

An EPA Pilot Study Characterizing Fungal and Bacterial Populations at Homes after Flooding Events at the Martin Peña Channel Community – Puerto Rico

Office of Research and Development

Doris Betancourt, NRMRL/APPCD/IEMB Timothy Dean, NRMRL/APPCD/IEMB Stephen Vesper, NERL/EMMD Evelyn Huertas, CEPD/MPCB

Collaborators

- Dr. Benjamin Bolaños, University of Puerto Rico
- Dr. Filipa Godoy-Vitorino, Interamerican University, PR

Overview

Background : Indoor Air Quality (IAQ) and Mold 101

- EPA's ongoing study at Puerto Rico -Martin Peña Channel Community(MPC)
- Anticipated results and regional impacts
- Anticipated Products

Why Indoor Air Quality Is So Important?

- We spend approximately 90 % of our time indoors
 IAQ problems originate from the release of gases and particles into the air
 Expensive to society:
- Expensive to society: estimated cost of \$150 billion/yr due to sickness and lost productivity

Typical Sources of Indoor Air Biocontaminants

Outside	Building	Components/	Other Indoor
Sources	Equipment	Furnishings	Sources
Polluted Outdoor Air Pollen, dust, fungal, and bacterial spores	HVAC equipment Microbiological growth in drip pans, ductwork, coils, and humidifiers	Components Microbiological growth on soiled or water- damaged materials- Materials that produce particles (dust) Furnishings Microbiological growth on or in soiled or water damaged furnishings	Occupants with communicable diseases Food prep areas Smoking lounges

Asthma and the Environment

Research by EPA and others has shown that:

- Molds, dust mites, cockroaches, pet dander, and secondhand smoke can trigger asthma attacks.
- Exposure to secondhand smoke can cause asthma in pre-school aged children.
- Exposure to dust mites can cause asthma.
- Ozone and particle pollution can cause asthma attacks.
 - -When ozone levels are high, more people with asthma have attacks that require a doctor's attention.
 - -Ozone makes people more sensitive to asthma triggers such as pet dander, pollen, dust mites, and mold.
- Learn more at <u>http://www.epa.gov/asthma</u>

Mold and Disease

Inflammatory Illnesses

- Airways inflammation
- Chronic bronchitis
- Hypersensitivity pneumonitis
- Asthma
- Rhinitis
- Conjunctivitis

Generalized ailments

- Headache
- Fatigue
- Joint pain
- Neurological symptoms

Indoor molds: spore aerosols

Species

Penicillium sp

Production unit

Colony 2.5 cm diam.

Spore production

 4×10^8 spores total

An EPA Pilot Study Characterizing Fungal and Bacterial Populations at Homes after Flooding Events at the Martin Peña Channel Community – Puerto Rico

Office of Research and Development

Doris Betancourt, NRMRL/APPCD/IEMB Timothy Dean, NRMRL/APPCD/IEMB Stephen Vesper, NERL/EMMD Evelyn Huertas, CEPD/MPCB

Summary of Proposed Research

- This research proposal aligns with Research Action Plan - Sustainable and Healthy Communities (SHC)
- The proposed study selected the Martin Peña channel community, San Juan, Puerto Rico
- The high incidence of asthma appear to be associated to deterioration of homes with flooding events and mold exposures

Research Objectives

- Generate a fungal and bacterial population profile comparing non-flooded residences vs residences with flooding events at Martin Peña Channel community
- The most abundant fungal and bacterial populations identified in flooded' residences will be selected for exposure studies of building materials most frequently used in the construction of PR residences and for antimicrobial efficacy tests
- Provide low-cost mitigation solutions for the improvement of the indoor environment in residences with flooding events

Figure 2: Flow chart of the research approach - Caño Martin Peña Study

Martin Peña Channel Communities

Flooded Streets CMP 4/22-23/2016

Research Approach

Phase 1

Collect air and dust samples from houses with flooding and non-flooding events

Homes at non-flooded

sectors

Homes at flooded sectors

DNA extraction and analysis

Determination of predominant fungal and bacterial populations at homes in flooded sectors

Phase 1: Collection Of Air Samples Indoors and Outdoor

MicroBio Air Sampler MB2

Phase 1: Collection of Indoor Dust Samples

Phase 1: Identification and Analysis of Fungal and Bacterial Populations

Conventional Microbiological Methods

Molecular Methods

Environmental Relative Moldiness Index (ERMI)-Metric or Scale to Quantify Mold Contamination

- METHOD: DNA-based analysis of 36 molds
- RESULT: The result is a single digit- the ERMI value for that home that describes mold contamination. The bigger the number the more mold present.

Research Approach

Phase 2

 Chamber studies: exposure of building materials commonly used in PR construction to predominant mold spores identified in the 1st phase

23

Research Approach

Phase 3

 Antimicrobial efficacy testing: building materials exposed to mold spores will be simultaneously exposed to antimicrobial cleaners to test their efficacy

Anticipated Results and Regional Impact

- Phase 1 : Better understanding of the fungal and bacterial populations in homes susceptible to flooding. Results will help in developing strategies to improve indoor air quality in homes at the MPC community
- Phase 2 & 3 : Provide low-cost mitigation solutions for the improvement of the indoor environment in homes with biocontamination.

Anticipated Results and Regional Impact

- The beneficiaries from this project:
 - Martin Peña channel communities
 - Local health centers
 - ✓ Local agencies
 - ✓ EPA Region 2

Anticipated Final Products

- EPA report that will be posted to the public through the EPA website
- Target audience: the Martin Peña channel communities and other PR communities with similar environmental issues

QUESTIONS ????