

Comparison of Parameterizations of the Aerodynamic Resistance and Implications for Dry Deposition Modeling

John T. Walker, Donna Schwede, Jesse Bash

Office of Research and Development Research Triangle Park, NC

Chris Oishi

U.S. Forest Service Southern Research Station Otto, NC

UNITED STATES

Conceptual framework

Flux (Deposition Rate) = Deposition Velocity * Concentration

$$v_d = \frac{1}{R_a + R_b + R_c}$$

- R_a aerodynamic resistance
- R_b boundary layer resistance
- R_c canopy resistance

R_a is a function of wind speed and turbulence

٠

Horizontal wind speed (u) m s⁻¹

$$\frac{\partial u}{\partial z} = f(z, \rho, \tau) = f(z, u_*)$$

cal flux of horizontal momentum = ρu_* . Has units of force/unit ground area

Wind speed increases with height.

lower wind speed

Momentum is directed from higher to

Friction velocity (u_{*}) is the tangential • velocity of the eddies (indicates degree of turbulent mixing).

 $\frac{\partial u}{\partial z} = \frac{z}{u_*} \longrightarrow \left(\frac{\partial u}{\partial z}\right) \frac{u_*}{z} = \text{constant} = \frac{1}{k} \text{ von Karman's constant } k = 0.4$ Dimensional analysis $\frac{\partial u}{\partial z} = \frac{z}{ku_*} \implies \text{Integrate w.r.t. } z \implies u(z) = \frac{u_*}{k} \ln\left(\frac{z}{z_0}\right)$

- The basic form of the logarithmic wind profile is valid under neutral atmospheric stability.
- For unstable (daytime, surface heating) and stable (nighttime, surface cooling) conditions, a stability correction must be applied to yield the correct vertical profile of wind speed.

$$u(z) = \frac{u_*}{k} \left[\ln\left(\frac{z}{z_0}\right) - \psi_m\left(\frac{z}{L}\right) + \psi_m\left(\frac{z_0}{L}\right) \right]$$

 Ψ_m = integrated stability function for momentum

L = Obukhov length scale (measure of stability)

 The aerodynamic resistance to transfer of momentum (R_a) between height z and the height at which wind speed goes to zero (surface) is described as:

$$\tau = \frac{\rho u(z)}{R_a} \longrightarrow \tau = \rho u_*^2 \longrightarrow R_a = \frac{u(z)}{u_*^2}$$

- Because R_a is a function of wind speed, it is also subject to correction for stability effects.
- Parameterizations for R_a differ with respect to functional dependence on surface layer characteristics, application of stability corrections, and form of stability corrections.

$$R_{a} = \frac{u(z)}{u_{*}^{2}} \qquad R_{a} = \frac{\ln\{(z-d)/z_{0}\}}{ku_{*}} \qquad R_{a} = \frac{\ln\{(z-d)/z_{0}\}^{2}}{k^{2}u(z)}$$

Neutral conditions - mechanical turbulence only

$$R_{a} = \frac{1}{k^{2}u(z)} \left[\ln\left(\frac{z-d}{z_{0m}}\right) - \psi_{m}(\varsigma) \right] \left[\ln\left(\frac{z-d}{z_{h}}\right) - \psi_{h}(\varsigma) \right]$$

$$(Mechanical and buoyancy generated turbulence. Thom, 1975)$$

The purpose of this study is to quantify the degree to which differences in model-derived dry deposition fluxes are related to use of different R_a parameterizations.

The following models are compared:

CMAQ-WRF CMAQ-MM5 CAMx CAPMoN _ MLM

All are based a version of Thom's method but differ in application of stability correction and assumptions regarding similarity between heat and momentum flux.

The MLM approach assumes that R_a is function of wind speed and the standard deviation of wind direction (σ_{θ}), which is related to the vertical momentum flux.

$$R_a = \frac{C}{u(z)\sigma_{\theta}^2}$$

C = 4 for neutral and stable conditions and C = 9 for unstable conditions as determined by global radiation.

Comparison details

- Grass field $h_c = 1.2m$
- U(z), u_{*}, Obukhov stability parameter (z/L), measured by sonic anemometer
- Data from September October, 2012 and February – March, 2013
- Models use common set of meteorological inputs

How important is the stability correction?

Neutral

Unstable

Diurnal R_a and V_d for HNO₃

Daily cumulative HNO₃ flux

-1.2

-2.4

7.3

11.0

MLM approach

At low wind speeds typically encountered at night, intermittent turbulence can cause the standard deviation of wind direction (σ_{θ}) to become very large.

To minimize this effect, (σ_{θ}) is calculated for subintervals (15 minutes) during each hour.

At Duke Forest, reducing the subinterval to 5 minutes would be sufficient to remove the bias between MLM and the reference method.

Next steps

- Conduct analysis at additional sites with different meteorology, surface characteristics, and HNO₃ concentration.
 - Howland Forest (evergreen forest),
 - Coweeta Hydrologic laboratory (deciduous forest)
- Extend analysis to compare grid model R_a to point estimates of R_a.