# Quantitative Microbial Risk Assessment Tutorial Using NLDAS and NCDC Meteorological Data

Gene Whelan Kurt Wolfe Rajbir Parmar Michael Galvin Marirosa Molina Richard Zepp U.S. Environmental Protection Agency Office of Research and Development National Exposure Research Laboratory Athens, GA

#### **Keewook Kim**

University of Idaho Idaho National Laboratory Center for Advanced Energy Studies Idaho Falls, Idaho

### Paul Duda

Mark Gray AQUA TERRA Consultants, a Division of RESPEC, INC. Decatur, GA 30030

11/20/15

# **Summary**

This tutorial reviews how screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) use NLDAS and NCDC meteorological (MET) data to support microbial fate and transport, in a watershed, by the HSPF watershed model. The application is performed using watersheds of different scales, including HUC-8, HUC-12 and pour-point delineations. A discussion of the procedure for accessing and retrieving MET data from NOAA's NCDC web site is also provided.

## Using NLDAS and NCDC Meteorological Data

### PURPOSE

Automate data acquisition for data input requirements of a confederation of models

### OBJECTIVE

Use NLDAS and NCDC meteorological data to support microbial fate and transport in a watershed for use in the WinHSPF model (a.k.a. HSPF).

### DEMONSTRATION

This tutorial reviews how screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) use NLDAS and NCDC meteorological (MET) data to support microbial fate and transport, in a watershed, for use by the HSPF watershed model. The application is performed using watersheds of different scales, including HUC-12 and pour-point delineations. A discussion of the procedure for accessing and retrieving MET data from NOAA's NCDC web site is also provided.

### SOFTWARE ACCESS, RETRIEVAL, AND DOWNLOAD

Instructions for accessing, retrieving, and downloading the SDMProjectBuilder, HSPF, and BASINS software products are provided by Whelan et al. (2015a). When installed, three desktop icons should appear:



## TUTORIAL – TABLE OF CONTENTS

REMOTE-SENSING/RADAR SATELLITE AND GAUGE METEOROLOGICAL DATA

NLDAS MET DATA FOR A HUC-12

NLDAS AND NCDC MET DATA FOR POUR POINT

- Viewing NLDAS and NCDC MET Stations for a Pour Point
- Comparing NLDAS and NCDC MET Stations for a Pour Point

POST-2009 NCDC MET DATA

#### REMOTE-SENSING/RADAR SATELLITE AND GAUGE METEOROLOGICAL DATA

Meteorological (MET) data required by watershed assessments have traditionally been provided by land-based National Climatic Data Center (NCDC) weather (gauge) stations, although they may not be the most appropriate for describing adequate spatial and temporal resolution if MET stations are too few, too far away, or operating improperly. To complement land-based stations, remote sensing and radar satellite data are increasingly used to obtain synoptic data with the spatial and temporal resolution required for site-specific and/or event-based assessments.

Price et al. (2013) investigated whether NEXRAD (NEXt generation RADar) Multisensor Precipitation Estimates (MPE) data improve the accuracy of streamflow simulations using the Soil and Water Assessment Tool watershed model, compared to rain gauge data. MPE contains data reviewed by human forecasters, combines radar-based estimates with hourly gauge station data on a 4-km grid, and provides all spatial data by time increment. MPE is GRIdded-Binary (GRIB)-based data which is difficult to access and retrieve for individual locations. Across watersheds and time steps, the authors found that total gauge precipitation was greater than radar precipitation, but radar data showed a conditional bias of higher rainfall estimates during large events (>25–50 mm/day). Radar-based simulations were more accurate than gauge-based simulations for high flows, however. At coarser time steps, differences were less pronounced which suggest that modeling efforts in watersheds with poor rain gauge coverage can be improved with MPE radar data, especially at short time steps.

Kim et al. (2014) performed a follow-up study and compared the viability of automating use of radar satellite data and land-based gauge stations to support MET data collection for modeling applications, especially where gauge stations were inadequate. They compared MPE and the North American Land Data Assimilation System (NLDAS) to gauge data at Milwaukee and Manitowoc, Wisconsin USA. NLDAS contains automatic quality control, uses hourly gauge station data and modeled precipitation, provides estimates at hourly intervals with a 1/8th-degree resolution, and provides time series at specified locations. Unlike MPE's dataset, NLDAS is directly accessible and provides time series at a location. The comparison showed excellent correlation between gauge and radar data at Milwaukee, while Manitowoc results strongly suggested using radar over gauge data. Based partly on these and similar studies, and because a large number of watersheds are ungauged, are too far from gauging stations or operate improperly, the SDMProjectBuilder was reconfigured to allow using NCDC datasets or NLDAS datasets coupled with NCDC to compile MET data.

After subwatersheds are determined, SDMProjectBuilder determines the MET data station closest to each subwatershed, eliminating those that might not have appropriate meteorological information or the needed date span, and downloads data for that station. Because not all MET stations will have the information needed to model the desired HSPF processes, SDMProjectBuilder automatically finds at least one with all HSPF MET information. Data for all stations are combined into a single met WDM file to use in HSPF.

### **NLDAS MET DATA FOR HUC-12**

Pre-2009 NCDC MET data have been cached within the BASINS infrastructure. The example below uses BASINS MET to illustrate how the nearest MET gauge station is assigned to different areas of a HUC-12. Following an abbreviated procedure for identifying a HUC-12 (see Whelan et al., 2015c), a distribution of MET stations is illustrated.

1. Execute the SDMProjectBuilder (SDMPB) by clicking on the shortcut icon displayed on the computer screen, and create a folder where you have administrative rights:



2. From the Menu Bar, select "SDMProjectBuilder", then "New SDM Project".



- 3. Create a new file within the working folder.
- 4. Under "SDMProjectBuilder", select "Nav Helper".



5. Fill out the screen as shown, choose "Zoom", then "Get Data".

| Navigation Help |                   |
|-----------------|-------------------|
| Base Layers     |                   |
| State:          | Wisconsin    Zoom |
| County:         | Manitowoc County  |
| HUC 8:          | 04030101          |
| Layers:         | ▼ Show Attributes |
|                 | Close             |

6. A screen similar to the following will appear.



7. Deselect all map layers except "huc 12 for 04030101" and "Close" the "Navigation Helper".



8. From the Menu Bar, choose "SDMProjectBuilder", then "Run Project Builder".



9. After repeating Steps 1 through 7 above, the HUC-12 corresponding to the Hydrologic Unit Code (HUC) Catalog Unit (CU) of 04030101 is defined as follows [see Whelan et al. (2015b) for more details]:



10. Select the HUC-12 noted below:



11. From the Menu Bar, choose "SDMProjectBuilder", then "Run Project Builder".



12. The screen below appears. Choose "HUC-12".



13. Choose "Next" and the screen below appears. Change it to the following:

| 🖶 Build Fr | ames SDM Project                                                               |                     |
|------------|--------------------------------------------------------------------------------|---------------------|
| Parameter  | s For Model Generation                                                         |                     |
| 3          | Minimum Catchment Size (square kilometers)                                     |                     |
| 3          | Minimum Flowline Length (kilometers)                                           |                     |
| 0.1        | Ignore Landuse Areas Below Fraction                                            |                     |
| 1990       | Simulation Start Year                                                          |                     |
| 2000       | Simulation End Year                                                            |                     |
| V HSPF     | Output Interval: Hourty   Microbes                                             |                     |
| SWAT       | Snow: Degree Day  Land-Applied Chemical No Snow Energy Balance Degree Day SWAT | Chemical Properties |
| Cancel     |                                                                                | Previous Next       |

14. Pick "Next", and the screen below appears. Do not change the "Save Project As" text box.

| Build Frames S                            | DM Project                                                            |
|-------------------------------------------|-----------------------------------------------------------------------|
| Data Options<br>Soil<br>STATSGO<br>SSURGO | Meteorologic  BASINS  NCDC Enter NCDC Token Here  NLDAS Precipitation |
| Elevation                                 | NHDPlus Bevation 👻                                                    |
| Delineation                               | NHDPlus 👻                                                             |
|                                           |                                                                       |
| Save Project As                           | C:\Users\gwhelan\iemTechnologies\SDMPB\TESTB\TESTB.mwprj              |
| Cancel                                    | Add Layers To Map During Project Creation     Previous     Build      |

- 15. Choose "Build" which may take several minutes to complete, depending on the computer.
- 16. Some computers may ask several times if the re-project map layer should match the map coordinate system; choose "Yes" each time.

17. When the SDMPB has finished running, choose "Open in BASINS" and BASINS will automatically open with the SDMPB map layers for this assessment. The following screen appears:



- 18. It may be difficult to differentiate NLDAS MET stations from other points on the map layer, (e.g., domestic animal/septic locations), so
  - uncheck other map layers since NLDAS symbols may be hidden behind other symbols and
  - increase the size of the NLDAS symbol by double-clicking on the NLDAS Grid Center symbol (see blue arrow below):



19. This screen appears; change the "Size" to 20, and click "Ok".



20. The following screen appears with larger symbols for the NLDAS stations:



21. By clicking "File," then "Manage Data" on the menu bar, we can see that the MET data are loaded into the project and that there are 14 MET time series in the file.

| 💐 Data | Sources           |                                                         |   |
|--------|-------------------|---------------------------------------------------------|---|
| File   | Analysis          | Help                                                    | ٦ |
|        | M<br>C:\Users\gwl | helan\verticemTechnologies\SDMPB\TESTA\met/met/wdm (14) |   |
|        |                   |                                                         |   |
|        |                   |                                                         |   |
|        |                   |                                                         |   |
|        |                   |                                                         |   |
|        |                   |                                                         |   |

22. Choose "File", then "Exit" to return to the main screen.

23. To color-code the MET stations, double-click "NLDAS Grid Center" label (see blue arrow below)



## 24. Choose "Categories" tab and

- 1. check "Unique values"
- 2. select "LOCATION"
- 3. check "Gradient"
- 4. choose "Color scheme"
- 5. click "Generate"
- 6. check the boxes with non-zero counts
- 7. choose "Apply"

| Layer properties: NLDAS Grid                | l Center                                          |                         |         | ×                     |
|---------------------------------------------|---------------------------------------------------|-------------------------|---------|-----------------------|
| General Mode Appearan<br>Fields<br>LOCATION | Ce Categories L<br>Classification<br>Categories 7 | abels Charts Visibility | eme 4   | Generate<br>Clear     |
|                                             | Categories<br>Style                               | Name                    | 3 Count |                       |
|                                             |                                                   | Unclassified            | 0       |                       |
|                                             |                                                   | X293Y152                | 1       |                       |
|                                             |                                                   | X294Y152                | 1       | Variable size         |
|                                             | 6                                                 |                         |         | Enable<br>Size:<br>20 |
|                                             | ·                                                 |                         |         | Cancel                |
|                                             |                                                   |                         | PPJ OK  |                       |

## 25. Choose "Labels", then "Setup."

| L | ayer prop | erties: N  | ILDAS Grid O | Center      |        |        |            |     |    |        | × |
|---|-----------|------------|--------------|-------------|--------|--------|------------|-----|----|--------|---|
| Γ | General   | Mode       | Appearance   | Categories  | Labels | Charts | Visibility |     |    |        |   |
|   | - Labe    | ls previev | N            |             | •      | Se     | cup        | >   |    |        |   |
|   | Арр       | earance ·  |              |             |        |        |            |     |    |        |   |
|   |           | / Labels   | visible [    | Frame visib | le     |        |            |     |    |        |   |
|   | 1         | 0          | Size         | <b>*</b>    |        |        |            |     |    |        |   |
|   |           |            |              |             |        |        |            |     |    |        |   |
| L |           |            |              |             |        |        | Ар         | pły | Ok | Cancel |   |

26. Double-click on "Location", then "Apply", then "Ok."

| Label style           |                      |            |       |          |            |                                          | ×                                     |
|-----------------------|----------------------|------------|-------|----------|------------|------------------------------------------|---------------------------------------|
| Preview               | Expression           | Font       | Frame | Position | Visibility | Styles                                   |                                       |
| •X294Y152             | Express<br>[LOCATION | ion<br>ON] |       |          |            |                                          |                                       |
|                       |                      | אר         |       |          |            |                                          | Clear                                 |
| Labels visible        |                      |            |       |          |            | +<br>Example                             | " " NewLine                           |
| 10 Font size          |                      |            |       |          | [<br>[     | Area] + ''l<br>Populatio                 | ha" +<br>n]/1000 + "thsnd."           |
| Transparency          |                      |            |       |          | ĺ          | Descriptio<br>Area] -th<br>'ha'' - strir | on<br>ne name of field<br>ng constant |
| Expression is correct |                      |            | A     | pply     |            | Ok                                       | Cancel                                |

27. Choose the Position, then click "Ok."



#### 28. Click "Ok."

| ayer properties: NLDAS Grid Center                                                                                  | ×                                     |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| General Mode Appearance Categories Label Labels preview -X294Y152 Appearance Labels visible  Frame visible 10  Size | Charts Mability      Setup      Clear |
|                                                                                                                     | Apply Ok Cancel                       |

29. The two MET stations (diamond symbols below) that influence the seven subwatersheds are now labeled and color-coded (one light red and one purple).



30. To see which subwatersheds (i.e., subbasins) are associated with which MET stations, double-click on "Simplified Catchment" (see blue arrow below):



#### 31. The following screen appears:



- 32. To color-code subwatersheds to match the color-coded MET stations, choose the "Categories" tab and
  - 1. check "Unique values"
  - 2. select "ModelSeg"
  - 3. check "Gradient"
  - 4. choose "Color scheme"
  - 5. click "Generate"
  - 6. check the boxes with non-zero counts
  - 7. choose "OK"

| Layer properties: Simp                                                                                                                               | olified Catchment                                                                                           | <b>—X</b> —                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|
| General Mode Ap                                                                                                                                      | opearance Categories Labels Charts Visibility                                                               |                                  |
| Fields<br>NLCD_51<br>NLCD_71<br>NLCD_71<br>NLCD_82<br>NLCD_83<br>NLCD_84<br>NLCD_83<br>NLCD_91<br>NLCD_91<br>NLCD_92<br>PCT_CN<br>PCT_MX<br>SUIU_PCT | Casegories 7 Color scheme<br>Categories 7 Categories<br>Style Name<br>Unclassfied<br>X293Y152<br>V X294Y152 | Count<br>Count<br>Count<br>Clear |
| 2 MeCCI<br>TEMP<br>SUBBASIN<br>SLO1<br>AREAACRES<br>AREAMI2<br>BNAME                                                                                 | E 6                                                                                                         | y Ok Cancel                      |

33. In the resulting image, see that the subwatersheds have been color-coded to the nearest NLDAS locations.



Appendix A illustrates how the HSPF UCI file captures and assigns the two NLDAS stations to the subwatersheds (Whelan et al., 2015c).

## NLDAS AND NCDC MET DATA FOR POUR POINT

A similar procedure can be performed for a pour point (see Whelan et al., 2015d). This section also compares remote-sensing NLDAS stations to the monitoring NCDC station.

## Viewing NLDAS and NCDC MET Stations for a Pour Point

34. After repeating Steps 1 through 7 above, the HUC-8 corresponding to the Hydrologic Unit Code (HUC) Catalog Unit (CU) of 04030101 is defined as follows [see Whelan et al. (2015b) for more details]:



35. In this example, we assess only the four uppermost 12-digit HUCs in the Manitowoc watershed (highlighted in the figure below).



36. Follow procedures outlined in Whelan et al. (2015d) to identify the pour point corresponding to the subwatershed outlined in the figure above. From the Menu Bar, choose "SDMProjectBuilder", then "Run Project Builder".



37. Use the choices identified below, choose "Select Pour Point On Map", go to the map and choose the pour point location, zoom to it, then click "Next".

| 🔣 Build Frames SDM Project                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Select Area Df Interest On Map Dr Enter Key(s) Below<br>Select By: O HUC-8 O HUC-12 O Catchment O County O Current Map Layer O Pour Point O Box |
| Press the button below when ready to select a pour point.                                                                                       |
| 8                                                                                                                                               |
| Maximum Upstream: 200 km Select Pour Point On Map                                                                                               |
| Cancel                                                                                                                                          |

38. Complete the "Build FRAMES SDM Project" screen as shown.



39. Click "Next" and the following screen appears. Change the screen to that below; make no changes to the "Save Project As" text box unless there is a special folder location.



- 40. Now choose "Build" which takes approximately 25 minutes to complete for a pour point with four HUC-12s, depending on the computer.
- 41. Some computers may ask several times if the re-project map layer should match the map coordinate system; choose "Yes" each time.
- 42. When the SDMPB has finished running, choose "Open in BASINS", and BASINS automatically opens with the SDMPB map layers for this assessment:



43. Following the same procedures outlined in previous sections, NLDAS and NCDC BASINS MET stations can be color-coded and mapped as shown below, where diamond symbols represent the NLDAS MET stations, and the yellow square (WI471568) represents the NCDC station. Color-coded areas correspond to the NLDAS stations, not the NCDC station.



#### **Comparing NLDAS and NCDC MET Stations for a Pour Point**

Using the case developed under Whelan et al. (2015d), NLDAS and NCDC MET station results are compared to demonstrate temporal differences between stations at different locations. To demonstrate differences between NLDAS remote-sensing and NCDC monitoring results, NLDAS station X293Y150 and NCDC station WI471568 are compared. NLDAS stations X293Y150 and X293Y152 are also compared since they represent southern- and northern-most stations in the watershed.

44. To compare NLDAS station X293Y150 and NCDC station WI471568, choose "Analysis" from the BASINS menu bar, then "Graph".



45. See Whelan et al. (2015c) for guidance on selecting data to graph. Under "Scenario", select "NLDAS" and "OBSERVED". Under "Constituent", choose "PREC". Under the "Matching Data" section, a list of stations will appear. Choose "OBSERVED" for "WI471568" and "NLDAS" for "X293Y150". The results below should appear under "Selected Data". Because it will be nearly impossible to compare results from more than 10 years of records, change the start and end dates to cover only the month of August 1995; under "Dates to Include", change the "Start" and "End" dates to "1995/08/01" and "1995/08/31", respectively. Click "Ok".

| 【 Select Data To Graph                                                                                                                                                                 |                                                        |                |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|-------------|
| File Attributes Select<br>Select Attribute Values to Filter                                                                                                                            | Help<br>Available Data                                 |                |             |
| Scenario 💌                                                                                                                                                                             | Location •                                             | Constituent    | Time Unit 🔹 |
| COMPUTED                                                                                                                                                                               | 04085395                                               | POQUAL-Microbe | Hour        |
| NLDAS                                                                                                                                                                                  | I:102                                                  | POTEV          | Day         |
| OBSERVED                                                                                                                                                                               | 1:202                                                  | PRAIN          | Month       |
| SDMPROJE                                                                                                                                                                               | 1:302                                                  | PREC           |             |
| SDMProject                                                                                                                                                                             | 1:402                                                  | PRECIP         |             |
|                                                                                                                                                                                        | LEND *                                                 | nneuny *       |             |
| Matching Data (8 of 4653)                                                                                                                                                              |                                                        |                |             |
| OBSERVED                                                                                                                                                                               | WI471568                                               | PREC           | Hour        |
| OBSERVED                                                                                                                                                                               | WI473269                                               | PREC           | Hour        |
| NLDAS                                                                                                                                                                                  | X294Y152                                               | PREC           | Hour        |
| NLDAS                                                                                                                                                                                  | X294Y151                                               | PREC           | Hour        |
| NLDAS                                                                                                                                                                                  | X295Y151                                               | PREC           | Hour        |
| NLDAS                                                                                                                                                                                  | X293Y151                                               | PREC           | Hour        |
| NLDAS                                                                                                                                                                                  | X293Y150                                               | PREC           | Hour        |
| NLDAS                                                                                                                                                                                  | X295Y152                                               | PREC           | Hour        |
| Selected Data (2 of 4653)                                                                                                                                                              |                                                        |                |             |
| NLDAS                                                                                                                                                                                  | X293Y150                                               | PREC           | Hour        |
| OBSERVED                                                                                                                                                                               | WI471568                                               | PREC           | Hour        |
|                                                                                                                                                                                        |                                                        |                |             |
| All         Comm           Start         1948/08/01         1989/1           End         2009/12/31         2000/1           Apply month/day range to         Apply month/day range to | non<br>2/31 1995/08/01<br>2/31 1995/08/31<br>sach year | )              |             |
| Change Time Step To:                                                                                                                                                                   | 1 Day                                                  | ′Same ▼        | Ok Cancel   |

46. Choose "Timeseries" and "Generate".

| Choose Graphs to Create                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Timeseries</li> <li>Flow/Duration</li> <li>Frequency</li> <li>Running Sum</li> <li>Residual (TS2 - TS1) (two datasets needed but 1 datasets sele</li> <li>Cumulative Difference (two datasets needed but 1 datasets sele</li> <li>Scatter (TS2 vs TS1) (two datasets needed but 1 datasets sele</li> </ul> |
| Multiple WQ Plots     All None Cancel Generate                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                     |

47. The following graph, including both NLDAS and NCDC plots, appears. The "PREC" has units of inches.



48. Using the editor described in Whelan et al. (2015c), the graph can be modified for a better view of the results. The hourly NCDC observed data are the red curve, and the hourly NLDAS data are the blue curve. The NLDAS station does not necessarily record the precipitation that hits the ground, but Kim et al. (2014) noted anomalies in monitoring stations in the Manitowoc basin. Exit by clicking the "X" in the upper right-hand corner which returns to the "Select Data To Graph" screen.



49. To compare NLDAS stations X293Y150 and X293Y152, make the following selections, ensuring that the start and end dates refer to August 1995. Click "OK".

| 🛃 Select Data To Graph                                                          |                 |             |             |  |  |  |  |  |
|---------------------------------------------------------------------------------|-----------------|-------------|-------------|--|--|--|--|--|
| File Attributes Select Help<br>Select Attribute Values to Filter Available Data |                 |             |             |  |  |  |  |  |
| Scenario 💌                                                                      | Location •      | Constituent | Time Unit 🔹 |  |  |  |  |  |
| COMPUTED                                                                        | 04085395        | AGWET *     | Hour        |  |  |  |  |  |
| NLDAS                                                                           | 1:102           | AGWI        | Day         |  |  |  |  |  |
| OBSERVED                                                                        | 1:202           | AGWO        | Month       |  |  |  |  |  |
| SDMPROJE                                                                        | 1:302           | AGWS        |             |  |  |  |  |  |
| SDMProject                                                                      | 1:402           | AIRT        |             |  |  |  |  |  |
|                                                                                 | 1.600           | лотио       |             |  |  |  |  |  |
| Matching Data (6 of 4653)                                                       |                 |             |             |  |  |  |  |  |
| NLDAS                                                                           | X294Y152        | PREC        | Hour        |  |  |  |  |  |
| NLDAS                                                                           | X294Y151        | PREC        | Hour        |  |  |  |  |  |
| NLDAS                                                                           | X295Y151        | PREC        | Hour        |  |  |  |  |  |
| NLDAS                                                                           | X293Y151        | PREC        | Hour        |  |  |  |  |  |
| NLDAS                                                                           | X293Y150        | PREC        | Hour        |  |  |  |  |  |
| NLDAS                                                                           | X295Y152        | PREC        | Hour        |  |  |  |  |  |
|                                                                                 |                 |             |             |  |  |  |  |  |
| Selected Data (2 of 4653)                                                       |                 |             |             |  |  |  |  |  |
| NLDAS                                                                           | X294Y152        | PREC        | Hour        |  |  |  |  |  |
| NLDAS                                                                           | X293Y150        | PREC        | Hour        |  |  |  |  |  |
|                                                                                 |                 |             |             |  |  |  |  |  |
| Dates to Include                                                                |                 |             |             |  |  |  |  |  |
| Al Com                                                                          | ion             |             |             |  |  |  |  |  |
| Start 1989/12/31 1989/1                                                         | 2/31 1995/08/01 |             |             |  |  |  |  |  |
| End 2000/12/31 2000/1                                                           | 2/31 1995/08/31 |             |             |  |  |  |  |  |
| Apply month/day range to e                                                      | each year       |             |             |  |  |  |  |  |
| Change Time Step To:                                                            | 1 Day           | /Same       | Ok Cancel   |  |  |  |  |  |

## 50. Choose "Timeseries" and "Generate".

| Choose Graphs to Create                                                                               |                                                                                                               |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Timeseries Row/Duration Frequency Running Sum Residual (TS2 - TS1) (two c Scatter (TS2 vs TS1) (two c | latasets needed but 1 datasets sek<br>datasets needed but 1 datasets se<br>jatasets needed but 1 datasets sek |
| All None                                                                                              | Multiple WQ Plots Cancel Generate                                                                             |

51. The NLDAS precipitation plots appear. The "PREC" has units of inches. Using the editor described in Whelan et al. (2015c), the graph can be modified to better view results. Hourly results associated with the southern station X293Y150 are in blue and hourly results associated with the northern station X293Y152 are in red. Although this is a relatively small watershed, localized effects on precipitation are evident and become more pronounced within the larger Manitowoc River watershed (not shown). Exit by clicking the "X" in the upper right-hand corner. Now exit the program



#### POST-2009 NCDC MET DATA

Pre-2009 NCDC data and additional MET information are cached with the BASINS install, so direct access to the NCDC web site is unnecessary. For times post-2008, direct access to the NCDC web site to obtain MET data. The NCDC data are not as complete as the cached, pre-2009 BASINS data, so even if pre-2009 NCDC data are directly requested from the NCDC site, the results may not exactly match those based on BASINS. The SDMProjectBuilder allows direct access to the NCDC web site if the user has registered with NCDC and obtained an access token (i.e., ID number), as illustrated below:

| 🖳 Build Frames                  | 5DM Project                                                      |  |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|
| Data Options<br>Soil<br>STATSGO | Meteorologic O BASINS                                            |  |  |  |  |  |  |
| SSURGO                          | NCDC XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                             |  |  |  |  |  |  |
| Elevation                       | NHDPlus Elevation                                                |  |  |  |  |  |  |
| Delineation NHDPlus             |                                                                  |  |  |  |  |  |  |
|                                 |                                                                  |  |  |  |  |  |  |
| Save Project As                 | C:\Users\gwhelan\iemTechnologies\SDMPB\TESTD\TESTD.mwprj         |  |  |  |  |  |  |
| Cancel                          | Add Layers To Map During Project Creation     Previous     Build |  |  |  |  |  |  |

Once obtained, the same token is good every time and additional tokens are not needed to access the site again. The link to obtain a token is

http://www7.ncdc.noaa.gov/wsregistration/ws\_home.html

When the site is accessed, the following screen appears:

| <u>C</u> > <u>N</u>                 | NOAA > NESDIS > NCDC                                                                                                                                                                                                                       | Keyword(s), City, Station                                                                                                       | Name Search NCDC                                                                                    |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                     | Land-Based Data / NNDC CDC                                                                                                                                                                                                                 | ) / Product Search / Hel                                                                                                        | P                                                                                                   |
| giste                               | er and Develop Your Own Client Applicat                                                                                                                                                                                                    | ions to access NCD                                                                                                              | C Products                                                                                          |
| DC ha<br>DC cli<br>pts wi<br>ch car | as developed REST or Representational State Transfer web see<br>imate data from their own computer using simple URL based<br>ritten in Perl or Python can also be used to invoke multi-thread<br>n be used to verify and control requests. | vices for customers to use. C<br>calls using any browser or of<br>led access. NCDC requests th                                  | Sustomers can directly access<br>her programs like wget or curl<br>hat users apply for a license ke |
| start u                             | using NCDC Web Services:                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                     |
|                                     | Create an A<br>To access the NCDC Web Services, you must                                                                                                                                                                                   | Account<br>register by submitting your e                                                                                        | mail address.                                                                                       |
|                                     | E-mail Address                                                                                                                                                                                                                             |                                                                                                                                 |                                                                                                     |
| 1                                   | Regist                                                                                                                                                                                                                                     | ter                                                                                                                             | R                                                                                                   |
|                                     | A license key will be generated for you on the following pa<br>subscription id will be your license key. Your NCDC W<br>queries pe                                                                                                         | ge. If you are a subscriber to<br>b Services Account will enti<br>r hour.                                                       | any NCDC products, your<br>tle you to 60 automated                                                  |
| 2                                   | Use your browser or<br>Use any browser or write a simple script with wget or cur<br>unique license key. Your program must include your licen<br>Servico                                                                                    | a custom script.<br>Which requests data from th<br>se key with each query you s<br>es.                                          | e web service using your<br>ubmit to the NCDC Web                                                   |
|                                     | Available NCDC                                                                                                                                                                                                                             | Web Services                                                                                                                    |                                                                                                     |
| 3                                   | CDOServices provides access to Climate Data Online Data<br>group of stations within a country, state, county, climate div<br>can be used. Specific information is provided for data value<br>listings, and statio<br>Service Ex            | sets. Clients can access data b<br>vision or watershed. Common<br>s, variable listing, detailed van<br>n information.<br>amples | oy referencing a station or a<br>n names or FIPS identifiers<br>ariable information, station        |
| ivac                                | cy Policy How ARE WE DOING?<br>A user survey                                                                                                                                                                                               | FIRSTGOV                                                                                                                        | Disclaimer                                                                                          |
|                                     | A user survey                                                                                                                                                                                                                              | The U.S. Government's Official mes Partiel                                                                                      | Dissidiment                                                                                         |

After the token is received, the following screen capture illustrates its use which is automatically handled by the SDMProjectBuilder:

| No. + South + Service | 12000                            | Keywonittis, City, Station Name Search NCDC |           |  |  |  |
|-----------------------|----------------------------------|---------------------------------------------|-----------|--|--|--|
|                       | Land Based Data / NNDC 0         | CDO / Product Search / Hele                 |           |  |  |  |
|                       | NNDC CLIMAT                      | E DATA ONLINE                               |           |  |  |  |
|                       | Climate Data On                  | line: Web Service                           |           |  |  |  |
| Yos                   | e taken for the NCDC web service | ce access in Manager Market                 |           |  |  |  |
|                       | and all we assault               | FIRSTGOV                                    | Disclaime |  |  |  |

#### DISCLAIMER

This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication.

#### REFERENCES

Kim, K., K. Price, G. Whelan, M. Galvin, K. Wolfe, P. Duda, M. Gray, Y. Pachepsky. 2014. Using Remote Sensing and Radar Meteorological Data to Support Watershed Assessments Comprising IEM. In: Ames, D.P., Quinn, N.W.T., Rizzoli, A.E. (Eds.), Proceedings of the 7th International Congress on Environmental Modelling and Software, June 15-19, San Diego, California, USA. ISBN: 978-88-9035-744-2.

Price, K., Purucker, S.T., Kraemer, S.R., Babendreier, J.E., Knightes, C.D., 2013. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. *Hydrol. Process*. DOI: 10.1002/hyp.9890.

Whelan, G., K. Kim, K. Wolfe, R. Parmar, M. Galvin. 2015a. Quantitative Microbial Risk Assessment Tutorial: Installation of Software for Watershed Modeling in Support of QMRA. EPA/600/B-15/276. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA.

Whelan, G., K. Kim, K. Wolfe, R. Parmar, M. Galvin, M. Molina, R. Zepp. 2015b. Navigate the SDMPB and Identify an 8-Digit HUC of Interest. EPA/600/B-15/273. U.S. Environmental Protection Agency, Athens, GA.

Whelan, G., K. Kim, R. Parmar, K. Wolfe, M. Galvin, M. Gray, P. Duda, M. Molina, R. Zepp. 2015c. Quantitative Microbial Risk Assessment Tutorial: Land-applied Microbial Loadings within a 12-Digit HUC. EPA/600/B-15/298. U.S. Environmental Protection Agency, Athens, GA. Whelan, G., K. Kim, K. Wolfe, R. Parmar, M. Galvin, M. Molina, R. Zepp, P. Duda, M. Gray. 2015d. Quantitative Microbial Risk Assessment Tutorial: Pour Point Analysis of Land-applied Microbial Loadings and Comparison of Simulated and Gaging Station Results. EPA/600/B-15/290. U.S. Environmental Protection Agency, Athens, GA.

## APPENDIX A NLDAS Stations Recorded in the HSPF UCI File

(Whelan et al., 2015c)

Looking at the UCI, we see two sets of pervious and impervious land types (PERLND and IMPLND, respectively), which correspond to the two NLDAS locations in use.

RUN GLOBAL UCI Created by WinHSPF for 040301010406 1990/01/01 00:00 END 2000/12/31 24:00 START RUN INTERP OUTPT LEVELS 1 0 UNITS 1 RESUME 0 RUN 1 END GLOBAL FILES ----> 24 040301010406.ech MESSU 040301010406.out 91 25 040301010406.wdm WDM1 WDM2 26 met.wdm BINO 92 040301010406.hbn END FILES OPN SEQUENCE INGRP INDELT 01:00 101 PERLND PERLND 102 103 PERLND PERLND 104 PERLND 105 1 106 PERLND PERLND 107 108 PERLND IMPLND 102 PERLND 201 PERLND 202 PERLND 204 PERLND 206 2 PERLND 207 208 PERLND PERLND 205 202 IMPLND 5 RCHRES RCHRES 1 4 RCHRES RCHRES 6 RCHRES 3 2 RCHRES 7 RCHRES END INGRP END OPN SEQUENCE

The external sources (EXT SOURCES) block assigns MET data to each subwatershed (subbasin). Since we only pull precipitation data from NLDAS, the other met constituents are from a BASINS station with the full suite of meteorological data (Green Bay).

| EXT SOURCES          |               |                   |                        |       |               |       |      |        |               |      |     |
|----------------------|---------------|-------------------|------------------------|-------|---------------|-------|------|--------|---------------|------|-----|
| <-Volume             | <u>e-&gt;</u> | <member></member> | SsysSgap <mult></mult> | >Tran | <-Targe       | et vo | ols> | <-Grp> | <-Membe       | er-> | *** |
| <name></name>        | х             | <name> x</name>   | tem strg<-factor->     | ⊳strg | <name></name> | х     | х    |        | <name></name> | хх   | *** |
| *** Met              | Sec           | g X294Y152        | 2                      |       |               |       |      |        |               |      |     |
| WDM2                 | 21            | PREC              | ENGLZERO               | SAME  | PERLND        | 101   | 108  | EXTNL  | PREC          |      |     |
| WDM2                 | 6             | PEVT              | ENGL                   | SAME  | PERLND        | 101   | 108  | EXTNL  | PETINP        |      |     |
| WDM2                 | 3             | ATEM              | ENGL                   | SAME  | PERLND        | 101   | 108  | EXTNL  | GATMP         |      |     |
| WDM2                 | 14            | WIND              | ENGL                   | SAME  | PERLND        | 101   | 108  | EXTNL  | WINMOV        |      |     |
| WDM2                 | 15            | SOLR              | ENGL                   | SAME  | PERLND        | 101   | 108  | EXTNL  | SOLRAD        |      |     |
| WDM2                 | 17            | DEWP              | ENGL                   | SAME  | PERLND        | 101   | 108  | EXTNL  | DTMPG         |      |     |
| WDM2                 | 18            | CLOU              | ENGL                   | SAME  | PERLND        | 101   | 108  | EXTNL  | CLOUD         |      |     |
| *** Met              | Sec           | g X293Y152        | 2                      |       |               |       |      |        |               |      |     |
| WDM2                 | 31            | PREC              | ENGLZERO               | SAME  | PERLND        | 201   | 208  | EXTNL  | PREC          |      |     |
| WDM2                 | 6             | PEVT              | ENGL                   | SAME  | PERLND        | 201   | 208  | EXTNL  | PETINP        |      |     |
| WDM2                 | 3             | ATEM              | ENGL                   | SAME  | PERLND        | 201   | 208  | EXTNL  | GATMP         |      |     |
| WDM2                 | 14            | WIND              | ENGL                   | SAME  | PERLND        | 201   | 208  | EXTNL  | WINMOV        |      |     |
| WDM2                 | 15            | SOLR              | ENGL                   | SAME  | PERLND        | 201   | 208  | EXTNL  | SOLRAD        |      |     |
| WDM2                 | 17            | DEWP              | ENGL                   | SAME  | PERLND        | 201   | 208  | EXTNL  | DTMPG         |      |     |
| WDM2                 | 18            | CLOU              | ENGL                   | SAME  | PERLND        | 201   | 208  | EXTNL  | CLOUD         |      |     |
| *** Met              | Sec           | g X294Y152        | 2                      |       |               |       |      |        |               |      |     |
| WDM2                 | 21            | PREC              | ENGLZERO               | SAME  | IMPLND        | 102   |      | EXTNL  | PREC          |      |     |
| WDM2                 | 6             | PEVT              | ENGL                   | SAME  | IMPLND        | 102   |      | EXTNL  | PETINP        |      |     |
| WDM2                 | 3             | ATEM              | ENGL                   | SAME  | IMPLND        | 102   |      | EXTNL  | GATMP         |      |     |
| WDM2                 | 14            | WIND              | ENGL                   | SAME  | IMPLND        | 102   |      | EXTNL  | WINMOV        |      |     |
| WDM2                 | 15            | SOLR              | ENGL                   | SAME  | IMPLND        | 102   |      | EXTNL  | SOLRAD        |      |     |
| WDM2                 | 17            | DEWP              | ENGL                   | SAME  | IMPLND        | 102   |      | EXTNL  | DTMPG         |      |     |
| WDM2                 | 18            | CLOU              | ENGL                   | SAME  | IMPLND        | 102   |      | EXTNL  | CLOUD         |      |     |
| *** Met Seg X293Y152 |               |                   |                        |       |               |       |      |        |               |      |     |
| WDM2                 | 31            | PREC              | ENGLZERO               | SAME  | IMPLND        | 202   |      | EXTNL  | PREC          |      |     |
| WDM2                 | 6             | PEVT              | ENGL                   | SAME  | IMPLND        | 202   |      | EXTNL  | PETINP        |      |     |
| WDM2                 | 3             | ATEM              | ENGL                   | SAME  | IMPLND        | 202   |      | EXTNL  | GATMP         |      |     |
| WDM2                 | 14            | WIND              | ENGL                   | SAME  | IMPLND        | 202   |      | EXTNL  | WINMOV        |      |     |
| WDM2                 | 15            | SOLR              | ENGL                   | SAME  | IMPLND        | 202   |      | EXTNL  | SOLRAD        |      |     |
| WDM2                 | 17            | DEWP              | ENGL                   | SAME  | IMPLND        | 202   |      | EXTNL  | DTMPG         |      |     |
| WDM2                 | 18            | CLOU              | ENGL                   | SAME  | IMPLND        | 202   |      | EXTNL  | CLOUD         |      |     |