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• We provide a method for building successful models of binary predictions of in vivo activity for screening or prioritization applications, 
including data preprocessing, use of machine learning, statistical modelling, and biological analysis. 

• Additionally, we determined that several factors can improve utility of the models, including weighting of input data according to activity or 
inactivity of chemicals, combining in vivo endpoints across species, and feature selection. 

• Weighting decisions should be made based on expected ratios of active to inactive chemicals in the prediction dataset of interest, though 
this information will not always be available. 

• Feature selection analysis may point to biologically-relevant rationales for inclusion of in vitro assays in these models. 
• These findings suggest that predictive performance can be improved through statistical, toxicological, and biological advances. Future 

work to improve model performance can include (1) improving input data to include biologically-relevant in vitro assay data (e.g., 
metabolically-competent assays) (2) developing methods to generate more homogenous in vivo data sets (e.g., collecting additional in vivo 
dose-response data can supplement data gaps). The use of multinomial representations of in vitro predictors to capture threshold effects in 
assay response.
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THE ROLE OF FEATURE SELECTION AND STATISTICAL WEIGHTING IN PREDICTING IN VIVO 
TOXICITY USING IN VITRO ASSAY AND QSAR DATA
Jessica Wignall1, Matthew Martin2, Joanne Trgovcich3, Arun Varghese3 | 1ICF International, Fairfax, VA, 2US EPA, National Center for Computational Toxicology, Durham, NC, 3ICF International, Durham, NC

• ~115,000 chemicals from EPA EpiSuiteTM/SHEDS-HT

• Converted SMILES to 1024 binary fingerprint 2D 
descriptors calculated using Python and OpenBabel

• Validated by predicting chemical properties (e.g., vapor 
pressure)

2 Chemical Descriptors

• EPA’s ToxRefDB includes detailed study design, dosing, and 
observed treatment-related effects using standardized vocabulary 
curated from in vivo animal toxicity studies

• Includes detailed study and effect information on hundreds of 
chemicals primarily pesticide active ingredients

• Across the studies, 1045 endpoints available for analysis

• October 2014 Release

3 ToxRefDB Data

• Publicly available high throughput screening data from EPA on over 
1800 chemicals

• Number of assay predictors = 711

1 ToxCast Data

• Joined ToxCast assay data to ToxRefDB endpoint data using CAS RN

1. Assay Only Training Set includes chemicals with both ToxCast and 
ToxRefDB data (586) 

2. QSAR Only Training Set includes chemicals with both Chemical 
Fingerprint and ToxRefDB data (769)

3. Assay + QSAR Training Set includes chemicals with ToxCast, Chemical 
Fingerprint, and ToxRefDB data (538)

4 Training Set for Machine Learning

Abstract
Our study assesses the value of both in vitro assay and quantitative structure
activity relationship (QSAR) data in predicting in vivo toxicity using numerous
statistical models. The models were built on datasets of (i) 586 chemicals for which
both in vitro and in vivo data are currently available in EPA’s Toxcast and ToxRefDB
databases, and (ii) 769 chemicals for which both QSAR data and in vivo data exist.
Similar to a previous study (based on just 309 chemicals, Thomas et al. 2012), after
converting the continuous values from each dataset to binary values, the majority of
more than 1,000 in vivo endpoints are poorly predicted. Even for the endpoints that
were well predicted (about 40 with an F1 score of >0.75), class imbalances in in
vivo endpoint data or cytotoxicity across in vitro assays may be skewing results. We
investigated whether use of best practices for data preprocessing and model fitting
in real-world contexts would improve model predictions. This included options for
dealing with missing data, including omitting observations, aggregating variables,
and imputing values. We also examined the impacts of feature selection (from both
a statistical and biological perspective) on performance and efficiency, and we
weighted outcome data to reduce endpoint imbalances to account for potential
chemical selection bias and assessed revised performance. For example, initial
weighting strategies decrease the number of models with an F1 score >0.75
drastically (to 6), but these models are more able to predict nontoxic chemicals in
certain contexts. The results of these analyses can be used to inform screening or
other decisions, especially in the context of future data enhancements, such as
more biologically relevant in vitro assays, additional in vivo endpoint data, and
extension of chemical space.

Methods

Feature Selection

Weighting

Conclusions and Future Research

Toxicity Prediction Model Features Model Performance

For more information: Jessica Wignall | jessica.wignall@icfi.com
Arun Varghese | arun.varghese@icfi.com

Disclaimer: This poster does not necessarily reflect 
US EPA policy.

COLLECT 
DATASETS

• Collect in vivo, in vitro, and in silico datasets from publicly 
available resources: ToxRefDB, ToxCast, and OpenBabel, 
respectively.

PROCESS 
DATA

• Using R Statistical Program
• Convert all data to binary datasets
• Impute missing data across a chemical based on 

activity

BUILD 
MODELS

• Statistical approaches include:
• K Nearest Neighbors
• Bernoulli NB
• Linear SVC

OTHER 
STATISTICAL 
PROCESSING

• Optimized on F1
• Feature selection
• Outcome weighting

BIOLOGICAL 
PROCESSING

• Combining “like” 
endpoints across species 
and study design

• Logistic Regression
• Decision Tree
• Random Forest

MACHINE 
LEARNING

• Models built using Python
• Identifies the best performing of 
multiple machine learning 
algorithms 

• Builds predictive binary outcome 
toxicity screening models

• Measures performance based on 
5-fold cross-validation

Data Pre-Processing

• Imputing: Smooths out data sets; results in larger training set than 
otherwise possible, but introduces assumptions to data

Statistical Measures of Fit:

• F1 Score: Measure of model accuracy that considers both precision and 
recall; optimizing on this metric minimizes False Negatives but sacrifices 
accuracy (ideal for screening)

• Area under the curve of the receiver operating characteristic (ROC-
AUC): Combines specificity and sensitivity; often used as a metric to 
communicate predictive performance

• Predictive improvement over random baseline  (pseudo-R2): Shows 
improvement in model performance over predictions based on existing 
ratio in data only (i.e., how much does the model improve predictions?)

Combining Endpoint Outcome Data: Assumes that an effect in one 
species/study design is relevant to all species/study design

• Outcome data can be weighted to account for potential chemical selection 
bias or endpoint imbalances in the training datasets. 

• For example, if input data is heavily weighted as toxic or non-toxic, then 
weighting data to counteract skewed datasets should result in more useful 
predictions, as our findings indicate. 

Figure 2. Source and Number of Chemicals 
used in the Toxicity Prediction Model

ToxCast (1858)

ToxRefDB
(883)

Chemical Fingerprint 
(115,648)

1858

586

769

538

Figure 5. 
Comparison of 
toxicity 
prediction 
after data 
preprocessing, 
weighting, 
feature 
selection, and 
combining 
endpoints. The 
performance of 
models with F1 > 
0.75 within each 
scenario is shown. 
The dotted orange 
line highlights the 
F1 score of 0.60 
for comparison. If 
there is no data in 
the bar graph, no 
models passed the 
threshold of F1 
score >0.75. 

Combined Endpoints

Figure 4. Combining Endpoints Results In Predictive Models For In Vivo Prediction. 
Orange bars, F1 score; Gray bars, ROC-AUC; blue bars, R2.  Data are shown for 6 endpoints as follows:
(1) SystemicCarcinogenic; (2) SystemicCarcinogenic_adult; (3) SystemicCarcinogenic_adult_OtherSystemic; (4) 
SystemicCarcinogenic_adult_OtherSystemic_InLifeObservations; (5) 
SystemicCarcinogenic_adult_OtherSystemic_InLifeObservations_BodyWeight;  (6) Cholinesterase

Combining 
endpoints 
results in 
predictive 
models for 
overall in vivo 
endpoints, 
not species 
or study 
design-
specific. 
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Figure 3. Weighting Assay 
Data for Predicting 
Unknown Chemicals.
Green bar portion represents predicted 
active chemicals, yellow bar portion 
represents predicted inactive chemicals. 
Blue, orange and gray lines represent 
F1, ROC-AUC, and R2 data generated 
by the model. 
In vivo endpoint models (bars) include 
the following:
(1) Systemic Carcinogenic: adult-
OtherSystemic-InLifeObservations-
BodyWeight
(2) Systemic Carcinogenic: adult-
OtherSystemic-InLifeObservations
(3) Systemic Carcinogenic: adult-
OtherSystemic
(4) Systemic Carcinogenic: adult
(5) Systemic Carcinogenic

Figure 1. Illustration of Methods and Process Used to Build the Toxicity Prediction Model

Application of Feature Selection Increases the Number of Models that Predict in Vivo Toxicity

• An ROC-AUC > ~0.6 represents a predictive model (better than chance). 
• 9/14 scenarios have an average ROC-AUC > 0.6 
• 3/14 have an average ROC-AUC > 0.7.

• The number of models with an F1>0.75 and an ROC-AUC>0.6 maxes out after feature selection and before weighting, 
and do not have a relationship with the pseudo-R2. 

• We combined endpoint data from ToxRefDB across species and study design for a given endpoint and analyzed feature selection to 
identify the most “predictive” features of the ToxCast assay set. We analyzed Selected Features (ToxCast assays) across all models. 
Those assays found to be most predictive across all models are shown in Table 1. These assays are specific inasmuch as they fail to be 
identified as predictive if in vitro data are randomized in this model.

• This Table includes 8 of the 10 ToxCast Assays that were the most predictive for carcinogenicity studies, and 9 of 10 assays most 
frequently used in liver-related models.

• These assays in Table 1 were performed in liver cells, or relate to function of the liver in detoxification of xenobiotic compounds, suggesting 
that in vitro assays targeting hepatic endpoints are predictive of in vivo activity.

Table 1. Top 10 Selective Features (ToxCast Assays) Across All Models
ToxCast assay ToxCast biological process target 

(assay type)
ToxCast intended 
target sub family

ToxCast intended 
target gene

Gene Info

NVS_NR_hPXR receptor binding (cell free nuclear run on assay) non-steroidal Human NR1I2 Transcriptional regulator of the cytochrome P450 gene CYP3A4
APR_MitoMass_72h_up cell cycle (mitochondrial morphology in HepG2 

cells)
organelle conformation NA NA

APR_NuclearSize_24h_up cell cycle (nuclear morphology in HepG2 cells) organelle conformation NA NA
NVS_ADME_rCYP3A1 regulation of catalytic activity (cell free enzyme 

activity assay)
xenobiotic metabolism Rat Cyp3a23/3a1 Encodes a member of the cytochrome P450 superfamily of 

enzymes. Steroid-inducible member of p450 subfamily 3A

NVS_MP_rPBR receptor binding (cell free ligand binding) cholesterol transporter Rat Tspo Benzodiazapene receptor that may be involved in the nenoatal
response to hypoxia.

NVS_ADME_hCYP1A2 regulation of catalytic activity (cell free enzyme 
activity assay)

xenobiotic metabolism Human CYP1A2 Encodes a member of the cytochrome P450 superfamily of 
enzymes. 

NVS_ADME_rCYP2A1 regulation of catalytic activity (cell free enzyme 
activity assay)

xenobiotic metabolism Rat Cyp2a1 Encodes a member of the cytochrome P450 superfamily of 
enzymes with testosterone 7 alpha-hydroxylase activity. 

NVS_ADME_rCYP3A2 regulation of catalytic activity (cell free enzyme 
activity assay)

xenobiotic metabolism Rat Cyp3a2 Encodes a member of the cytochrome P450 superfamily of 
enzymes; catalyzes the conversion of testosterone to 6-beta-
hydroxytestosterone.

NVS_MP_hPBR receptor binding (cell free ligand binding) cholesterol transporter Human TSPO Present mainly in the mitochondrial compartment of peripheral 
tissues.

APR_MitoMass_24h_up cell cycle (mitochondrial morphology in HepG2 
cells)

organelle conformation NA NA
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