

Development of a wireless air pollution sensor package for aerial-sampling of emissions

Xiaochi Zhou^{1,2}, Brian Gullett³, William Mitchell³, Johanna Aurell^{4,5}

¹Student Service Contractor, U.S. EPA, Office of Research and Development
²Duke University, Department of Civil and Environmental Engineering
³U.S. EPA, Office of Research and Development
⁴Visiting scientist, U.S. EPA, Office of Research and Development
⁵University of Dayton Research Institute

Introduction

- Emissions from forest fires contribute 12%-17% of PM_{2.5} and 25.6% of volatile organic compounds in the U.S. (NEI, 2008).
- Emission factors (amount of pollutant produced per burned material) have been estimated from ground, airplane, and aerostat systems.

Purpose of this research

- Enhance maneuverability
 - Lightweight
 - Small
- Reduce overall cost
 - Low-cost sensor
 - Fewer personnel
- Quicker response
 - Easier deployment
- Improve safety
 - Further personnel distance

Kolibri system

PM Filter

Unit

Unit

- **Current measurements:** \bullet
 - CO
 - CO_2
 - PM_{2.5}
 - Volatile organics
 - **Black Carbon**
- Future \bullet
 - semi-volatile organic compounds
 - Optical PM sensor
 - S, N, HC sensors

To ensure data quality, sensor performance needs meticulous evaluation

Kolibri sensor evaluation: CO

at high concentrations relevant for this application

Kolibri sensor evaluation : PM₂₅

PM2.5 unit maintains 10 L/min based on a pressure sensor and performed well when comparing against a standard pump

Kolibri sensor evaluation: VOC

- Simultaneously measurement at open burn test facility
 - Tenax #1 sampled 570 ml
 - Tenax #2 sampled 3,380 ml
- Potential breakthrough
- Future test
 - Breakthrough test
 - Comparison against summa canister

Compound/EF (µg/g biomass)	Tenax #1	Tenax #2
Benzene	95.1	27.7
Toluene	232.5	124.7
Ethyl Benzene	9.7	12.2
Xylene	11.8	17.7
Styrene	55.2	30.2
Isopropylbenzene	1.3	1
n Propylbenzene	1	1.5
1,3,5-Trimethylebenzene	0.9	0.9
1,2,4-Trimethylbenzene	2.9	3.8
Isopropyltoluene p-Cymene	1.5	3.4
Butylbenzene	0	0.6
1,3-Dichlorobenzene	0.3	0.1
1.4-Dichlorobenzene	1.8	0.7
1,2-Dichlorobenzene	14.2	3
1,2,4-Trichlorobenzene	0.2	0
Naphthalene	21.2	14.5

Application: detonation sampling in Anchorage, AK

Time series of CO and CO₂ from one test

University of Alaska – Fairbanks Multicopter

Potential application: plume reconstruction

Mobile measurement of plume transects can help estimate plume dispersion and source strength

Conclusion

- Significant improvement in aerial sampling mobility.
- Enhanced sensing ability for complex/dangerous environment.
- Reduced field sampling cost and deployment time compared with aerostat system.
- Allows future modelling work with plume transect information.

