE 2016 |





## **SI. Landfill Calculations**

#### Gas Capture Performance

| Degradable Carbon Remaining               |
|-------------------------------------------|
| (metric tons) = $C_t = C_0^* e^{(-k^*t)}$ |

- C<sub>t</sub> = Degradable carbon remaining at time t
- $C_0$  = Degradable carbon remaining at time 0
- k = Degradation rate constant t = time elapsed

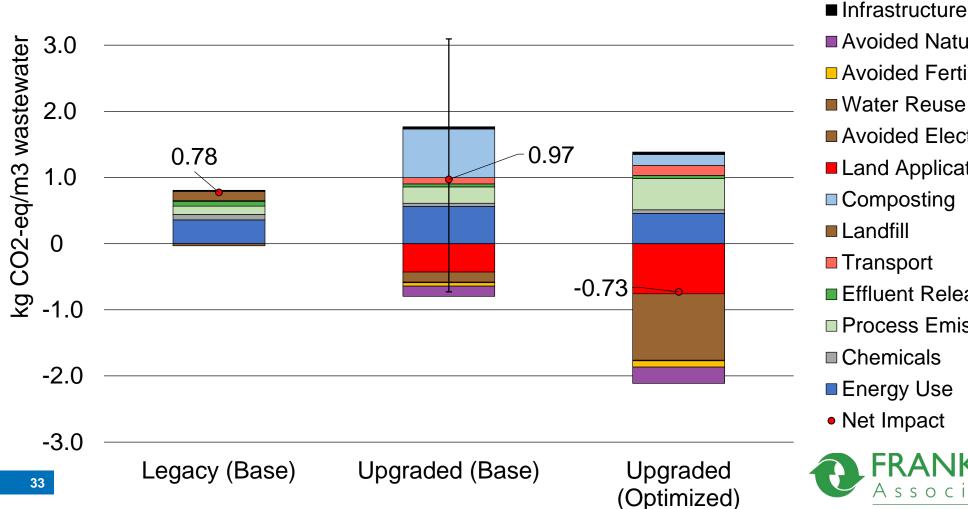
| Parameter                                             | Bath NY<br>Landfill<br>(baseline) | National<br>Average<br>Landfill |
|-------------------------------------------------------|-----------------------------------|---------------------------------|
| Percentage of landfilled C that produces methane      | 50%                               | 50%                             |
| Percentage of methane released w/o treatment          | 4.50%                             | 29%                             |
| Percentage of methane<br>captured for energy recovery | 95%                               | 57%                             |
| Percentage of methane flared                          | 0%                                | 11%                             |
| Percentage of methane oxidized to CO <sub>2</sub>     | 0.50%                             | 3.80%                           |

Carbon remaining after year 100 is considered sequestered





### **SI. Calculated Agricultural Emission Rates**

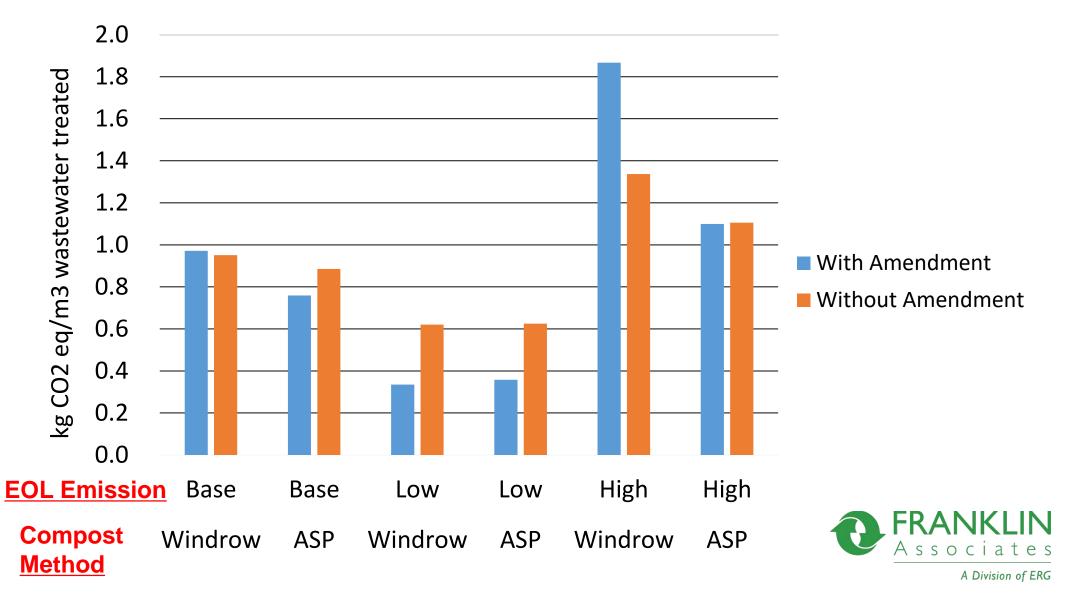

| <b>Emission Species</b> | Compartment | Emission | Units        |
|-------------------------|-------------|----------|--------------|
| Ammonia                 | air         | 16.50%   | of applied N |
| Nitrous Oxide           | air         | 1.17%    | of applied N |
| Nitrate                 | water       | 10.50%   | of applied N |
| P, sediment             | water       | 10.10%   | of applied P |
| P, soluble              | water       | 3.20%    | of applied P |
| P, soluble              | groundwater | 0.32%    | of applied P |
| P, sediment             | air         | 2.40%    | of applied P |



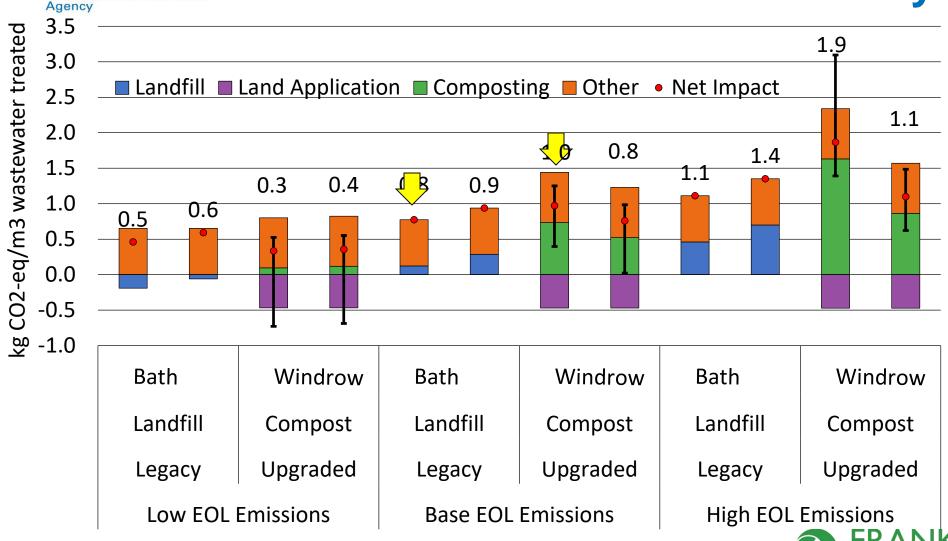


4.0

#### **Global Climate Change Potential Drivers**




- Avoided Natural Gas Avoided Fertilizer Water Reuse Avoided Electricity Land Application Composting ■ L andfill Transport Effluent Release Process Emissions ■ Chemicals
- Net Impact


Asso C а



### **SI. Amendment Sensitivity**



# SI. GCCP End-of-Life Sensitivity



A Division of ERG

а

Ass

O C

**Environmental Protection**