1	Manuscript	for submission to	o Environmental Science	& Technology
	\mathbf{r}			

2	Henry's Law Constant and Overall Mass Transfer Coefficient for
3	Formaldehyde Emission from Small Water Pools under
4	Simulated Indoor Environmental Conditions
5	
6	Xiaoyu Liu [†] *, Zhishi Guo [§] , Nancy F. Roache [‡] , Corey A. Mocka [‡] , Matt R. Allen [‡] , Mark
7	A. Mason [†]
8	[†] U.S. Environmental Protection Agency, Office of Research and Development, National
9	Risk Management Research Laboratory, Research Triangle Park, NC 27711
10	[§] U.S. Environmental Protection Agency, Retired
11	[‡] ARCADIS US, Inc., 4915 Prospectus Drive, Suite F, Durham, NC 27713
12	
13	ABSTRACT: The Henry's law constant (HLC) and the overall mass transfer coefficient
14	are both important parameters for modeling formaldehyde emissions from aqueous
15	solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were
16	determined in the concentration range from 0.01 $\%$ to 1 $\%$ (w/w) and at different
17	temperatures (23, 40 and 55 $^{\circ}$ C) by a static headspace extraction method. The aqueous
18	solutions tested included formaldehyde in water, formaldehyde-water with nonionic
19	surfactant, Tergitol TM NP-9, and the anionic surfactant, sodium dodecyl sulfate. Overall,
20	the HLCs that were measured ranged from 8.93×10^{-6} to 1.12×10^{-4} (gas-
21	concentration/aqueous-concentration, dimensionless). Fourteen small chamber tests were

22	conducted with the formaldehyde solution in a small pool. By applying the measured
23	HLCs, the overall liquid-phase mass transfer coefficients (KoLs) were determined to be in
24	the range of 8.12×10^{-5} to 1.10×10^{-4} m/h, and the overall gas-phase mass transfer
25	coefficients were between 2.84 and 17.9 m/h. The influence of the formaldehyde
26	concentration, temperature, agitation rate, and surfactant on the HLC and the K_{OL} was
27	investigated. The results from this study can provide data useful to support development
28	of source modeling for indoor formaldehyde originating from the use of household
29	products that contain formaldehyde-releasing biocides.

30 (Table of Contents Graphic:)

33 KEYWORDS: formaldehyde, formaldehyde-releasing biocides, Henry's law constant,

38 INTRODUCTION

39 Formaldehyde-releasing biocides are active ingredients used as antimicrobials for 40 professional and consumer products, such as adhesives, metalworking fluids, coatings, construction compounds, surfactant/detergent solutions and emulsions.^{1,2} The biocides 41 42 slowly release formaldehyde (HCHO) by hydrolysis. The maximum concentrations of 43 formaldehyde generated from the biocides in products are on the order of 0.01 % to 0.1 % (w/w). ³ Human exposure to formaldehyde can occur via direct ingestion, dermal contact 44 45 and inhalation. The emission of formaldehyde during use of consumer products could be 46 a source for inhalational exposure to formaldehyde. The U.S. Environmental Protection Agency (EPA) has been developing a Reregistration Eligibility Decision¹ for 47 48 antimicrobial biocides that release formaldehyde under the Federal Insecticide, 49 Fungicide, and Rodenticide Act (FIFRA). Indoor source emission models are useful tools 50 to support this development by predicting the formal dehyde emissions from household 51 systems that use products containing formaldehyde-releasing biocides. The key input 52 parameters for these models are the Henry's law constant (HLC) and the overall mass 53 transfer coefficient.

54

Formaldehyde in water is a complex system. The solubility of formaldehyde in water is much greater than the solubility of common volatile organic compounds (VOCs). Formaldehyde exists in an aqueous solution as a mixture of monomeric formaldehyde, methylene glycol ($CH_2(OH)_2$) and a variety of formldehyde oligomers. Under normal conditions, the majority of the formaldehyde in an aqueous solution exists as methylene glycol with monomeric formaldehyde present only in low concentrations of less than 0.1

61 %.⁴ The state of equilibrium in the solution is determined by the temperature, the 62 formaldehyde concentration and other conditions of the solution. In addition, equilibria 63 between the gaseous formaldehyde over and in the liquid solution exist. As one of the 64 most important components of various household cleaning products, surfactants can 65 comprise between 15 and 40 % of a total detergent formulation. ⁵ The presence of 66 surfactants makes the composition of the formaldehye aqueous solution even more 67 complicated.

68

69 The emission of formaldehyde from the aqueous surface to the air is driven by the 70 difference between the gaseous formaldehyde concentration at the surface of the liquid 71 and in the bulk air, which is dictated by the HLC and overall mass transfer coefficient. 72 The HLC predicts the partitioning of a chemical between the aqueous and gaseous phases 73 for dilute solutions. Experimentally determined HLC values for formaldehyde under various conditions have been reported in the literature. ⁶⁻¹¹ While a few references are 74 75 available for ascertaining the HLC of formaldehyde in water systems, little information is 76 available regarding the partitioning of formaldehyde from surfactant solutions.

77

The concept of an overall mass transfer coefficient is well established based on the two-resistance theory, which expresses the overall resistance as the weighted sum of the liquid and air resistances. ^{12, 13} The overall mass transfer coefficient can be estimated by using a regression analysis procedure to fit a mass transfer model to the experimental data. The lumped overall mass transfer coefficient, the overall mass transfer coefficient times the interfacial surface area (K₀A), was reported in a previous study on VOC

84	emissions from water to indoor air for the washing machine, the dishwasher, the shower
85	and the bathtub. ¹⁴ Guo and Roache ¹³ determined the overall liquid-phase mass transfer
86	coefficient (K_{OL}) experimentally for pollutant emissions from still aqueous solutions
87	under simulated indoor environmental conditions for six chemicals. Seyfioglu and
88	Odabasi 15 measured the average overall gas-phase mass transfer coefficients (K_{OG}) of
89	formaldehyde to be 21± 8 and 9 ± 4 m/h from laboratory and field experiments,
90	respectively, in a study of formaldehyde dry deposition into a water surface sampler. No
91	experimentally determined overall mass transfer coefficient data for formaldehyde
92	suitable for use in indoor emission models exists. ¹⁶
93	
94	The aim of this study was to determine the HLC and the overall mass transfer
95	coefficient for formaldehyde needed to model the behavior of formaldehyde released
96	from biocides under various conditions of usage. A headspace method with 2, 4-
97	dinitrophenylhydrazine (DNPH) cartridge collection and extraction was developed and
98	applied to measure formaldehyde HLC in different aqueous solutions with and without
99	surfactants over a range of temperatures and formaldehyde concentrations. The
100	experimentally determined HLCs were used to estimate the overall mass transfer
101	coefficients by applying a mass transfer model to the small chamber test data. The HLC
102	and overall mass transfer coefficient obtained from this work can be used as key input
103	parameters to evaluate and develop improved emission models for formaldehyde from
104	biocides in occupational and residential settings.
105	

106 MATERIALS AND METHODS

Measurement of Henry's Law Constants. The dimensionless HLC is defined by Equation (1):

$$H = \frac{C_G}{C_L} \tag{1}$$

110 where H is the dimensionless HLC, and C_G and C_L are equilibrium formaldehyde 111 concentrations ($\mu g/m^3$) in the gas and liquid phase, respectively.

112

113 The gas phase formaldehyde concentration was measured in triplicates using the 114 headspace method. The tests were conducted in 250 mL and 1L amber bottles with 115 aqueous formaldehyde solutions, with or without surfactant. The formaldehyde solutions 116 (0.01 to 1 %, w/w) were prepared by diluting a 37 % (w/w) formaldehyde/water solution. 117 Each sample bottle was sealed with a cap containing a polytetrafluoroethylene/silicone 118 septum. The bottles were inverted ten times to mix the solution and then placed on an 119 orbital shaker (Model 3500, VWR International, Radnor, PA, USA) located inside a 120 temperature-controlled incubator (Model 39900, Forma Scientific, Marietta, OH, USA), 121 for a minimum of 16 hours. For the preparation of the formal dehyde solution containing a 122 surfactant, the surfactant was first added to the sample bottle to make a solution of 15 % 123 surfactant in water by weight and agitated briefly to dissolve the surfactant fully prior to 124 the addition of formaldehyde. Gas phase formaldehyde, 30 mL from the 250 mL or 100 125 mL from a 1 L bottle, was withdrawn from the headspace using a gastight syringe and a 126 Sep-Pak DNPH silica plus short cartridge (Waters, Milford, MA, USA) at a rate of 127 approximately 1 mL/s. The DNPH cartridges were extracted with 5 mL of acetonitrile

128	and analyzed on an Agilent 1200 High Performance Liquid Chromatograph (HPLC) with
129	a Diode Array and Multiple Wavelength Detector (DAD) equipped with a Zorbax Eclipse
130	XDB-C18 column (4.6 x 150 mm x 3.5 μ m). The formal dehyde concentration in the
131	liquid was calculated from the known concentration of formaldehyde spiked into the
132	solution and verified by a liquid derivatization method followed by a modified version of
133	EPA Method 8315A described in the Supporting Information (SI).
134	

135 The concentrated formaldehyde solution (37 % w/w in water), sodium dodecyl 136 sulfate (SDS, \geq 99.0%) and TergitolTM NP-9 surfactants were purchased from Sigma-137 Aldrich (Sigma-Aldrich, St. Louis, MO, USA). Propanal (98.8 %) and pentanal (99.1 %) 138 were purchased from Chem Service, Inc. (West Chester, PA, USA). HPLC-grade water 139 and acetonitrile (Fisher Scientific, Fair Lawn, NJ, USA) were used for all extraction and 140 analysis procedures. The aldehyde/ketone-DNPH stock standard (Cerilliant Corporation, 141 Round Rock, TX, USA) was used for HPLC calibration. The formaldehyde-DNPH 142 standard purchased from Supelco (Bellefonte, PA, USA) was used as an internal audit 143 program (IAP) standard.

144

145 Small Chamber Tests. Fourteen small chamber tests were conducted to measure 146 formaldehyde emissions from small pools in 53-L stainless steel chambers that conformed to ASTM Standard Guide D5116-10¹⁷. The chambers were placed in a 147 148 temperature-controlled incubator (Model SCN4-52, So-Low Environmental Equipment 149 Co., Inc., Cincinnati, Ohio, USA). The relative humidity was monitored for the clean dry 150 air to the chamber inlet and the air inside the chamber. A 3.8-cm computer cooling fan

151 (RadioShack, Fort Worth, TX, USA) was placed in the chamber to provide mixing inside 152 the chamber. A 140-mL round dish containing the test solution was situated in the center 153 of the chamber bottom. Both still and agitation tests were performed. For agitation tests, a 154 stir bar was placed in the dish on the stir plate with the speed setting of 3 to 6.5 (Model 155 PC-410, Corning Incorporated Life Sciences, Tewksbury, MA, USA). A setting range of 156 3.0-6.5 agitated the test solution at acceptable levels without producing erratic movement 157 or spillage of the solutions. The test conditions are summarized in Table 1. Air samples 158 from the chamber were collected on DNPH cartridges from the glass sampling manifold 159 connected to the chamber outlet at about 300 mL/min for 10 to 30 min at different time 160 intervals. Prior to the test, samples of the empty chamber background and the chamber 161 background after the pool with water was placed in the chamber overnight were 162 collected. After the tests, the formaldehyde in aqueous solutions in the pool was analyzed 163 by the liquid derivatization approach mentioned above.

164

165 The air speed during the small chamber test was determined 1 cm above the 166 solution surface using a Brüel & Krær Indoor Climate Analyzer (Model 1213, Nærum, 167 Denmark) in a chamber assembled similarly to the chamber used for tests. The speed of 168 the stir bar, revolutions per minute (RPM), was measured using a video camera, digital 169 timer and VLC Media Player software (<u>http://www.videolan.org/index.html</u>, VideoLAN 170 organization).

171

Quality Assurance and Control. The HPLC/DAD was calibrated for DNPHformaldehyde in the range of 0.03 to 15 μg/mL. An IAP standard was analyzed after the

- 174 calibration to evaluate the instrument performance in terms of accuracy and precision. A
- 175 daily calibration check (DCC) consisting of the midlevel calibration standard was
- analyzed each day. The acceptable recovery range for both DCC and IAP was 85-115 %.

Table1. Summary	of 0.04	% HCHO	small	chamber	tests
-----------------	---------	--------	-------	---------	-------

Test ID	Surfactant ^a	Agitation rate			Chamb	Chamber conditions ± % RSD			HCHO solution evaporation (g/hr)
		Setting	RPM ^b	Air velocity (cm/s) ± % RSD	% RH	Temperature (°C)	ACH (/h)		
T1	None	0	0	13.8 ± 5.8	55.8 ± 2.7	22. 7 ± 0.1	0.93 ± 1.09	73.4	0.54
T2	None	0	0	13.8 ± 5.8	55.2 ± 1.7	22.7 ± 0.1	0.96 ± 3.17	24.9	0.58
T5	None	3	90	13.7 ± 5.9	61.5 ± 2.9	23.0 ± 0.1	0.94 ± 0.41	24.8	0.61
Т3	None	5.7	256	13.8 ± 8.0	68.5 ± 2.0	23.0 ± 0.1	0.83 ± 0.52	24.9	0.64
T4	None	6.5	372	13.9 ± 7.3	62.1 ± 2.8	23.0 ± 0.2	0.94 ± 0.13	23.6	0.66
T6	None	3	90	13.7 ± 5.9	55.1 ± 9.7	40.6 ± 1.0	0.91 ± 1.65	23.1	1.66
T7	None	3	90	13.7 ± 5.9	46.7 ± 7.0	54.7 ± 2.0	0.90 ± 4.76	23.4	2.96
T8	None	6.5	372	13.9 ± 7.3	63.7 ± 2.6	24.3 ± 0.2	0.95 ± 0.45	25.4	0.74
Т9	NP-9	0	0	13.8 ± 5.8	59.6 ± 1.6	22.9 ± 0.6	0.95 ± 0.24	23.1	0.61
T10	SDS	0	0	13.8 ± 5.8	61.3 ± 0.88	22.9 ± 0.4	0.95 ± 0.16	24.4	0.63
T11	SDS	0	0	13.8 ± 5.8	60.5 ± 1.1	22.9 ± 0.5	0.95 ± 0.33	24.5	0.62
T12	SDS	3	90	13.7 ± 5.9	64.3 ± 2.1	23.0 ± 0.4	0.94 ± 0.39	24.4	0.66
T13	SDS	6.5	372	13.9 ± 7.3	63.3 ± 2.5	23.1 ± 0.4	0.94 ± 0.26	24.3	0.65
T14	SDS	6.5	372	13.9 ± 7.3	66.1 ± 2.1	23.1 ± 0.4	0.95 ± 1.1	24.3	0.68

^{a.} 15 % Surfactant. b. RPM is revolutions per minute.

177 **RESULTS AND DISCUSSION**

178 Henry's Law Constants for Formaldehyde. The Henry's law constant measured 179 in this study was the apparent HLC, since C_L in Equation (1) was the total concentration 180 of formaldehyde solubilized in a solution including monomers and various oligomers. At 181 least three replicate experiments were conducted under each set of experimental 182 conditions to provide a measure of the precision of the experimental method. The percent 183 relative standard deviations (% RSD) associated with the average HLC values were less 184 than 15 %. The liquid formaldehyde concentration measured using the DNPH 185 derivatization method showed a recovery of 95-99 % of formaldehyde that had been 186 spiked into the solution. Thus the known concentration of formaldehyde spiked into the 187 solution was used to calculate the liquid phase formaldehyde concentration. The DNPH 188 headspace method was validated by determining the HLCs for pentanal and propanal and 189 comparing the results with the literature. The measured HLC for 0.04 % pentenal was 5.94 $\times 10^{-3}$ and the measured HLC for 0.04 % propanal was 3.21 $\times 10^{-3}$ at 23 °C. The 190 data reported by Zhou and Mopper ⁷ were 6.30×10^{-3} for pentanal and 3.35×10^{-3} for 191 192 propanal in the solutions ranging from 0.05 to 5 μ M at 25 °C. The HLC values of 193 propanal and pentenal obtained from our experiments agreed well with the literature data. 194 195 The HLCs of formaldehyde solutions are summarized in Tables S1 and S2. The

measured solutions included 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.5, 0.6, 0.8
and 1 % formaldehyde in water at 23 °C, 0.01, 0.05, and 1 % formaldehyde in water at 40
and 55 °C, and 0.01, 0.02, 0.04 and 0.86 % formaldehyde with SDS or NP-9 surfactant at
23, 40 and 55 °C. The critical micelle concentration (cmc) of SDS in pure water at 25 °C

200	is 0.0082 M 18 and that of NP-9 is 60 ppm 19 . Thus, 15 % (w/w) surfactant solution is
201	much higher than the cmc. Overall, the measured HLCs are in the range of 8.93×10^{-6} to
202	$1.04\times10^{\text{-4}}.$ At 23 °C, for HCHO concentrations between 0.01 % and 1 %, the HLCs
203	ranged from 8.51×10^{-6} to 1.23×10^{-5} with the average of $1.06 \times 10^{-5} \pm 17$ % (% RSD) in
204	water solution. At the same temperature, the HLC value decreased slightly with
205	increasing formaldehyde concentrations in both water and surfactant solutions (Figures
206	1a-1c and data in Tables S1 and S2). The HLC values measured under similar conditions
207	agree reasonably well with the literature data, i. e. 1.38×10^{-5} from Betterton and
208	Hoffmann, 6 1.20 \times 10 $^{-5}$ from Zhou and Mopper, 7 8.6 \times 10 $^{-6}$ from Staudinger and
209	Roberts ^{8,9} , 7.87 \times 10 ⁻⁶ from Seyfioglu and Odabasi ¹⁰ at 25 °C and 7.81 \times 10 ⁻⁶ from
210	Allou et al. ¹¹ at 20 °C.

Figure 1. Formaldehyde HLCs measured under different conditions. (1a. No surfactant,
1b. With NP-9, 1c. With SDS, 1d. 0.01 % HCHO, 1e. 0.04 % HCHO, 1f. 1 % HCHO)

Temperature affects the HLC value markedly. As shown in Figure 1a, the HLC value increased as the temperature increased in the formaldehyde water solution. The same trend was observed for solutions with surfactants (Figures 1b and 1c). The effect of surfactants on the HLC of formaldehyde at different temperatures is illustrated in Figures 1d to 1f. At the same temperature, HLC value increased when surfactants were added to the solution, especially when the formaldehyde concentration was between 0.01 and 0.04 %. However, the effect was not significant between the nonionic surfactant, NP-9

233	and the anionic surfactant, SDS. When formaldehyde concentration increased to
234	approximately 1 %, the difference of HLC between no surfactant and surfactant solution
235	was minimal, contrary to the literature data for VOCs, such as toluene, trichloroethene
236	and hexane. ^{18, 20, 21} Research has shown that the addition of a surfactant to the aqueous
237	VOC solution resulted in an HLC value smaller than the HLC value of solutions without
238	surfactant. In general, adding surfactants to solution creates hydrophobic zones to which
239	VOCs partition. As more hydrophobic zones are created, the partitioning of VOCs into
240	the headspace of the system becomes less and thus the apparent HLC decreases.
241	Formaldehyde surfactant solution did not follow this rule, as shown in our experiments.
242	The surfactants did not reduce the volatility of formaldehyde, possibly because
243	formaldehyde is hydrophilic while other VOCs, e.g. toluene and hexane, are more
244	hydrophobic. The higher solubility of formaldehyde in water was not impacted by the
245	addition of the surfactant. In the formaldehyde solution, the methylene glycol and
246	oligomers would be considerably more hydrophilic than monomeric formaldehyde and
247	thus much less likely to participate directly in the gas-liquid phase interaction. The added
248	surfactant may break the equilibrium between the different forms of formaldehyde and
249	result in more monomeric formaldehyde released to the gas phase when the formaldehyde
250	concentration in water is low. When formaldehyde concentration was up to 1 %, the
251	impact of surfactants on the equilibrium became less significant. Overall, the effect of
252	added surfactant on the HLC for formaldehyde is insignificant because of the hydrophilic
253	nature of the surfactants. More work is needed to confirm the observation and investigate
254	the possible reasons.

256 Formaldehyde Emissions from Liquid Pools. A total of 14 small chamber tests 257 were reported, including three replicate tests, T1 and T2, T10 and T11, and T13 and T14. 258 The time-concentration profiles of all tests are presented in Figure 2. The data from 259 replicate tests implies good precision for the experiments (% RSD < 15 %). At 23 °C, the 260 formaldehyde gas phase concentration quickly reached steady state after two hours, but it 261 took a much longer time when the water pool temperature increased to 40 and 55 °C. The 262 formaldehyde emission was strongly affected by the HLC. Formaldehyde from solutions 263 with surfactants had a higher emission concentration than solutions without surfactants. 264 The faster the agitation rate, the higher the formaldehyde emission concentration from the 265 solutions including water only and water with surfactants. However, in the presence of 266 the surfactant, SDS (Figure 1d), the impact of the agitation rate on the formaldehyde 267 emissions was less apparent than in the solution without the surfactant. After 41 (T6) and 268 55°C (T7) tests, especially the 55 °C test, the condensed aqueous solution was observed 269 on the unheated glass sampling manifold. The measured gas phase formaldehyde 270 concentration was therefore lower than the formaldehyde concentration actually emitted 271 inside the chamber.

Figure 2. Formaldehyde time - concentration profiles from small chamber tests (2a. No
surfactant, 2b. No surfactant, 2c. With and without surfactants, 2d. With SDS. A0, A3,
A5.7, and A6.5 is agitation setting at 0, 3, 5.7, and 6.5, respectively)

281 **Determination of the Mass Transfer Coefficients.** According to the two-

resistance theory, ^{12, 13} the rate of formaldehyde emission from an aqueous solution is

283 determined by either equation (2) or (3):

284
$$R = SK_{OL}(C_L - C_G / H)$$
 (2)

$$285 R = SK_{OG}(HC_L - C_G) (3)$$

where R is the formaldehyde emission rate (mg/h), S is the source area (m²), H is the dimensionless HLC , and the overall liquid-phase mass transfer coefficient (K_{OL}, m/h) and overall gas-phase mass transfer coefficient, K_{OG} (m/h) are defined by equations (4) and (5), respectively.

290
$$\frac{1}{K_{oL}} = \frac{1}{k_L} + \frac{1}{k_G H}$$
(4)

291
$$\frac{1}{K_{OG}} = \frac{H}{k_L} + \frac{1}{k_G}$$
 (5)

where k_L (m/h) is the liquid phase-mass transfer coefficient and k_G (m/h) is the gas-phase mass transfer coefficient. Thus, determination of the overall mass transfer coefficients (K_{OL} or K_{OG}) is key to estimating the formaldehyde emission rate. In this study, the overall liquid-phase mass transfer coefficient was determined by fitting the following mass balance model (Equations 6–8) to the chamber air formaldehyde concentration data with the overall liquid-phase mass transfer coefficient being the only unknown parameter.¹³

299
$$V \frac{dC_G}{dt} = SK_{OL}(C_L - C_G / H) - QC_G$$
(6)

$$\frac{dW_L}{dt} = -SK_{OL}(C_L - \frac{C_G}{H})$$
(7)

$$C_L = \frac{W_L}{V_L - \frac{r_w t}{\rho_w}}$$
(8)

where V is the chamber volume (m³), t is the time (h), S is the source area (m²), Q is the air exchange flow rate (m³/h), W_L is the amount of formaldehyde in the liquid phase (μ g), V_L is the initial volume of liquid (m³), r_w is the experimentally determined water evaporation rate (g/h) and ρ_w is the density of water (g/m³). Data fitting software SCIENTIST (Version 2.0, MicroMath Scientific Software, Salt Lake City, UT, USA) was used for the non-linear regression. The estimated overall liquid-phase mass transfer coefficients are presented in Table 2 (column 3).

Table 2. Summary of mass transfer coefficients (m/h)										
	From experimental					From PARAMS program				
Test ID	H (Dimensionless)	Kol-hcho	Код-нсно	kg -н20	kg-нсно	kl-нсно	kg-нсно	kl-нсно	Kol-hcho	Код-нсно
T1	9.86×10 ⁻⁶	8.39×10 ⁻⁵	8.51	14.8	10.9	3.84 ×10 ⁻⁴	14.6	7.92 ×10 ⁻³	1.42 ×10 ⁻⁴	14.4
T2	9.86×10 ⁻⁶	8.12×10^{-5}	8.23	15.3	11.2	3.06 ×10 ⁻⁴	14.6	7.92 ×10 ⁻³	1.42×10^{-4}	14.4
T5	9.86×10 ⁻⁶	1.01 ×10 ⁻⁴	10.3	19.0	14.5	3.48 ×10 ⁻⁴	14.5	NA ^a	NA	NA
T3	9.86×10 ⁻⁶	1.09 ×10 ⁻⁴	11.0	23.0	16.8	3.16 ×10 ⁻⁴	14.5	NA	NA	NA
T4	9.86×10 ⁻⁶	1.09 ×10 ⁻⁴	11.1	19.7	14.5	4.58 ×10 ⁻⁴	14.6	NA	NA	NA
T6	2.22×10-5	2.24 ×10 ⁻⁴	10.1	13.9	10.3	1.60 ×10 ⁻²	14.2	NA	NA	NA
T7	8.11×10 ⁻⁵	2.30 ×10 ⁻⁴	2.84	10.0	7.34	3.75 ×10 ⁻⁴	16.0	NA	NA	NA
T8	9.86×10 ⁻⁶	1.32 ×10 ⁻⁴	13.4	19.7	14.5	1.84×10^{-4}	14.7	NA	NA	NA
T9	1.46×10 ⁻⁵	8.65 ×10 ⁻⁵	5.93	18.4	13.5	1.54 ×10 ⁻⁴	14.6	7.92 ×10 ⁻³	2.08×10^{-4}	14.2
T10	1.15×10-5	1.10×10 ⁻⁴	9.57	19.7	14.4	3.26 ×10 ⁻⁴	14.6	7.92 ×10 ⁻³	1.65 ×10 ⁻⁴	14.3
T11	1.15×10 ⁻⁵	1.13 ×10 ⁻⁴	9.80	19.0	14.0	3.79 ×10 ⁻⁴	14.6	7.92 ×10 ⁻³	1.65 ×10 ⁻⁴	14.3
T12	1.15×10 ⁻⁵	1.17 ×10 ⁻⁴	10.2	22.3	16.3	3.13 ×10 ⁻⁴	14.6	NA	NA	NA
T13	1.15×10 ⁻⁵	1.14 ×10 ⁻⁴	9.95	21.2	15.5	3.18 ×10 ⁻⁴	14.7	NA	NA	NA
T14	1.15×10 ⁻⁵	1.26 ×10 ⁻⁴	11.0	24.4	17.9	3.24 ×10 ⁻⁴	14.7	NA	NA	NA

^{a.} NA is not applicable since PARAMS program applies only to still water solutions.

310 Once K_{OL} is determined, K_{OG} can then be calculated by

$$311 K_{OG} = K_{OL} / H (9)$$

The k_G for formaldehyde was inferred from the k_G for water vapor. The water vapor concentrations in the chamber obtained from relative humidity data were used to determine the water gas phase mass transfer coefficient, k_{G-H2O} (m/h) with the following mass balance model:

316
$$V \frac{dC}{dt} = Sk_{G-H_2O}(C_v - C) + Q(C_{in} - C)$$
(10)

317
$$\frac{dW}{dt} = -Sk_{G-H_2O}(C_v - C)$$
(11)

$$318 RH = \frac{C}{C_v} (12)$$

where C is the water concentration in the air (mg/m³), C_v is the water vapor pressure in concentration units (mg/m³), C_{in} is the initial water concentration in the air (mg/m³), W is the amount of water in the water pool (mg), and RH is the relative humidity. Based on the Sherwood number equation, ²² under the same physical conditions, the formaldehyde gas phase mass transfer coefficient, k_{g-HCHO}, can then be calculated by:

324
$$\frac{k_{G-H2O}}{k_{G-HCHO}} = \left(\frac{D_{a-H2O}}{D_{a-HCHO}}\right)^{2/3}$$
(13)

where D_{a-H2O} and D_{a-HCHO} are, respectively, the diffusivities of water and formaldehyde in air (m²/h), which can be calculated using the available computer program, PARAMS.²²

327	With known K_{OL} , K_{OG} , k_G and H, it is straightforward to calculate the k_L , through the
328	equation (4) or (5). The K_{OL} , K_{OG} , k_G and k_L results are presented in Table 2. The
329	coefficients of determination, R^2 , were greater than 0.99 for all data fits of formaldehyde
330	and water (Figure 3). In comparison with the experimentally determined k_G , PARAMS
331	was used to estimate the formal dehyde $k_{\rm G}$ based on the Sherwood number method. When
332	there was no agitation in the water pools, k_L was also calculated using PARAMS, and
333	thus K_{OG} and K_{OL} were calculated through equations (4) or (5). These results are listed in
334	Table 2 as well. The data show that they are in the same magnitude range. The
335	formaldehyde K_{OL} ranged from $8.12\times10^{\text{-5}}$ to $2.30\times10^{\text{-4}}$ m/h and K_{OG} was between 2.84
336	and 11.1 m/h from our experiments. The difference between the experimental and
337	PARAMS estimated data confirms the caution from the literature ¹³ that compounds with
338	smaller HLCs tend to have greater relative errors from predictions. The Sherwood
339	method implemented in PARAMS is for laminar flow while turbulent flow perhaps is
340	more realistic for the air over agitated water. Our experimental values of K_{OG} are closer
341	to the data reported by Seyfioglu and Odabasi $^{\rm 15}$ and are larger than the $K_{\rm OG}$ data used by
342	McCready et al. ¹⁶ in their evaluation of potential exposure to formaldehyde air emissions
343	from a washing machine using the indoor air quality and inhalation exposure (IAQX)
344	model ²³ .

Figure 3. An example of goodness of fit of the model to data – T14 small chamber test,
formaldehyde emission (3a) and water vapor (3b).

351 The overall mass transfer coefficients (K_{OL} and K_{OG}) reflect the combined effects 352 of k_L , k_G and H as shown in equations (4) and (5). The HLC for formaldehyde is less than 353 10^{-4} . The gas-phase resistance, $1/(k_gH)$, is a significant factor for formaldehyde 354 emissions. The K_{OL} values presented in Table 2 fall in a narrow range despite different 355 experimental conditions, such as temperature, surfactants, and agitation rate. However, 356 the data in Figure 4 showed that the overall mass transfer resistance (1/K_{OL}) decreased 357 when (1) the agitation rate was increased, (2) the surfactant was added, and (3) the HLC 358 value was increased due to the temperature change from 23 to 40 to 55 °C. The results in 359 Figure 4a also demonstrate that the effect of the agitation rate is less significant for the 360 SDS solution than for the solution without surfactants. When the agitation rate was 361 increased to above 90 RPM (A3), the decrease of 1/K_{OL} was much smaller, possibly implying that the complex mixture reached a new equilibrium once the agitation rate 362 363 reached a certain point.

364

Figure 4. Overall liquid-phase mass transfer resistance (1/K_{OL}) under different agitation
rates (4a) and Henry's law constants (4b).

371 The experimentally determined formaldehyde Henry's law constants and overall 372 mass transfer coefficients in this work can be used to improve indoor formaldehyde 373 source emission models. More work is needed to investigate how the surfactants impact 374 equilibrium partitioning of formaldehyde between gas and liquid phase. Because the data 375 collected in this study were under well-controlled environmental conditions, a cautionary 376 note is appropriate when applying the data from this study to realistic environmental 377 conditions. It is also beyond the scope of this work to link the data to human exposure 378 and potential health risks.

379 ASSOCIATED CONTENT

- 380 **Supporting information.** The liquid formaldehyde analysis by the DNPH
- 381 derivatization method and HLC data are presented.

382 AUTHOR INFORMATION

383 Corresponding author

384 Phone: (919) 541-2459; Fax: (919) 541-2157; Email: liu.xiaoyu@epa.gov

385 ACKNOWLEDGMENTS

We thank Edgar Folk IV from ARCADIS for helping the HPLC instrument operation
and small chamber tests, and Russell Logan from ARCADIS for DNPH sample
extraction.

389 **DISCLAIMER**

- 390 The views expressed in this article are those of the authors and do not necessarily
- 391 represent the views or policies of the U.S. EPA. Mention of trade names or commercial
- 392 products does not constitute endorsement or recommendation for use by the U.S. EPA.

393 **REFERENCES**

394	(1)	U.S. EPA, Office of Pesticide Programs, Reregistration eligibility decision
395		(RDE) for Grotan (HHT), <u>http://www.epa.gov/oppsrrd1/REDs/grotan-hht-</u>
396		<u>red.pdf</u> , 2008. (last access 6/17/2014).
397	(2)	De Groot, A. C.; Flyvholm M. A. Formaldehyde and formaldehyde releasers.
398		Kanerva's Occupational Dermatology 2012, 397-413.
399	(3)	Arnold, S.; Fontaine, D.; Hwang, H.; Krygsman, A.; Miller, P.; Woods, W.;
400		Shah, H. The use of Henry's law to estimate formaldehyde inhalation
401		exposure concentrations. Hum. Ecol. Risk Assess. 2011, 17, 745-751.
402	(4)	Walker, J. F. Formaldehyde, 3 rd edition, Robert E. Krieger Publishing
403		Company, Huntington, New York, 1975.

- 404 (5) Scheibel, J. The evolution of anionic surfactant technology to meet the
 405 requirements of the laundry detergent industry. J. Surfactants Deterg. 2004, 7,
 406 319-328.
- 407 (6) Betterton, E.; Hoffmann, M. Henry's law constants of some environmentally
 408 important aldehydes. *Environ. Sci. Technol.* 1988, 22, 145-1418.
- 409 (7) Zhou, X.; Mopper, K. Apparent partition coefficients of 15 carbonyl
- 410 compounds between air and freshwater; Implication for air-sea exchange.
 411 *Environ. Sci. Technol.* **1990**, 24, 1864-1869.
- 412 (8) Staudinger, J; Roberts, P. V. A critical review of Henry's law constants for
 413 environmental applications. *Crit. Rev. Environ. Sci. Technol.* 1986, 26, 205414 297.
- 415 (9) Staudinger, J; Roberts, P. V. A critical compilation of Henry's law constant
 416 temperature dependence relations for organic compounds in dilute aqueous
 417 solutions. *Chemosphere* 2001, 44, 561-576.
- 418 (10) Seyfioglu, R.; Odabasi, M. Determination of Henry's law constant of
- 419 formaldehyde as a function of temperature; application to air-water exchange
 420 in Tahtali Lake in Izmir, Turkey. *Environ. Monit. Assess.* 2007, 128, 343-349.
- 421 (11) Allou, L., Maimouni, L. E., Calvè S. L. Henry's law constant measurements
- for formaldehyde and benzaldehyde as a function of temperature and water
 composition, *Atmos. Environ.* 2011, 45, 2991-2998.
- 424 (12) Little, J. C. Applying the two-resistance theory to contaminant volatilization
 425 in showers. *Environ. Sci. Technol* 1992, 26, 1341-1349.

426	(13)	Guo, Z.; Roache, N. F. Overall mass transfer coefficient for pollutant
427		emissions from small water pools under simulated indoor environmental
428		conditions. Ann. Occup. Hyg. 2003, 47, 279-286.
429	(14)	U. S. EPA, Volatilization rates from water to indoor air – Phase II, EPA
430		600/R-00/96. 2000. Washington, DC: US Environmental Protection Agency.
431	(15)	Seyfioglu, R.; Odabasi, M. Investigation of air-water exchange of
432		formaldehyde using the water surface sampler: Flux enhancement due to
433		chemical reaction, Atmos. Environ. 2006, 40, 3503-3512.
434	(16)	McCready, D.; Arnold, S. M.; Fontaine, D. D. Evaluation of potential
435		exposure to formaldehyde air emissions from a washing machine using the
436		IAQX Model. Human and Ecological Risk Assessment 2012, 18, 832-854.
437	(17)	ASTM D5116-10, Standard guide for small-scale environmental chamber
438		determinations of organic emissions from indoor materials/products. 2010,
439		ASTM International, West Conshohocken, PA.
440	(18)	Vane, L.; Giroux, E. Henry's law constants and micellar partitioning of
441		volatile organic compounds in surfactant solutions. J. Chem. Eng. Data 2000,
442		45, 38-47.
443	(19)	Dow, Technical data sheet TERGITOL [™] NP-9 Surfactant product
444		information,
445		http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_00af/0901b80
446		3800af647.pdf?filepath=surfactants/pdfs/noreg/119-
447		01919.pdf&fromPage=GetDoc (accessed 6/17/2014)

448	(20)	Zhang, C.; Zheng, G.; Nichols, C. Micellar partitioning and its effects on
449		Henry's law constants of chlorinated solvents in anionic and nonionic
450		surfactant solutions. Environ. Sci. Technol. 2006. 40, 208-214.
451	(21)	Yang, C.; Chen, F.; Luo, S.; Xie, G.; Zeng, G.; Fan, C. Effect of surfactants
452		and salt on Henry's constant of <i>n</i> -hexane. J. Hazard. Mater. 2010, 175, 187-
453		192.
454	(22)	Guo, Z. Program PARAMS user's guide, US EPA Report No. EPA-600/R-
455		05/066, National Risk Management Research Laboratory, Research Triangle
456		Park, NC, 2005; 32 pp. http://www.epa.gov/nrmrl/pubs/600r05066.html
457		(accessed 6/17/2014)
458	(23)	Guo, Z. Simulation tool kit for indoor air quality and inhalation exposure
459		(IAQX) version 1.0 user's guide, US EPA Report No. EPA-600/R-00-094,
460		National Risk Management Research Laboratory, Research Triangle Park, NC,
461		2000; 86 pp. http://nepis.epa.gov/Adobe/PDF/P1000A0G.pdf (accessed
462		6/17/2014)
463		

464 **Supporting Information**

465

466	Modified EPA Metho	1 8315A for lic	juid formaldeh	yde analysis
-----	--------------------	-----------------	----------------	--------------

- 467 Solution from the bottle (1 mL) was transferred to a 125 mL Erlenmeyer flask to which 4
- 468 mL of citrate buffer (pH 5.0) and 6 mL of DNPH solution (3.00 mg/mL) were added. The
- 469 samples were mixed on the orbital shaker inside the incubator at a temperature of
- 470 approximately 23 °C for exactly one hour. The sample was removed from the mixer,
- 471 extracted with three 20 mL portions of dichloromethane, dried over sodium sulfate, and
- 472 concentrated to approximately 1.5 mL using a RapidVap[®] vacuum evaporation system
- 473 (Model 79100-00, Labconco Corporation, Kansas City, MO, USA) with a nitrogen gas
- 474 flow. The concentrate was transferred and brought to volume in a 10 mL volumetric flask
- 475 using acetonitrile for HPLC analysis.

Weight %	Temperature (°C)	H (dimensionless) ± % RSD	N ^a	
0.01	23.14	$1.55 \text{E-}05 \pm 1.99$	3	
0.02	22.64	$1.08E-05 \pm 2.82$	6	
0.03	22.65	$9.70E-06 \pm 3.20$	3	
0.04	22.65	$9.86E-06 \pm 4.30$	3	
0.05	22.66	$1.06E-05 \pm 5.72$	3	
0.06	22.62	$1.23E-05 \pm 5.24$	3	
0.07	22.62	$1.06E-05 \pm 0.20$	3	
0.08	22.59	$1.10E-05 \pm 9.92$	3	
0.51	22.94	$8.93E-06 \pm 2.00$	3	
0.59	22.54	$9.33E-06 \pm 3.68$	4	
0.78	22.51	$1.04E-05 \pm 4.53$	4	
1.01	22.94	$8.51E-06 \pm 1.88$	3	
0.01	39.70	$2.98E-05 \pm 9.85$	3	
0.01	54.56	$7.63E-05 \pm 5.50$	3	
0.05	39.70	$2.22E-05 \pm 2.55$	3	
0.05	54.91	$8.11E-05 \pm 7.50$	6	
1.01	39.70	$2.05E-05 \pm 8.32$	2	
1.01	54.71	$3.47E-05 \pm 4.54$	3	

Table S1. Henry's Law Constants of formaldehyde in water

^{a.} Number of samples.

Weight %	Temperature (°C)	15 % SDS , H \pm % RSD	15 % NP-9, H ± % RSD
0.01	23.11	$1.71E-05 \pm 4.27$	$1.64 \text{E-}05 \pm 8.66$
0.01	40.13	$3.88\text{E-}05\pm2.76$	$2.63E-05 \pm 11.71$
0.01	54.83	$9.88\text{E-}05\pm9.62$	$1.12E-04 \pm 12.13$
0.02	22.65	$1.34\text{E-}05\pm7.99$	$1.35\text{E-}05\pm9.75$
0.04	22.83	$1.15\text{E-}05 \pm 3.79$	$1.46E-05 \pm 15.31$
0.04	40.07	$3.42E-05 \pm 3.77$	$2.94 E\text{-}05 \pm 11.75$
0.04	54.56	$8.79\text{E-}05\pm6.43$	$8.77 E\text{-}05 \pm 12.58$
0.86	22.56	$8.33\text{E-}06 \pm 5.48$	$1.03E-05 \pm 1.38$
0.86	40.05	$2.22E-05 \pm 9.31$	$1.76E-05 \pm 9.16$
0.86	53.07	$3.41E-05 \pm 1.30^{a}$	$3.96E-05 \pm 5.00$

 Table S2. Henry's Law Constants (dimensionless) of formaldehyde in water solution containing Surfactants (N=3)

^{a.} Only duplicate samples were analyzed.

481 482 _