Mapping watershed degree of invasion across the continental U.S.

Amy J.S. Davis¹, Ph.D, & John A. Darling², Ph.D ¹ORISE Postdoctoral Fellow, ²Research Biologist U.S. Environmental Protection Agency

What is EnviroAtlas?

An interactive online decision support tool giving users the ability to view, analyze, and download geospatial data and other resources; designed to inform decision-making, education, and additional research.

EnviroAtlas includes over 160 national scale data layers:

- Metrics reflecting ecosystem services provisioning and stressors
- Biodiversity conservation
- Boundaries, land cover, soils, hydrography wetlands, demographics, roads)

https://www.epa.gov/enviroatlas

Developed through cooperative effort amongst multiple Federal agencies and other organizations.

Version 1 Released May 2014

Example Data Layer: Clean and Plentiful Water

- 160 + layers provide coverage for conterminous US; summarized by ~90,000 drainage basins (12-digit HUCs).
- Several indicators quantifying ecosystem services and benefits but no data regarding invasive species

Objectives:

- Map freshwater aquatic exotic species richness of watersheds across the CONUS to provide data layer for EnviroAtlas
- 2. Determine if recreational demand is a better predictor than population of aquatic exotic species richness
 - Recreation demand is a mechanistic link

Methods:

A. Database Development

- 1. Downloaded freshwater aquatic exotic species data from the following sources:
 - USGS BISON
 - USGS NAS
 - EddMaps (Early Detection and Distribution Mapping System)
- 2. Cleaned data in R: removed centroids and duplicate occurrence records; extracted relevant attributes
- 3. Georeferenced point data by HUC unit in ArcGIS
- 4. Integrated data using MySQL
- B. Use Poisson Regression to compare effects of population and recreational demand on richness

Can now quickly summarize exotic richness by HUC watershed boundary

Exotic Aquatic Plants Database

- All exotic plants listed in USDA Plants inhabiting aquatic freshwater habitats (n=67)
- total of 245,507 records

Exotic Aquatic Animals Database

- All exotic freshwater aquatic animal species listed by USGS NAS (n=287)
- total of 156,269 records

Connecticut River Watershed

Image adapted from: http://nh.water.usgs.gov/project/ct_atlas/water_wsheds_huc.htm

HUC 8 Exotic Animal Richness

HUC 8 Exotic Aquatic Plant Richness

HUC 8 Total Exotic Aquatic Richness

Animal Exotic Richness Hot Spots

	Freshwater fishing demand		Population density	
Richness	exp(B)	95% CI	exp(B)	95% CI
animal	2.35	[1.95, 2.82]	1.94	[1.81, 2.07]
plant	2.86	[2.34, 3.51]	1.96	[1.81, 2.11]
total	2.55	[2.15, 3.03]	1.95	[1.83, 2.07]

Future work:

- 1. Investigate the effect of search bias
- 2. Assess threat of aquatic species invasions to biodiversity and conservation areas

Potential search bias of ad hoc datasets

- Now we can investigate the drivers of aquatic species invasions and their impacts and how they vary geographically across the U.S.
- Assess threats to endemic species, protected areas, threatened & endangered species

Biodiversity of the lower continental United States and priority areas for individual taxa.

Clinton N. Jenkins et al. PNAS 2015;112:5081-5086

Please send questions/comments to:

Davis.Amy@epa.gov