

HIGH THROUGHPUT TRANSCRIPTOMICS @ USEPA

Matt Martin Research Biologist

USEPA – National Center for Computational Toxicology Chemical Safety for Sustainability Research Program Toxicology Forum Salt Lake City, Utah July 28, 2016

Toxicology is About Identifying What Can Go Wrong and Why

- The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses
- It should be sensitive and specific
- It should identify the mechanism/mode-ofaction (with dose-dependence)
- It should identify responses relevant to the species of interest
- Responses should ideally be translated into tissue-, organ-, and organism-level effects
- It must be economical and scalable

Traditional Animal Studies Are Less Than Ideal

Apical Responses With Limited Mechanistic Insight

Acute, Subchronic and Chronic Toxicity Tests Determine the effect of a chemical on health and mortality during various lengths of exposure Reproductive Toxicity Tests Assess the effect of a chemical on fertility and fecundity Develomental Toxicity Tests Evaluate the capacity of a chemical to cause abnormalities in an embryo, fetus or newborn Ocular- and Skin-Irritation Tests Measure the ability of a chemical to inflame or irritate the skin or eyes Hypersensitivity Tests Assess the tendency of a chemical to elicit rashes and other allergic responses Phototoxicity Tests Determine the extent to which a chemical is activated by sunlight, thereby enhancing its toxicity **Toxicokinetic Studies** Explore the absorption, distribution, metabolism, storage and excretion of a chemical **Behavioral Tests** Monitor the effects of a chemical on cognitive function during development and in the adult

Goldberg and Frazier (1989)

Variable Cross-Species Concordance

Table 2	Predictability of	laboustom	 madala fo	 L	44	

Teratogen/group	Mouse	Rat	Rabbit	Hamster	Primate	Dog	Cat	Pig	Ferret	Guinea pig
Alcohol	+	+	-		+	+		+		+
Androgenic hormones ^b	+	+	+	+	+	+		+		+
Anticancer antimetabolites	±	+	+	-	±	±	±	+		+
Anticancer alkylating agents ^d	+	+	+		+				+	
Anticonvulsants ^e	+	±	+	-	±	-	-			
Coumarin anticoagulants	_	_	_					-		
Antithyroid agents ^b	+	+	+							+
Progestrogenic hormones ^b	+	±	±		-	+				+
DES^b	+	+	_	±	+				+	
Methylmercury	+	+	-	+	_	_	+	_		
Thalidomide	±	±	+	+	+	*	+	+	+	_
Lithium	+	_	_		_			_		
D-Penicillamine		+		+						
Streptomycin antibiotics ^b	-	+	-							_
Vitamin A analogs	+	+	+	+	+	+		+		+

- *Legend: (+) teratogenic; (±) variably teratogenic; (-) not teratogenic.

 b Defects related to functional activity.
- ^cIncludes azauridine, aminopterin, fluorouracil, methotrexate and cytarabine.
 ^dIncludes busulfan, chlorambucil, cyclophosphamide, and mechlorethamine.
- *Includes hydantoin and dione groups, and valproate.

Schardein, et al EHP (1985)

High Cost and Limited Scalability

Judson, et al EHP (2010)

High-Throughput Screening Efforts Have Attempted to Fill Gaps

But, Current Coverage of Biological Space is Less Than Optimal

Incorporating a Comprehensive Biological Screening Platform

Operationalizing & Deploying

HTTr Assay

Tier 0

- Identify predominant mechanisms as a function of concentration
- Group chemicals by similar mechanism/bioactivity
- Identify a concentration that results in no transcriptional effects

Lamb et al. Science (2006)

Broad CMAPdb: 7,000 profiles; 1,309 compounds NIH LINCs CMAPdb: 9,000 shRNAs, 3,000 over expression ORFs, and 4,000 compounds in 20 cell types/lines (cell lines and primary cells)

Concentration

Identify Mode-of-Action

Target Family	Total Profiles	Target Genes	Chemicals	Cell Lines
Cytokine receptors	3	1	1	3
Enzymes	336	40	112	5
Exosome	14	1	4	4
G protein-coupled receptors	585	16	192	4
Ion channels	194	8	65	3
Nuclear receptors	227	10	71	5
Protein kinases	19	8	6	4
Transporters	102	2	35	3

- Developed local database of Broad's CMAP data (~3,000 profiles)
- Annotated targets using KEGG (1,571 profiles)
- Significant genes identified using a z-score cutoff of 2
- Incorporated "JG" scoring method (Jiang and Gentleman 2007)
- Determine significance using a permuted rank approach across target family

Requirements and Potential Platforms for HT Transcriptomics

Requirements

- Measure or infer transcriptional changes across the whole genome (or very close to it)
- Compatible with 96- and 384-well plate formats (maybe 1536?) and laboratory automation
- Work directly with cell lysates (no separate RNA purification)
- Compatible with multiple cell types and culture conditions
- Low levels of technical variance and robust correlation with orthogonal measures of gene expression changes
- Low cost (\$30 \$45 per sample or less)

Potential Platforms

- Low coverage whole transcriptome RNA-seq (3 5 million mapped reads)
- Targeted RNA-seq (e.g., TempO-seq, TruSeq, SureSelect)
- Microarrays (e.g., Genechip HT)
- Bead-based (e.g., L1000)

Proposed Plate Map

	1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	cndx
Α	MAQC-A (Us)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	DMSO	8
В	MAQC-A (Us)	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	DMSO	7
С	MAQC-B (Us)	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	DMSO	6
D	MAQC-B (Us)	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	DMSO	5
Ε	Bulk Lysate (DMSO)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	Trichostatin	4
F	Bulk Lysate (DMSO)	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Trichostatin	3
G	Bulk Lysate (DMSO)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Trichostatin	2
н	Bulk Lysate (DMSO)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Trichostatin	1
ı	Bulk Lysate (Trichostatin)	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	Genistein	8
J	Bulk Lysate (Trichostatin)	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	Genistein	7
K	Bulk Lysate (Trichostatin)	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	Genistein	6
L	Bulk Lysate (Trichostatin)	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	Genistein	5
М	Lysis Buffer Only	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	Sirolimus	4
N	Lysis Buffer Only	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Sirolimus	3
0	MAQC-A (Them)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Sirolimus	2
Р	MAQC-B (Them)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Sirolimus	1

Replicates (n=3) from separate freeze/thaw

Technical Performance of the Three Sequencing Platforms

Functional Performance of the Three Sequencing Platforms

Current Status

Procurement underway for high-throughput transcriptomic services

- Strategy is to obtain services starting with submission of cell-lysates and delivery of raw and normalized transcriptomic data
 - This will allow multiple collaborative partners to use the same platform (i.e., harmonized) and contribute data from different cell types/models and chemicals

Anticipated Next Steps

- Perform pilot study (Summer) to validate workflow and refine experimental design
- Initiate large scale screen (Fall/Winter)
 - Cell type: MCF7
 - Compounds: 1,000+ (ToxCast Phase I/II + Reference Chemicals)
 - Time Point: Single
 - Concentration Response: 8 (Starting @ 300 uM)
- Perform secondary pilot study looking at cell type selection/ pooling strategies (Fall/Winter)
- Integrate HT transcriptomic platform with metabolic retrofit solution to allow screening +/- metabolism (FY17)
- Explore partnerships to build community database of common chemical set across multiple cell types/lines

Summary

- High-throughput transcriptomics will fundamentally change the way we evaluate chemicals for safety
 - Greater coverage of biological space
 - Reduced cost
 - Ability to leverage large existing databases of gene expression data
 - Fits logically in a tiered testing approach
 - Allows dose response characterization for both selective and nonselective chemicals
- Platform procurement underway
- Cell type/line selection challenges remain

Acknowledgements

Tox21 Colleagues:
NTP Crew
FDA Collaborators
NCATS Collaborators

Hamner Collaborators:
Barbara Wetmore
Michael Black

P&G Collaborators: George Daston Jorge Naciff

EPA's National Center for Computational Toxicology