

www.epa.gov/airscience

AIR CLIMATE & ENERGY RESEARCH PROGRAM

ACE Task 019 FY14 Product

Near-source air quality in rail yard environments – an overview of recent EPA measurement and modeling findings

Gayle Hagler and Halley Brantley U.S. EPA Office of Research and Development

Outline

- Background
- Three recent studies
 - Cicero Rail Yard Study
 - Project team: Region 5 team members: Mike Rizzo, Chad McEvoy, Jesse McGrath, Marta Fuoco, Loretta Lehrman; ORD team: Gayle Hagler, Eben Thoma
 - Atlanta Rail Yard Study
 - Project team: ORD: Gayle Hagler, Halley Brantley, Eben Thoma; Collaborators (Memorandum of Understanding): Georgia Tech
 - Computational Fluid Dynamics Modeling Study:
 - Project team: ORD: Gayle Hagler; EMVL: Wei Tang, Mike Uhl (Lockheed Martin), Heidi Paulsen (EMVL)

Background

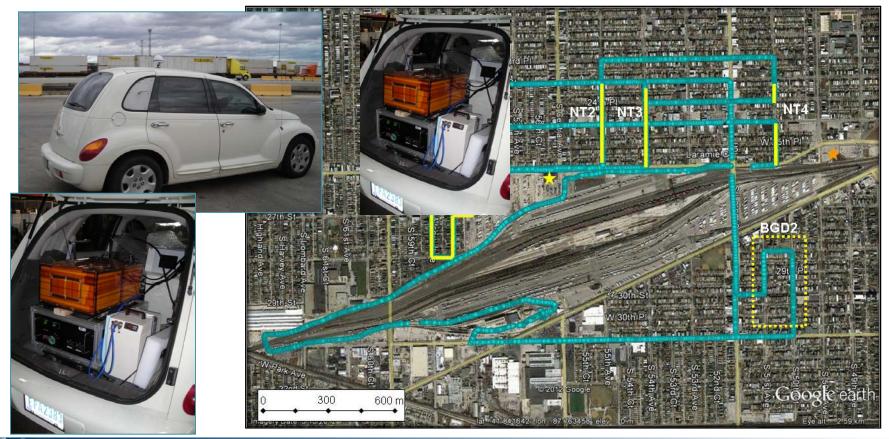
- Air pollution in close proximity to rail yards is not well understood and a challenging issue to study
 - Significant variety of rail yards size, operations, surrounding environment, local meteorology
 - Emissions vary spatially and temporally, over large geographic area
 - Confounding sources often nearby highways, manufacturing
- Some large rail yards are in very close proximity to residential areas; environmental justice concerns
- Several key past studies to note:
 - CSX Rougemere Rail Yard in Dearborn, MI Turner, 2009
 - Davis Rail Yard in Roseville, CA Cahill et al., 2011; Campbell, 2009

Cicero Rail Yard Study (CIRYS)

Cicero Rail Yard Study

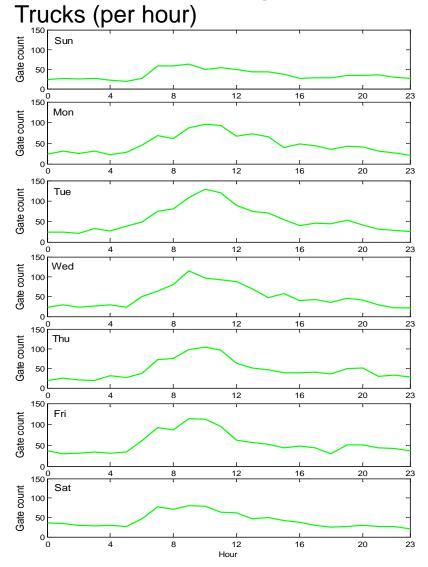
- Goals:
 - Build upon Phase I of the RARE study, which conducted an emissions inventory, dispersion modeling, and field measurements to study local-scale air pollution from a rail yard in Dearborn, MI.
 - Field measurement portion of the Phase I study was challenged by confounding emissions nearby.
 - Phase II research objective: Field measurements to characterize the degree and spatiotemporal variability of local air pollution related to rail yard emissions
 - Siting criteria:
 - Minimize confounding sources (major roadways, industries)
 - Urban environment
 - Chicago-area
 - Compatible for both stationary and mobile monitoring

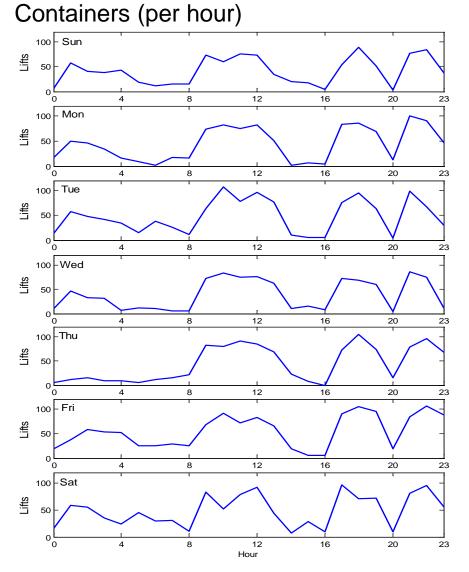
CIRYS – rail yard description


- Cicero Rail Yard is located in densely populated suburb of Chicago
- Intermodal rail yard; emission sources include: trucks, cranes, switcher locomotives, trains passing through (commuter and freight) and idling.
- Estimated container lift volume: 400,000; other Chicago-area intermodal hubs ranging ~100,000-800,000

CIRYS – field study

- Monitoring approach:
 - Combined mobile monitoring sessions (1 month) and continuous monitoring at a stationary location, 2010-2011
 - Mobile sessions during early morning, mid-day, evening

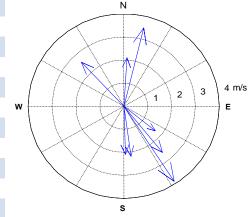



CIRYS – field study

	Mobile Monitoring Vehicle	Stationary Monitoring Site					
	Sampling times						
Time span	October-November, 2010	October, 2010 – October, 2011					
Measurement rate	1-10 seconds, driving sessions of approximately 3 hours	5 minutes, continuous data					
	Measurement techniques						
Fine particulate matter	Aerodynamic sizing, light scattering detection, mass-estimation from size- resolved number counts	Beta-attenuation through particle-laden filter, with an inlet cut at 2.5 microns (FEM)					
Ultrafine particles	Electrical mobility sizing, detection by electrometer	N/A					
Black carbon	Light absorption (880 nm) through particle-laden filter	Light absorption (880 nm) through particle-laden filter					
Carbon monoxide	Quantum cascade laser	Nondispersive infrared detector (FRM)					
Sulfur dioxide	Quantum cascade laser	Pulsed fluorescence (FEM)					
Oxides of nitrogen	N/A	Chemiluminescence (FRM)					

CIRYS – ancillary data from BNSF: minute-byminute activity data on trucks and containers

9

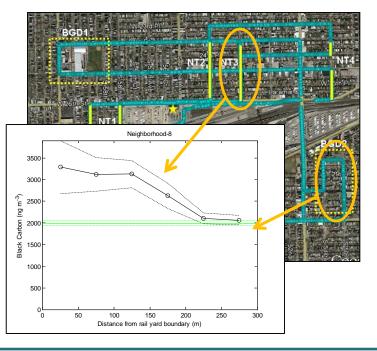

CIRYS – mobile monitoring sessions

Session	Start time	End time	U, scalar	U, vector	θ ^a	σ _θ ^b	Category
			(m/s)	(m/s)	(deg)	(deg)	
1	10/27/2010 9:16	10/27/2010 13:05	8.0	7.4	236	33	SW
2	10/28/2010 18:53	10/29/2010 2:00	3.1	2.5	294	41	NW
3	10/29/2010 18:45	10/29/2010 23:45	4.6	4.5	208	9	SW
4	10/30/2010 8:52	10/30/2010 13:15	6.4	5.7	232	32	SW
5	10/31/2010 3:52	10/31/2010 8:25	2.4	2.2	352	18	Ν
6	11/1/2010 19:18	11/2/2010 0:10	1.9	1.7	70	13	NE
7	11/3/2010 11:50	11/3/2010 16:25	4.0	3.6	230	29	SW
8	11/4/2010 4:10	11/4/2010 8:42	4.1	3.9	327	14	NW
9	11/5/2010 9:00	11/5/2010 14:30	5.1	4.7	338	22	NW
10	11/6/2010 3:52	11/6/2010 8:15	1.8	1.7	309	17	NW
11	11/7/2010 19:40	11/7/2010 23:56	1.9	1.7	184	11	S
12	11/8/2010 19:00	11/9/2010 0:10	2.1	2.0	175	16	S
13	11/10/2010 9:10	11/10/2010 14:00	3.6	3.3	164	25	SE
14	11/11/2010 4:00	11/11/2010 9:40	2.2	2.1	184	21	S
15	11/12/2010 10:00	11/12/2010 15:05	3.1	2.8	44	24	NE
16	11/13/2010 4:00	11/13/2010 8:40	2.8	2.6	137	21	SE
17	11/15/2010 19:30	11/16/2010 1:05	2.7	2.5	192	17	S
18	11/16/2010 18:55	11/17/2010 1:30	2.0	1.9	304	21	NW
19	11/17/2010 9:45	11/17/2010 14:37	2.9	2.3	280	48	W
20	11/18/2010 3:58	11/18/2010 8:42	2.7	2.6	321	16	NW
21	11/19/2010 3:52	11/19/2010 8:30	3.7	3.5	194	21	S
22	11/20/2010 3:57	11/20/2010 9:49	2.2	2.1	358	19	Ν
23	11/21/2010 19:02	11/22/2010 0:09	8.4	8.3	212	9	SW

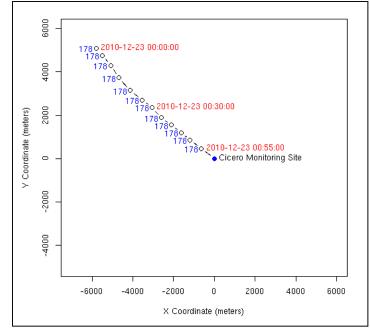
23 sampling sessions

Categorized by time of day and prevailing wind direction

e.g., early morning mean wind direction / speed per session



CIRYS – data analysis

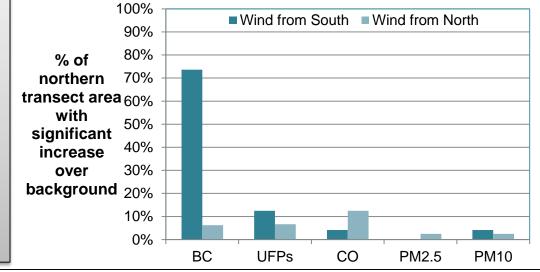

Data analysis approaches:

Mobile: Comparison of upwind / downwind concentrations in residential areas

Stationary: Wind directional trends, inverse modeling using non-parametric trajectory analysis (NTA, NERL model)

Tracing 5-min concentration back along near-field air mass trajectory





CIRYS – findings

Example findings from mobile sampling

For 3 early morning sessions with wind from S: "...excess concentration of 0.3-0.6 μ g m⁻³ BC, 30-40% higher total BC concentrations relative to the urban background (background ranged 0.8-2.0 μ g m⁻³ BC). The other measurements shown – UFPs, CO, PM_{2.5}, and PM₁₀ – do not show the same upwind/downwind trend of excess levels."

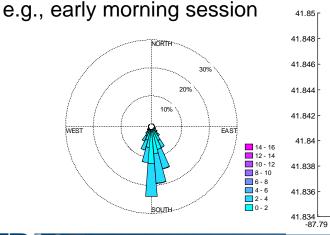
1100

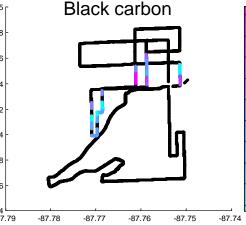
1000

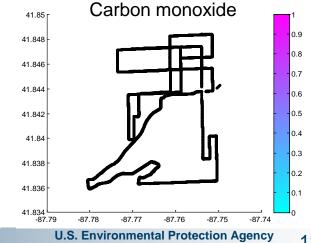
900

800

700

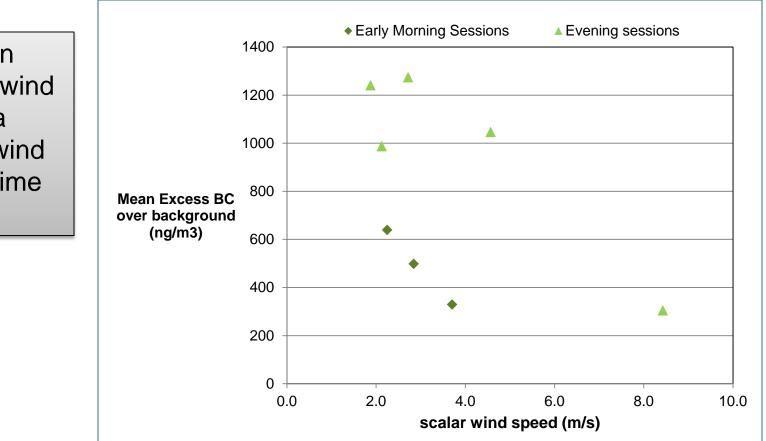

600


500


400

300

200



Office of Research and Development

12

CIRYS – findings

Black carbon levels downwind of rail yard a function of wind speed and time of day

CIRYS – stationary site findings

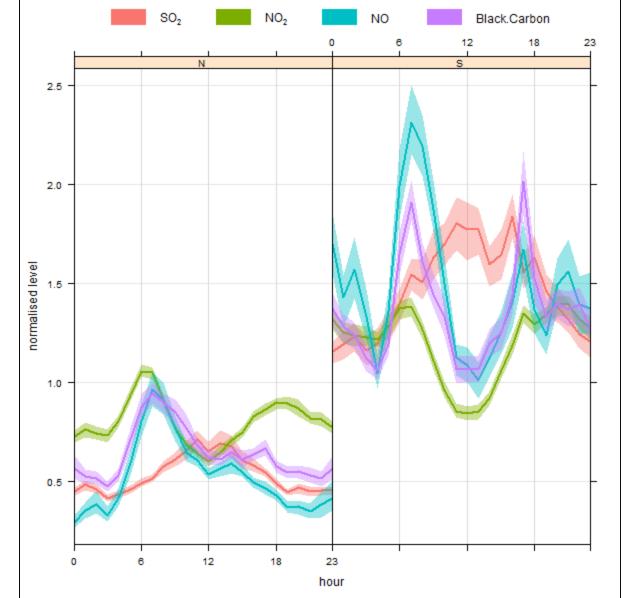
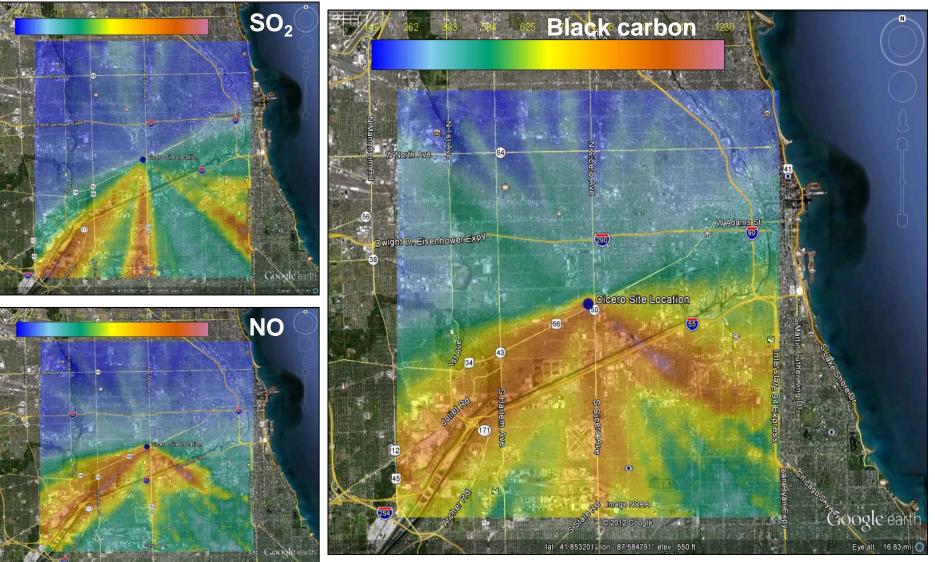

				·		£		F	Percentiles		
Case	Pollutant	Ν	Mean	Standard	Lower 95th	••	25th	50th	75th	90th	95th
				deviation	CI	CI					
All data	NO ₂	38253	20.9	12.7	20.7	21.0	11.2	18.5	28.6	38.4	45.0
	NO	38253	16.8	25.5	16.5	17.0	3.0	7.7	18.6	43.8	66.2
	NO _x	38253	37.6	35.6	37.3	38.0	15.7	26.8	46.9	80.2	108.5
	SO ₂	50085	2.8	3.3	2.7	2.8	1.0	1.6	3.2	6.2	9.2
	Black carbon	47067	635.5	690.5	629.3	641.7	235.4	433.0	796.0	1330.0	1811.0
	NO ₂	8274	24.6	12.7	24.3	24.9	15.2	23.2	32.7	42.5	47.4
Wind from SE	NO	8274	24.4	32.2	23.7	25.1	3.7	12.0	32.1	63.8	92.1
(angles: 105 -	NO _x	8274	48.9	41.5	48.0	49.8	21.2	36.8	63.8	104.2	134.2
215)	SO ₂	8310	4.8	3.8	4.7	4.9	2.3	3.6	5.8	9.9	12.5
·	Black carbon	7652	819.1	737.0	802.6	835.6	378.0	618.0	1011.0	1580.0	2079.5
	NO ₂	7156	27.6	15.6	27.3	28.0	15.4	26.8	38.2	48.0	54.0
Wind from SW	NO	7156	30.8	34.7	30.0	31.6	6.4	18.8	43.4	74.8	101.1
(angles:215 -	NO _x	7156	58.5	47.8	57.4	59.6	23.7	46.9	80.4	119.4	151.4
266)	SO ₂	7176	3.5	3.7	3.4	3.6	1.3	2.1	4.3	8.2	10.9
	Black carbon	6791	815.9	726.6	798.6	833.1	359.0	630.0	1031.5	1610.0	2092.0
	NO ₂	13212	16.8	9.7	16.6	16.9	9.6	14.7	22.5	31.1	35.1
Wind from N	NO	13212	8.5	11.2	8.3	8.7	2.4	5.3	10.1	18.8	27.8
(angles: 300 -	NO _x	13212	25.3	19.1	24.9	25.6	13.2	20.5	32.0	48.2	59.8
60)	SO ₂	13248	1.3	1.0	1.3	1.3	0.8	1.1	1.5	2.4	3.1
	Black carbon	12235	333.6	327.5	327.8	339.4	143.3	243.0	419.0	662.0	858.3

Table 3-6. Summary statistics for 5-minute pollutant data (NOx and SO₂ in ppb, BC in ng m⁻³)

CIRYS – stationary site findings

Diurnal trends during winds from the North (left) and winds from the South (right)



CIRYS – stationary site findings Inverse modeling

FP

ACF

CIRYS – report released in spring 2014

Full report available at: <u>http://nepis.epa.gov/Adobe/PDF/P100IVT3.pdf</u> Report review process: internal peer review, QA review, management review, external peer review

Media reaction: ORD and Region 5 interviewed by Chicago Tribune in mid-June

Article tweeted by Inbound Logistics, which has >20,000 followers

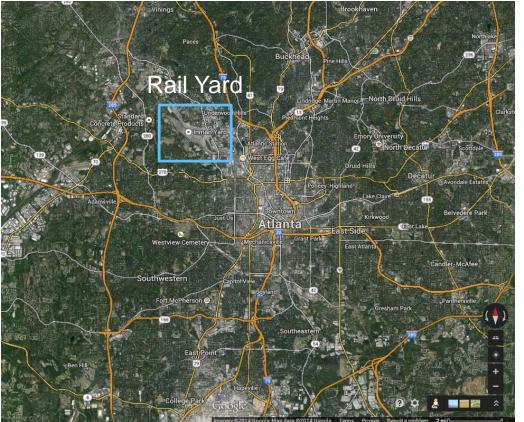
Front Page | News | Sports | Business | Lifestyles | Opinion | A&E

NEWS

A HYUNDAI

Diesel pollution from locomotives and the vehicles that mo

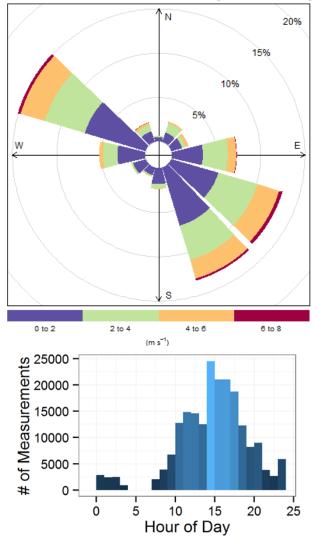
What she can't see are the clouds of microscopic lung- and heart-damaging particles that drift into the low-income, largely Latino neighborhood overlooking one of the Chicago area's freight terminals.

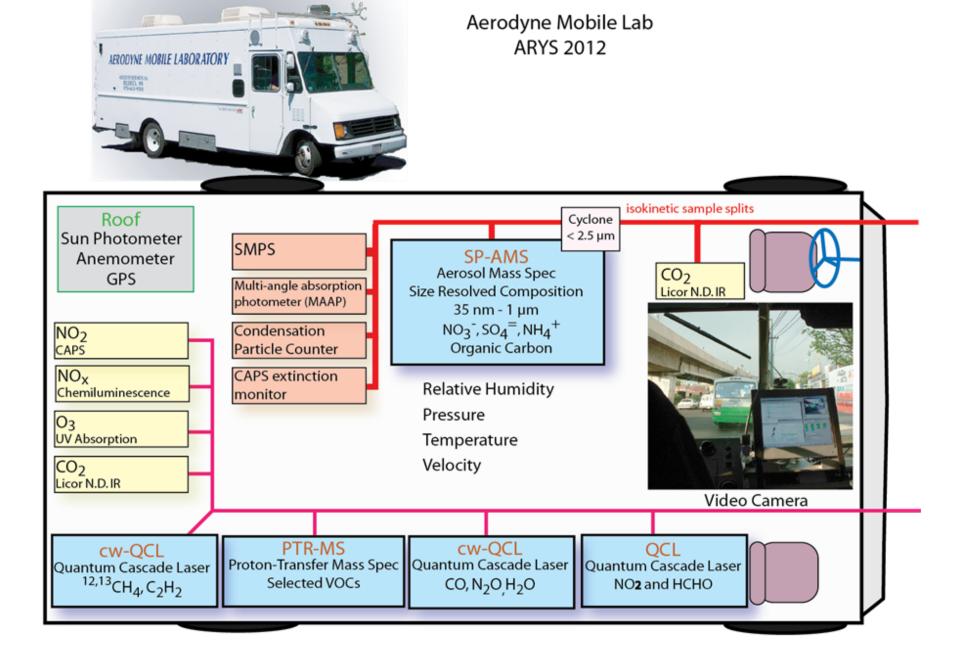

17

Atlanta Rail Yard Study (ARYS)

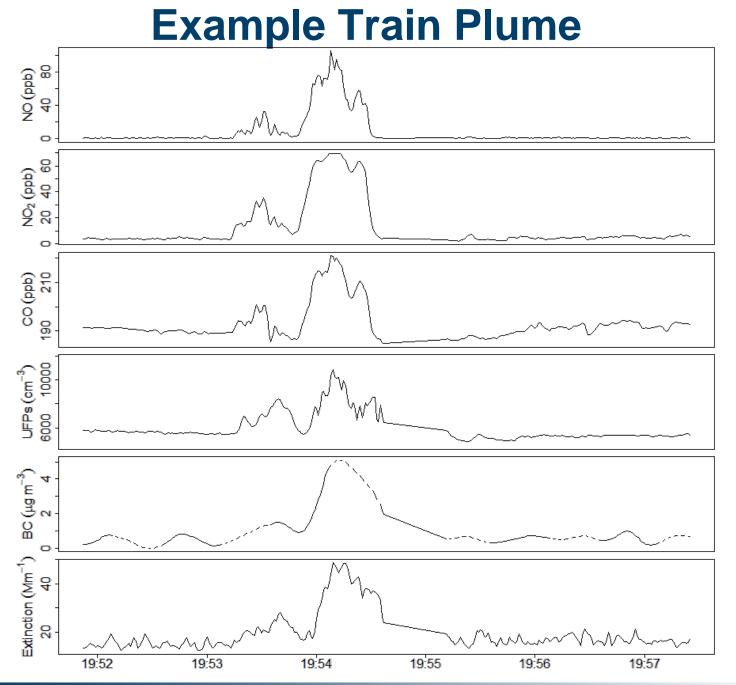
Atlanta Rail Yard Study (ARYS)

 CSX and Norfolk Southern co-located rail yards, Tilford and Inman Yards, are in a non-attainment area for PM_{2.5}


- State of GA funding for rail yards to reduce emissions
- Local monitoring upwind and downwind by Georgia Tech (Galvis, 2013).

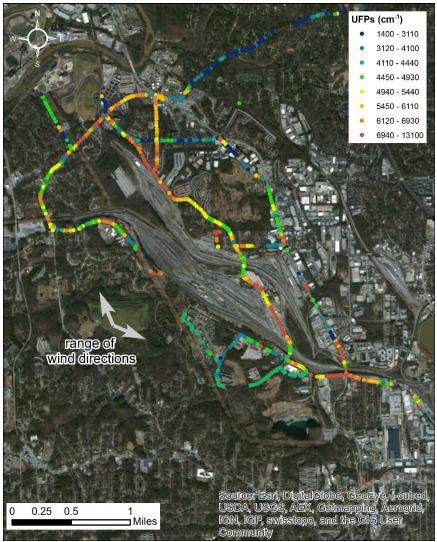

ARYS Field Study 19 sampling runs conducted in May 2012

Wind conditions during sampling

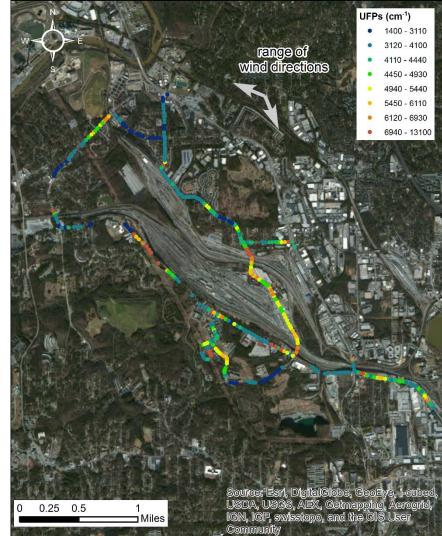


Measurements

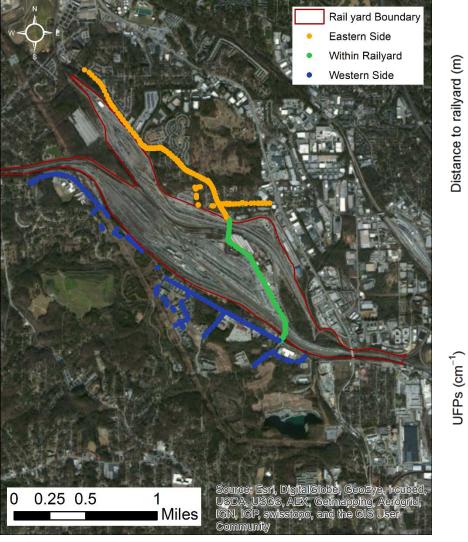
Measurement	Rate	Instrument		
Carbon Dioxide (CO2)	0.9 s	Licor 6262 (2) and Licor 820		
Carbon Monoxide (CO)	1 s	Quantum Cascade Laser System (2230 cm-1)		
Nitric Oxide (NO)	1 s	Thermo 42i Chemiluminescence		
Nitrogen Dioxide (NO2)	1 s	Quantum Cascade Laser System (1600 cm-1)		
Nitrogen Dioxide (NO2)	5 s	Cavity Enhanced Phase Shift		
Oxides of Nitrogen (NOy)	1.4 s	Thermo 42i with external inlet-tip Mo Converter		
Black Carbon PM (< 2.5 µm)	3 s	Multi-Angle Absorption Photometer		
Black Carbon PM (70 nm -1.5 µm)	1 s (variable)	SP-AMS with laser-on mode		
Non-refractory PM coating on Black Carbon (70 nm – 1.5 μm)	1 s (variable)	SP-AMS with laser-on mode;		
Particle Extinction	3 s	Cavity Enhanced Phase Shift		
Particle Number Density	1.8 s	Condensation Particle Counter		
Number based Size Distribution	2 minutes	Differential Mobility Analyzer with Condensation Particle Counter		
Various Aromatics and Oxygenates such as: Benzene, Toluene, Xylene, Acetone, Acetaldehyde	1.4 s	Proton Transfer Reaction Mass Spectrometer		
Alkanes, Selected Alkenes and Aromatics	Hourly	Gas Chromatogram with Flame Ionization Detector		
PACE		U.S. Environmental Protection Agency Office of Research and Development 22		

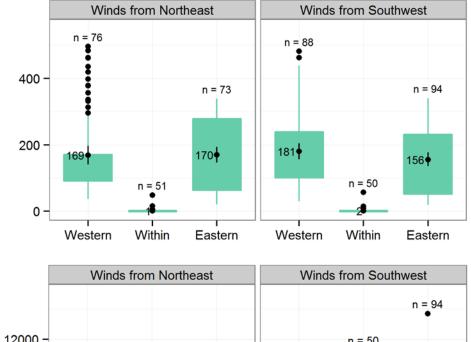

Research Questions

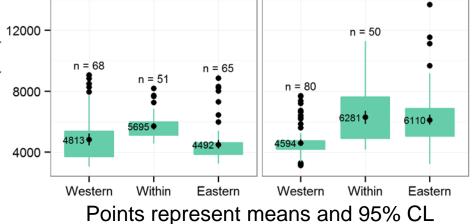
- Are there statistically significant differences in air pollutant concentrations downwind of the rail yard relative to upwind air?
- How do near-rail year air pollutant concentrations vary with wind direction, wind speed, time of day and week?
- How do the attributed emission species correlated with one another and what can be said about emission inventory estimates?


50 m median concentrations by wind category (N > 5)

Wind from the Southwest

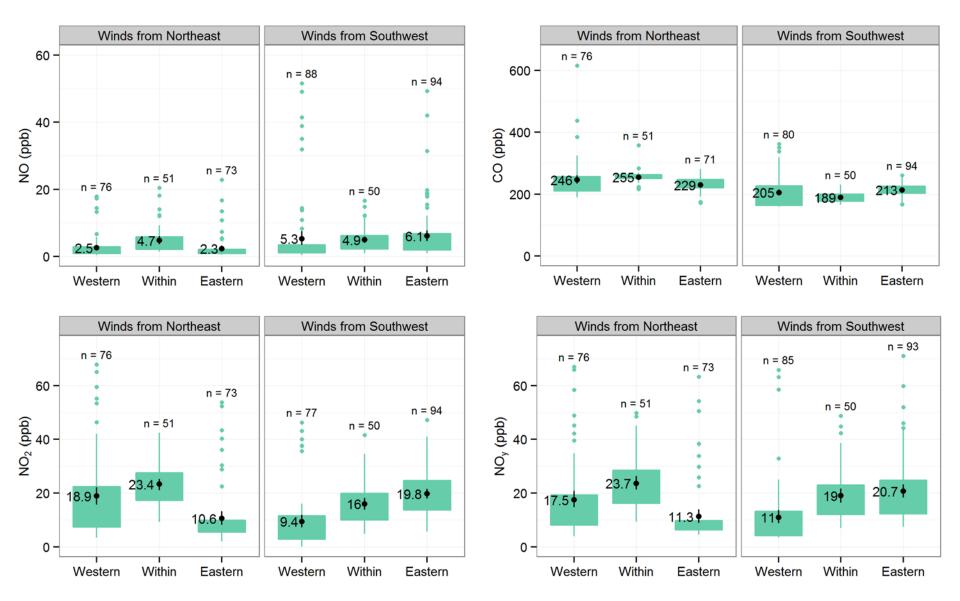

ΞP

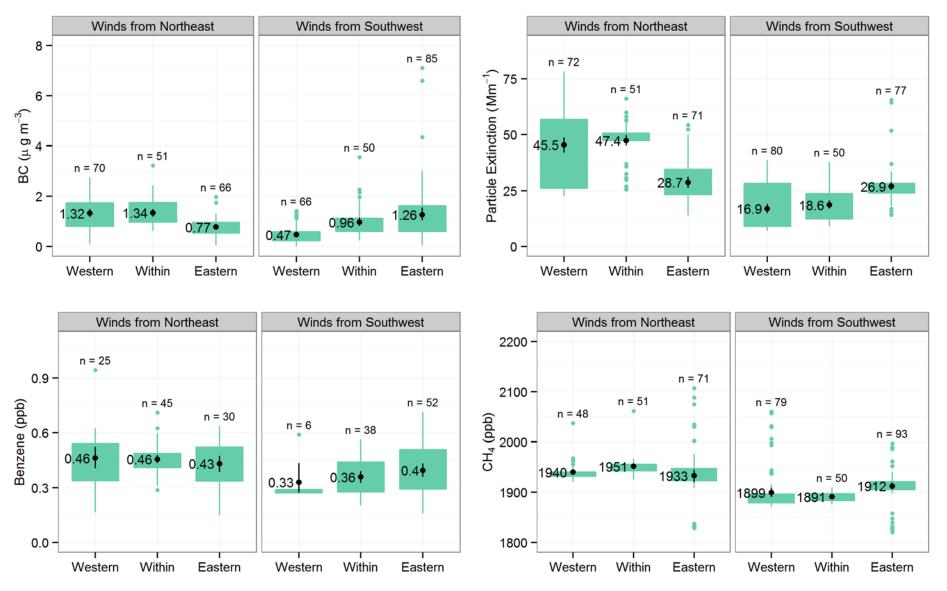

Wind from the Northeast



Upwind-Downwind Differences

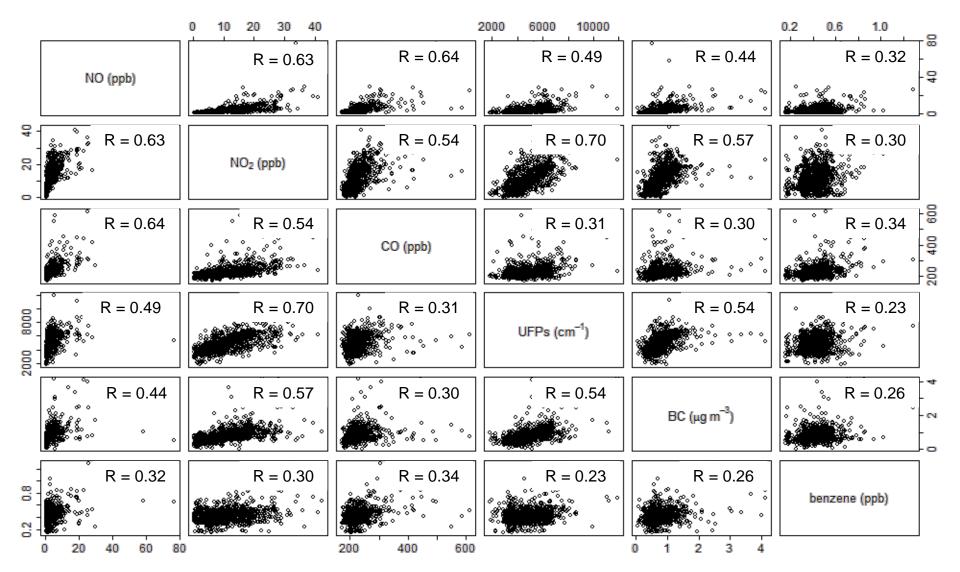
Median concentrations by 50 m segment and wind category





Upwind-Downwind Differences

Upwind- Downwind Differences



EPACE

U.S. Environmental Protection Agency Office of Research and Development 28

Pollutant Correlations

50m medians all wind directions

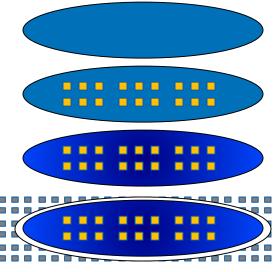
Next steps

Upcoming presentation at AAAR

Paper in development

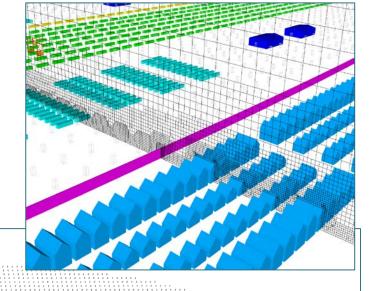
Ongoing collaboration with Georgia Tech and Aerodyne scientists on analyzing EPA mobile data and Georgia Tech stationary data

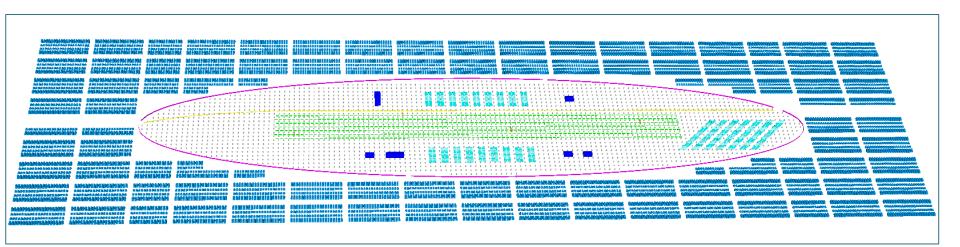
Computational Fluid Dynamics Modeling of a Simulated Rail Yard (CFD-RAIL)


CFD-RAIL: background

- Sensitivity study to explore these types of questions:
 - How do terrain features within a rail yard (containers, buildings) and surrounding the rail yard (boundary wall, neighborhoods) affect the transport of emissions?
 - Does the location of emissions within the rail yard matter for near-field air quality?
 - What is the effect of wind direction?

Approach:

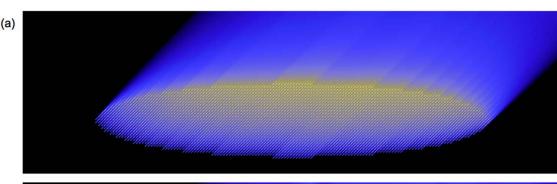

- Idealized model with scale similar to Cicero yard, homogenous emissions
- Add within-yard structures containers, buildings, cranes
- Spatially weight the emissions, reflecting emissions inventory
- Add surrounding structures similar to Cicero environment city blocks, noise barrier

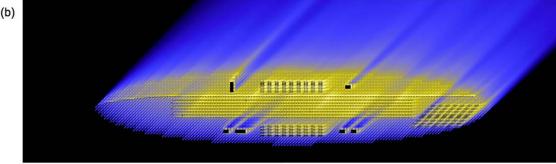

Vary wind direction, different combinations of above

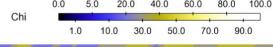
CFD model: Ranging from simple homogenous emissions over designated area to weighted emissions with complex terrain.

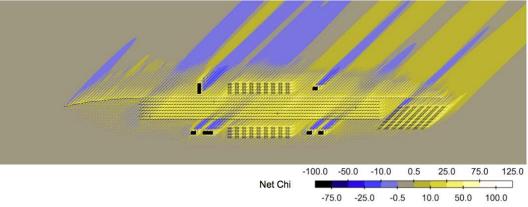
Scenario	Spatially weighted emissions (E)	Rail yard structures (Y)	Surrounding boundary wall (W)	Surrounding houses (N)
Base (B)				
B-E	•			
B-Y		•		
B-EY	•	•		
B-EYW	•	•	•	
B-YW		•	•	
B-EYN	•	•		•
B-EYWN	•	•	•	•

Evaluating sensitivity of progressively adding new terrain features:

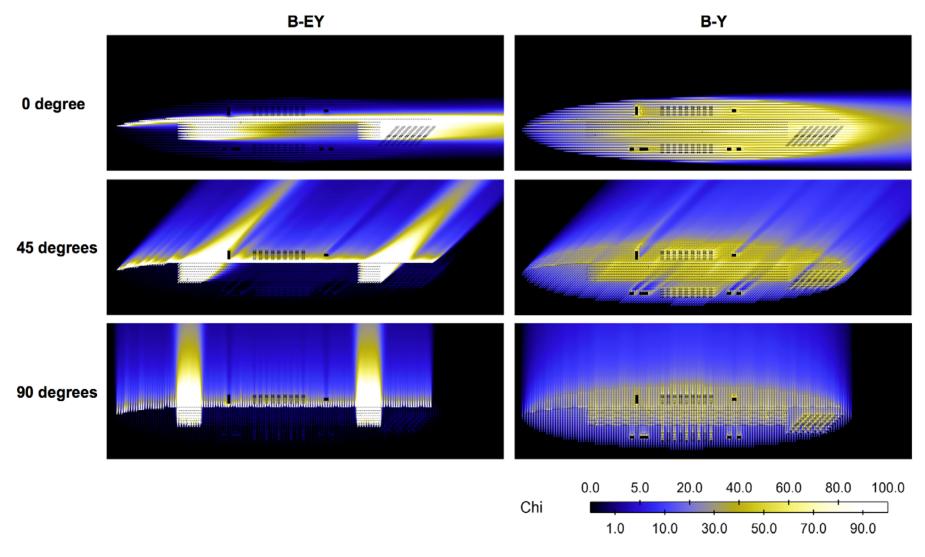

Base: Homogenous / emissions, no obstructions to air flow


With structures: Homogenous emissions, buildings and containers in yard

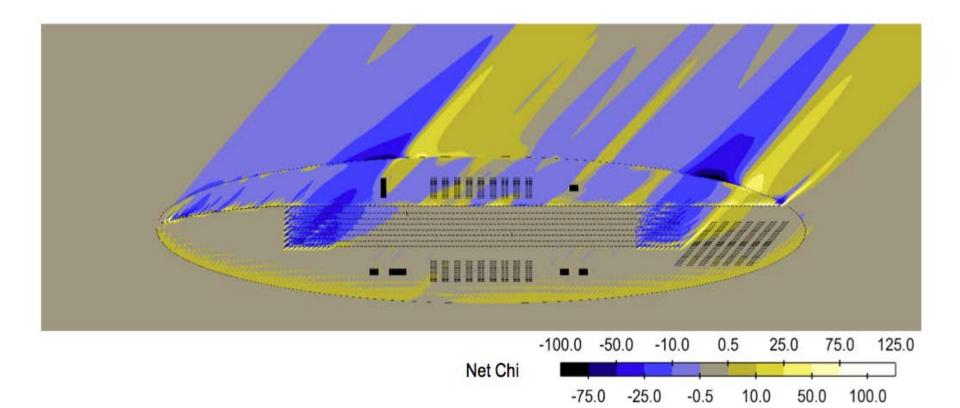

Subtraction of "with structures" minus "base"


(c)

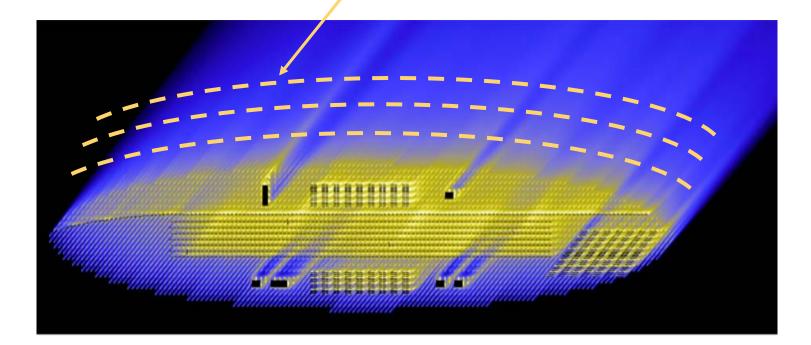
Chi: normalized concentration of an inert pollutant



Effect of wind direction:



CFD-RAIL: model set-up


Effect of adding boundary wall:

NetChi = Scenario with wall minus scenario without wall

For 45 degree wind case: Isolated data for a set height and distance away from rail yard boundary (e.g., Z = 1.5 m, distance from yard boundary = 25 m) – calculate mean and standard deviation

	D = 25 m		D = 5	0 m	D = 1	100 m	D = 200 m D = 400 m			100 m
Case	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.
В	28.02	8.99	23.99	8.15	18.47	7.63	12.24	6.66	6.88	5.11
B-E	26.65	24.58	23.39	22.49	18.56	19.25	12.63	14.70	7.16	9.70
B-Y	29.06	8.78	24.40	8.48	18.56	7.99	12.38	6.96	7.04	5.35
B-EY	29.39	27.40	25.28	24.55	19.70	20.73	13.29	15.76	7.51	10.35
B-EYW	20.46	17.87	20.20	17.56	16.39	15.69	11.35	12.17	6.74	8.44
B-YW	21.42	9.34	20.34	8.27	15.73	7.47	10.72	6.38	6.38	5.01
B-EYN	25.36	23.53	23.28	22.36	17.13	17.19	12.21	13.82	7.15	8.92
B-EYWN	19.11	16.51	18.32	17.21	15.05	14.84	11.36	12.61	6.87	8.45

Max mean and max standard deviation concentrations for scenario with weighted emissions and buildings/containers within yard

	D = 25 m		D = 5	0 m	D = 1	100 m	D = 200 m D =		D = 4	400 m	
Case	Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.	
		dev.		dev.		dev.		dev.		dev.	
В	28.02	8.99	23.99	8.15	18.47	7.63	12.24	6.66	6.88	5.11	
B-E	26.65	24.58	23.39	22.49	18.56	19.25	12.63	14.70	7.16	9.70	
B-Y	29.06	8.78	24.40	8.48	18.56	7.99	12.38	6.96	7.04	5.35	
B-EY	29.39	27.40	25.28	24.55	19.70	20.73	13.29	15.76	7.51	10.35	
B-EYW	20.46	17.87	20.20	17.56	16.39	15.69	11.35	12.17	6.74	8.44	
B-YW	21.42	9.34	20.34	8.27	15.73	7.47	10.72	6.38	6.38	5.01	
B-EYN	25.36	23.53	23.28	22.36	17.13	17.19	12.21	13.82	7.15	8.92	
B-EYWN	19.11	16.51	18.32	17.21	15.05	14.84	11.36	12.61	6.87	8.45	

Addition of neighborhood structures ("N") surrounding yard leads to ~14% reduction in mean at 25 m and lower standard deviation

	D = 25 m		D = 5	0 m	D = 1	D = 100 m D = 200 m		200 m	D = 400 m	
Case	Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.	Mean	Std.
		dev.		dev.		dev.		dev.		dev.
В	28.02	8.99	23.99	8.15	18.47	7.63	12.24	6.66	6.88	5.11
B-E	26.65	24.58	23.39	22.49	18.56	19.25	12.63	14.70	7.16	9.70
B-Y	29.06	8.78	24.40	8.48	18.56	7.99	12.38	6.96	7.04	5.35
B-EY	29.39	27.40	25.28	24.55	19.70	20.73	13.29	15.76	7.51	10.35
B-EYW	20.46	17.87	20.20	17.56	16.39	15.69	11.35	12.17	6.74	8.44
B-YW	21.42	9.34	20.34	8.27	15.73	7.47	10.72	6.38	6.38	5.01
B-EYN	25.36	23.53	23.28	22.36	17.13	17.19	12.21	13.82	7.15	8.92
B-EYWN	19.11	16.51	18.32	17.21	15.05	14.84	11.36	12.61	6.87	8.45

Lowest concentrations observed with addition of 6 m boundary wall - ~35% reduction in mean at 25 m and also lower standard deviation

Next steps

Paper in development summarizing results of the model simulations

CFD rail yard scenario models archived and available for future use

Summary

Field study findings:

- Both Atlanta and Cicero rail yards appear to have detectable local elevation in local air pollution for indicators of diesel exhaust
- Absolute concentration increases for downwind areas are moderate (e.g., 0.6 ug/m3 increase in BC); however can constitute a significant fraction of the total
- Inverse modeling approach successful in revealing source areas contributing to pollution levels – future development recommended to further quantify source contributions

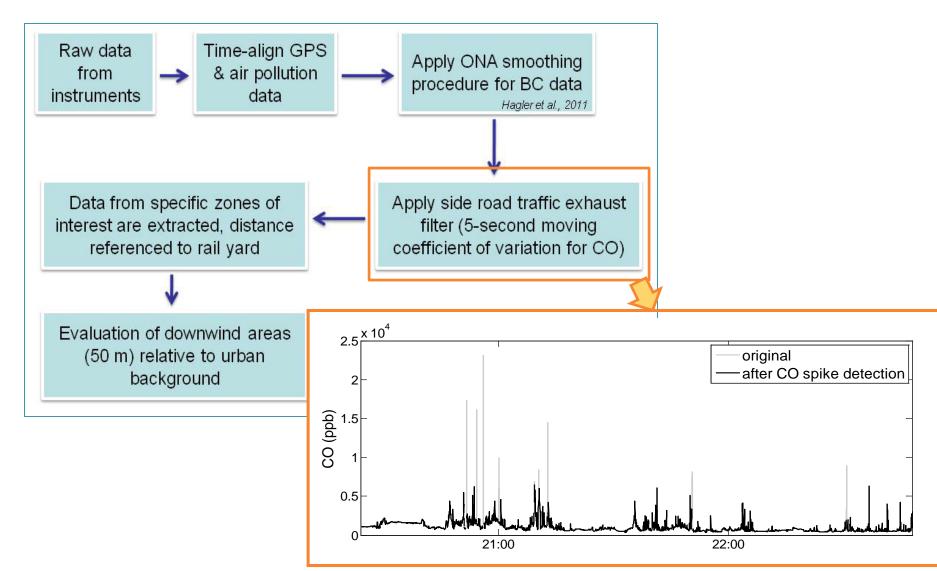
Model study findings:

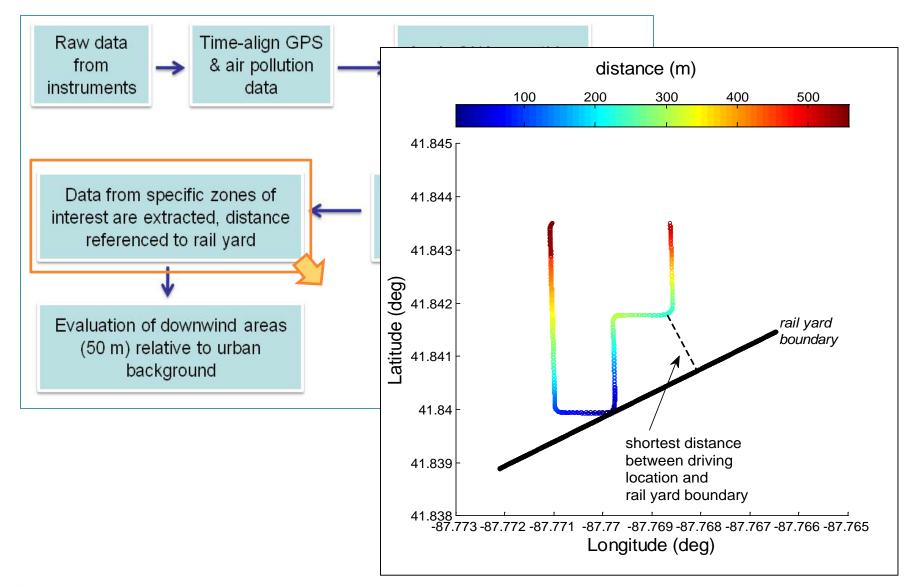
- Significant spatial variability expected in local air pollution measured at a fixed distance from a rail yard (e.g., 25 m)
- Heterogenous emissions in yard likely contribute to hot spot areas that vary with wind direction
- Addition of boundary wall may lead to reduction of local air pollution contribution from rail yard emissions

For more information

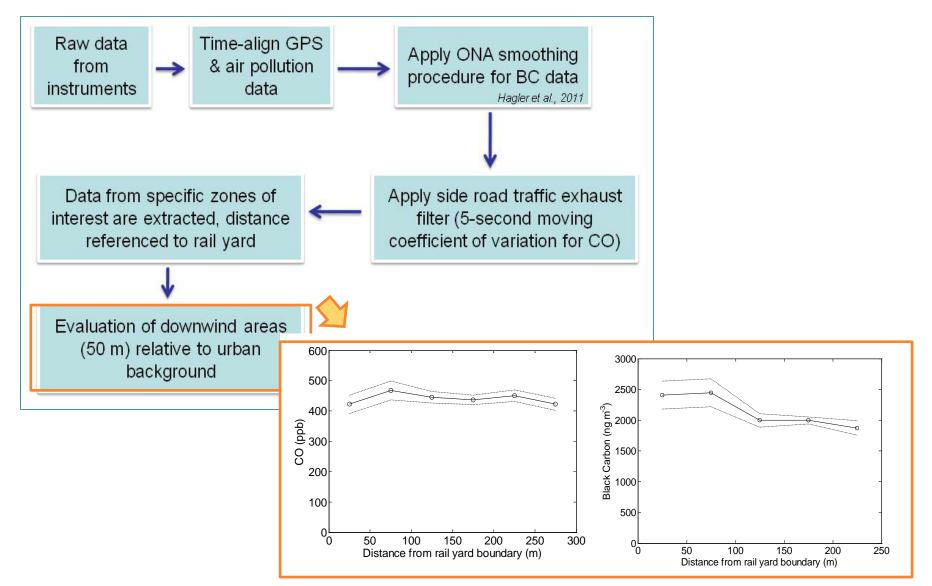
Research point of contact: Gayle Hagler (hagler.gayle@epa.gov)

Task Lead for ACE 019: Sue Kimbrough (kimbrough.sue@epa.gov)


Project Lead for NMP-3: Rich Baldauf (baldauf.richard@epa.gov)



CIRYS – mobile monitoring results



CIRYS – mobile monitoring results

CIRYS – mobile monitoring results

