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1. Abstract  47 

 48 

Background. Each year, the US NHANES measures hundreds of chemical biomarkers in samples 49 

from thousands of study participants. These biomarker measurements are used to establish 50 

population reference ranges, track exposure trends, identify population subsets with elevated 51 

exposures, and prioritize research needs.  There is now interest in further utilizing the NHANES 52 

data to inform chemical risk assessments.   53 

Objectives. This article highlights: 1) the extent to which NHANES chemical biomarker data have 54 

been evaluated, 2) groups of chemicals that have been studied, 3) data analysis approaches and 55 

challenges, and 4) opportunities for using these data to inform risk assessments. 56 

Methods. A literature search (1999-2013) was performed to identify publications in which 57 

NHANES data were reported.  Manual curation identified only the subset of publications that 58 

clearly utilized chemical biomarker data.  This subset was evaluated for chemical groupings, data 59 

analysis approaches, and overall trends. 60 

Results. A small percentage of yearly NHANES-related publications reported on chemical 61 

biomarkers (8% yearly average).  Of eleven chemical groups, metals/metalloids were most 62 

frequently evaluated (49%), followed by pesticides (9%) and environmental phenols (7%).  Studies 63 

of multiple chemical groups were also common (8%).  Publications linking chemical biomarkers 64 

to health metrics have increased dramatically in recent years.  New studies are addressing 65 

challenges related to NHANES data interpretation in health risk contexts. 66 

Conclusions.  This article demonstrates growing use of NHANES chemical biomarker data in 67 

studies that can impact risk assessments.  Best practices for analysis and interpretation must be 68 

defined and adopted to allow the full potential of the NHANES to be realized. 69 
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2. Introduction  70 

The US National Health and Nutrition Examination Survey (NHANES) is designed to 71 

assess the health and nutritional well-being of children and adults in the US 72 

(http://www.cdc.gov/nchs/nhanes/about_nhanes.htm).  Participation in the NHANES is voluntary, 73 

confidential, and follows a complex, multistage, probability cluster design.  As such, weighted 74 

NHANES data are considered representative of the entire US (non-institutionalized, civilian) 75 

population.  Thousands of volunteers are invited each year to participate via interviews, 76 

questionnaires, and examinations.  “Spot” biological samples (e.g., blood and urine at a single time 77 

point) are provided by most participants and analyzed for chemical biomarker levels.  These 78 

biomarker data are published in the National Reports on Human Exposure to Environmental 79 

Chemicals (NER) stratified by age group, gender, and race/ethnicity.  They are also made 80 

publically-available online alongside demographic information, questionnaire responses, medical 81 

examination results, and other laboratory data 82 

(http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm).   83 

The first NHANES survey (NHANES I) was conducted from 1971 to 1975.  84 

(http://www.cdc.gov/nchs/nhanes/prior_nhanes.htm).  The NHANES II (1976-1980), Hispanic 85 

HANES (1982-1984), and NHANES III (1988-1994) then preceded what is now a continuous 86 

survey (1999-present).  NHANES II was the first to evaluate biomarkers of environmental 87 

chemical exposure; specifically, blood lead levels.  Chemical biomonitoring was expanded in 88 

NHANES III (1988-1994) to include biomarkers of selected pesticides, phthalates, and volatile 89 

organic compounds (VOCs).  The number of monitored chemical biomarkers rose from 27 as 90 

captured in the first NER (NHANES 1999), to 116 in the second NER (1999-2000), 148 in the 91 

third NER (2001-2002), and 212 in the most recent (fourth) NER (2003-2004) (CDC 2001, 2003, 92 
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2005, 2009).  The July 2014 “Updated Tables” of the fourth NER include additional biomonitoring 93 

data from NHANES 2005-2006, 2007-2008, 2009-2010, and 2011-2012, bringing the current total 94 

to 298 chemical biomarkers (CDC 2014).  This most current suite of biomarkers incorporates 95 

analytes from over a dozen chemical groups, including brominated flame retardants (BFRs), 96 

dioxins and furans, environmental phenols, fungicides, herbicides, insecticides (e.g., 97 

organophosphates [OPs], organochlorines [OCs], pyrethroids, carbamates), metals/metalloids, 98 

perfluorinated compounds (PFCs), phthalates, polychlorinated biphenyls (PCBs), polycyclic 99 

aromatic hydrocarbons (PAHs), VOCs, and others. 100 

 In 2009, the US Government Accountability Office (GAO) reported that the US 101 

Environmental Protection Agency (EPA) “has made limited use of biomonitoring data in its 102 

assessment of risk posed by commercial chemicals” (GAO 2009).  The GAO further recommended 103 

that EPA develop a strategy to categorize existing biomonitoring data, identify limitations in 104 

analytic approaches, and prioritize data gaps.  The National Research Council (NRC) of the 105 

National Academies has also recommended the increased use of biomarker data to support risk 106 

assessment activities (NRC 2006, 2007, 2009).  In their 2012 publication, Exposure Science in the 107 

21st Century, the NRC reported that “The NHANES data provide a unique and growing potential 108 

for evaluating source-exposure and exposure-disease relationships in a national population-based 109 

representative sample”, and that biomarker data sets “will be essential for evaluating the efficacy 110 

of exposure reduction policies, and for prioritizing and assessing chemical risks” (NRC 2012).  In 111 

response to these reports, this study examines NHANES-related publications over the past fifteen 112 

years (1999-2013) for the purpose of highlighting specific uses of the chemical biomarker data.  113 

Attention is given to the percentage of NHANES-related publications that have focused on 114 

chemical biomarkers, and the chemical groups that have been commonly studied.  To identify 115 
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opportunities to impact risk assessment activities, publications are examined for their approaches 116 

to assessing chemical exposures, and to linking exposures to measures of human health.  117 

Consistent with the GAO recommendations, the goals of this study are to highlight the state-of-118 

the-science for interpreting NHANES chemical biomarker data, challenges that can limit the use 119 

of these data in risk assessments, and opportunities to enhance data interpretation strategies.   120 

 121 

3. Methods 122 

Publications that have reported on the US NHANES data were identified using the PubMed 123 

advanced search builder.  The PubMed search was performed in two steps (specific search strings 124 

are given in Supplemental Material, Table S1).  For step one, publications were identified between 125 

1999 and 2013 that included query terms for “NHANES” (or “National Health and Nutrition 126 

Examination Survey”) and “United States” (or “U.S.A”, “USA”, “U.S.”, “US”) in the title/abstract.  127 

Query terms for Unites States were included because publications based on non-US NHANES 128 

data (e.g., Korea NHANES) were identified in preliminary test searches.  For step two, additional 129 

query terms related to biomarkers (i.e., “biomarker”, “biomarkers”, “biomonitoring”, “urine”, 130 

“urinary”, “blood”, or “serum”) were added.  Search results from steps one and two were separated 131 

by publication year using a PubMed filter.   132 

Publications identified in step two of the literature search were manually curated using 133 

published titles and abstracts.  Publications were selected for additional analysis only if they clearly 134 

utilized NHANES chemical biomarker data.  For this investigation, “chemical biomarkers” did not 135 

include endogenous biomarkers (e.g., hormones, antibodies, and inflammatory markers), tobacco-136 

specific biomarkers (e.g., cotinine), dietary biomarkers (e.g., vitamins/nutrients, essential 137 

minerals), or biomarkers of phytoestrogens, isoflavonoids, or aflatoxin.  If a study’s use of 138 
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NHANES chemical biomarker data could not be determined using only the published title and 139 

abstract, the full text was obtained and examined to inform the final selection decision. 140 

During the manual curation, it was determined for selected publications which specific 141 

chemical biomarkers were studied and which analysis approaches used (Supplemental Material, 142 

Table S2).  Decisions regarding chemical biomarker groupings and analysis approaches for all 143 

publications were made by a single author (JRS) followed by a review of each classification by 144 

one of the other co-authors.  Specific chemical biomarkers were first organized into chemical 145 

groups using guidance from NHANES documents (e.g., 146 

http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/environmentalhealth_03.pdf).  Certain 147 

chemical groups were then combined to allow a streamlined trends analysis.  For example, dioxins, 148 

furans, and PCBs were considered as a single group, as were insecticides, herbicides, and 149 

fungicides (termed “pesticides”).  Finally, each publication was assigned to one of the designated 150 

chemical groups.  Studies that reported on at least two of the defined chemical groups were 151 

considered “multi-group”.   152 

Selected publications were also assigned to one of two primary data analysis categories, 153 

defined here as “exposure assessment” and “health association”; studies in both analysis categories 154 

are considered relevant to the risk assessment process.  Health association studies examined 155 

statistical associations between chemical biomarker levels and health measures (e.g., disease 156 

incidence, medical examination results).  Exposure assessment studies were broadly defined, and 157 

used chemical biomarker data to: 1) establish reference ranges for the US population, 2) evaluate 158 

data from other (non-NHANES) studies, 3) track exposure trends over time, 4) evaluate differences 159 

in exposure across population subsets, 5) identify important predictors of exposure, or 6) estimate 160 

the percentage of the population with exposures that exceed a reference level.  Many exposure 161 
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assessment studies performed a combination of these analyses.  Thus, it was not feasible to 162 

partition these studies into smaller categories.  Investigations that addressed both exposures and 163 

health associations were categorized as health association studies. 164 

Data were analyzed using Microsoft Excel (Office 2013, Microsoft Corporation, Redmond, 165 

WA) and SAS statistical software (v. 9.3, SAS Institute, Cary, NC).  Figures were prepared using 166 

Microsoft Excel, GraphPad Prism (v. 4.03, GraphPad Software, San Diego, CA), and R (v. 3.0.1) 167 

(Team 2013). 168 

 169 

4. Results  170 

Yearly Publications 171 

Sixty-eight publications from 1999 were identified that contained keywords related to 172 

“NHANES” and “United States” (Figure 1).  Over 400 publications were identified from 2013 173 

using the same search criteria.  These results reflect a six-fold increase over a 15-year span, and a 174 

median yearly increase of 13%.  Considerably fewer publications were identified after adding 175 

additional keywords related to “biomarkers”.  Only 27 publications from 1999 were identified that 176 

contained keywords related to “NHANES”, “United States”, and “biomarkers”.  Close to 200 177 

publications from 2013 were identified using the same keywords, indicating an approximate seven-178 

fold increase over the 1999 baseline.  Interestingly, the yearly ratios of biomarker-related 179 

publications (step two results) to total NHANES-related publications (step one results) were fairly 180 

consistent, ranging from 0.36 to 0.47 with a median value of 0.43.  Results from a simple regression 181 

analysis showed no significant linear trend (p = 0.7) in this ratio, suggesting that the proportional 182 

use of NHANES biomarker data (not specific to chemical biomarkers) has been stable over the 183 

period of time examined in this study. 184 
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Only a small percentage of the total NHANES-related publications specifically reported 185 

on chemical biomarkers (8% yearly average).  The number of identified publications elevated from 186 

five in 1999 to 44 in 2013, representing a 9-fold increase over 15 years.  The yearly ratios of 187 

chemical biomarker-related publications (manual curation results) to total NHANES-related 188 

publications (step one results) increased from 0.07 in 1999 to 0.10 in 2013.  Simple linear 189 

regression results showed a significant positive effect (p = 0.007) of publication year on ratio 190 

estimates.  This result suggests an increase over time in the proportion of NHANES-related studies 191 

that focus on chemical biomarker measurements. 192 

 193 

Chemical Groups 194 

Each publication identified through manual curation was assigned to one of eleven groups 195 

based on the chemical biomarkers that were studied (Figure 2).  Metals/metalloids were by far the 196 

most commonly studied group.  Studies of metals/metalloids (particularly lead, cadmium, mercury, 197 

and arsenic) comprised nearly half (49%) of the chemical biomarker-related publications.  The 198 

second most studied chemical group was pesticides (9%), which included OP, OC, and pyrethroid 199 

insecticides, as well as herbicides, fungicides, and halogenated phenolic compounds.  200 

Environmental phenols (including bisphenol A, triclosan, and parabens) were the third most 201 

studied group (7%), followed by phthalates (5%), PFCs (5%), PAHs (4%), dioxins/furans/PCBs 202 

(4%), VOCs (3%), and BFRs (2%).  Multi-group studies comprised 8% of the chemical-biomarker 203 

related publications.  The remaining 4% of studies focused on a group defined as “other” 204 

chemicals; seven out of the ten publications in this group focused on perchlorate.   205 

    206 

Analysis Categories 207 
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Step one of the PubMed literature search (NHANES + US query) yielded 3224 208 

publications, step two (NHANES + US + biomarkers query) yielded 1382 publications, and 209 

manual curation yielded 273 publications (Figure 3a).  Out of the 273 studies that focused on 210 

chemical biomarkers, 148 (54%) performed an exposure assessment, and 125 (46%) examined 211 

health associations. These results suggest that the chemical biomarker-related publications are 212 

evenly split between analysis categories over the past fifteen years.  Figure 3b shows the number 213 

of yearly publications for the two analysis categories.  Limited numbers of papers were observed 214 

early in the review period, so data across 1999, 2000, and 2001 were combined.  Prior to 2008, no 215 

trends were observed for either category.  However, a sharp rise in exposure assessment studies 216 

was observed in 2004, and then again in 2008.  These elevations likely reflect releases of the 217 

NHANES 1999-2000, 2001-2002, and 2003-2004 datasets (CDC 2003, 2005, 2009).  The number 218 

of yearly exposure assessment studies remained relatively flat between 2008 and 2013.  Health 219 

association studies, however, increased dramatically in number over the last five years of the 220 

review period.  In fact, nearly 70% of the curated 2013 publications focused on health associations.  221 

This suggests growing interest in using the NHANES data to link chemical biomarkers and health 222 

measures. 223 

 224 

Trends by Group and Category 225 

The number of yearly chemical biomarker-related publications are shown in Figure 4 after 226 

stratification by chemical group and analysis category.  Between 1999 and 2003, publications 227 

focused almost exclusively on metals/metalloids (28 out of 31); the strong focus on this group 228 

continued across all 15 years of the review period.  A lack of publications related to other chemical 229 

groups prior to 2004 mirrors the public release dates of the NERs; while data on metals and select 230 
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VOCs, pesticides, and phthalates were available in 1999 (from NHANES III), data on additional 231 

chemicals were not available until later years (CDC 2003, 2005, 2009).  Indeed, Figure 4 illustrates 232 

that initial studies involving PAHs were published in 2004, and those involving PFCs, 233 

dioxins/furans/PCBs, environmental phenols, and BFRs between 2006 and 2008.   234 

Exposure assessment studies preceded health association studies for most chemical groups 235 

(Figure 4).  This is not surprising given that many early studies focused on establishing biomarker 236 

references ranges for the US population (Barr et al. 2004; Calafat et al. 2008a, b; Grainger et al. 237 

2006; Nichols et al. 2007; Silva et al. 2004; Sjodin et al. 2008).  For dioxins/furans/PCBs, VOCs, 238 

BFRs, pesticides, and “other” chemicals, exposure assessment studies comprised the majority of 239 

the group-specific publications (over 70% in each case).  The number of publications was more 240 

balanced across analysis categories for metals/metalloids, phthalates, PFCs, environmental 241 

phenols, and multi-group chemicals.  For these groups, between 40% and 60% of the publications 242 

focused on exposure assessment.  The recent upward trend in health association studies (Figure 243 

3b) is reflected most clearly for metals/metalloids, environmental phenols, and multi-group 244 

chemicals (Figure 4).  An increasing focus on exposure assessments of multi-group chemicals is 245 

also evident over recent years (Figure 4). 246 

 247 

5. Discussion 248 

The NHANES continues to be the largest source of chemical biomarker data in the US.  249 

The publications included in this review have collectively reported on tens-of-thousands of 250 

measurements from representative samples of the US population.  However, it appears that only a 251 

small percentage of published studies related to the NHANES have focused on chemical biomarker 252 

data.  Indeed, for most years in our review period (1999-2013), less than 10% of the total 253 
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NHANES-related publications focused on these data.  This result highlights an opportunity for 254 

exposure scientists, epidemiologists, toxicologists, and risk assessors/managers to make better use 255 

of this vast resource.  It is expected that the focus on chemical biomarkers will rise as more 256 

scientists become aware of potential uses of the NHANES data.  Specifically, interest will increase 257 

given new methods and applications for interpreting NHANES data in health risk contexts.  The 258 

following sections discuss key findings of this review, challenges related to these findings that can 259 

limit the use NHANES data for chemical risk assessment, and examples of new methods and 260 

guidance that will help future studies overcome these challenges.  261 

 262 

Key Findings 263 

Biomarkers of metals/metalloids have been studied far more frequently than those of other 264 

chemical groups (Figures 2 and 4).  There are several reasons for this imbalance.  First, biomarker 265 

levels of select metals have been reported for a broader participant age range (including children 266 

younger than six years of age), and over more survey years.  For example, blood lead was 267 

monitored in NHANES II (1976-1980), whereas biomonitoring for environmental phenols, PFCs, 268 

and BFRs began in NHANES 2003-2004.  A second reason is that biomarker-based reference 269 

levels exist for certain metals (e.g., lead and mercury), allowing direct risk-based analysis of the 270 

NHANES measurements.  For most chemicals, surrogate biomarker reference levels are not 271 

available, thereby limiting the direct use of biomarker data in this context.  For these chemicals, 272 

models are required to link biomarker measurements to external exposure reference levels 273 

(described in detail below), like an EPA reference dose (RfD).   274 

Despite the availability of biomarker data for hundreds of other chemicals, the number of 275 

publications on metals/metalloids has actually increased over the past five years (particularly 276 
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studies of health association [Figure 4]).  However, it is also apparent that the focus is beginning 277 

to broaden across chemical groups.  In particular, there is evidence for increasing attention on both 278 

multi-group exposure assessment and health association studies (Figure 4).  Studies of this nature 279 

will be necessary in order to systematically evaluate impacts of multiple chemical stressors, and 280 

non-chemical stressors, on human health.  It is important to note, however, that these multi-group 281 

studies are restricted to the inventory of chemical biomarkers in the NHANES, and therefore still 282 

represent semi-targeted assessments (Pleil and Stiegel 2013).  As such, the discovery of broader 283 

exposure and health associations will rely on other, less targeted, datasets (Rappaport 2012; 284 

Rappaport et al. 2014). 285 

Over the entire fifteen-year review period, the number of publications was fairly balanced 286 

across analysis categories, with about half focused on exposure assessment, and half on health 287 

associations.  A surprising result was the recent dramatic increase in published health association 288 

studies (Figure 3b).  Results of our literature search (Supplemental Material, Table S2) suggest 289 

that these types of studies have been performed using biomarkers across nearly all NHANES 290 

chemical groups.  Furthermore, our results indicate that individual chemical biomarkers have been 291 

examined for associations with a variety of health measures.  For example, bisphenol A biomarker 292 

data has been examined for associations with heart disease, obesity, type-2 diabetes, allergic 293 

asthma, metabolic syndrome, peripheral arterial disease, immune dysfunction, and markers of 294 

other chronic diseases (Supplemental Material, Table S2).  The vast array of potential associations 295 

between chemical biomarkers and health measures encourages research of this nature – indeed, 296 

multiple health measures (more than 20, in some cases) have been examined for associations with 297 

biomarkers in almost all chemical groups (e.g., PAHs, PFCs, phthalates, pesticides, and 298 

metals/metalloids) (Supplemental Material, Table S2). 299 
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 300 

Challenges and opportunities for health association studies 301 

Interpreting results for thousands of conceivable associations is a daunting task (Greenland 302 

2008; Patel and Ioannidis 2014).  Newer studies have therefore begun to simultaneously evaluate 303 

relationships between chemical biomarkers and health measures as part of exposure-wide 304 

association studies (EWAS) (Patel et al. 2010; Patel et al. 2012; Patel et al. 2013; Patel et al. 2014).  305 

These studies better address statistical challenges related to multiple comparisons since more 306 

systematic methods are utilized.  For NHANES-related health association studies to be considered 307 

in a risk assessment context, however, best practices are still needed for interpreting reported 308 

associations against the background of all possible associations (real and spurious).  One approach 309 

is to compare a reported association with the median association amongst related biomarkers in a 310 

specific chemical category (Patel and Ioannidis 2014).  This comparison indicates whether a 311 

reported association is remarkable relative to background, yet is dependent on predefined 312 

categories.  An alternative approach is to first comprehensively test all possible associations, and 313 

then report the strength of a single association relative to all results.  Although this approach can 314 

be computationally prohibitive depending on model complexity, computationally efficient 315 

methods, such as frequent itemset mining, are now being systematically applied to NHANES 316 

datasets (Bell and Edwards 2014). 317 

Specific attention has been given to the cross-sectional design of the NHANES as it 318 

impacts studies of health association (LaKind et al. 2012).  Notably, concurrent measures of 319 

biomarkers and health measures from the NHANES are not useful for demonstrating temporality.  320 

Therefore, NHANES data alone are not well-suited for evaluating causation (or reverse causation) 321 

(Hill 1965), and health association studies often require follow-up targeted analysis.  Furthermore, 322 
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single spot measurements of chemical biomarkers in the NHANES may not be reliable surrogates 323 

of average or peak exposure levels, and may not be relevant to exposures experienced during 324 

critical life stages (Aylward et al. 2014; Bradman et al. 2013).  Studies have shown that large 325 

measurement error associated with spot measures can contribute to exposure misclassification and 326 

increase the likelihood for biased statistical associations (Armstrong 1998; Jurek et al. 2006).  327 

Short-lived biomarkers in particular are prone to these challenges (Lin et al. 2005; Sobus et al. 328 

2010b).  Since some short-lived biomarkers are increasingly a focus of health association studies 329 

(e.g., environmental phenols and phthalates [Figure 4]), there is a need for methods that can help 330 

minimize measurement error.  There is also a need for guidance on interpreting statistical 331 

associations between concurrent measures of short-lived biomarkers and chronic disease (LaKind 332 

et al. 2012).   333 

Other challenges for health association studies stem not from the NHANES study design, 334 

but from the biomarkers themselves, and the methods used for their quantitation.  Issues related to 335 

chemical specificity, method sensitivity, and biological relevance are well documented and 336 

generally agreed upon (NRC 2006; Sobus et al. 2010a; Zelenka et al. 2011).  Other issues, 337 

however, are still topics of intense debate.  For example, a consensus has not been reached on how 338 

and when to adjust specific biomarkers for biological matrix effects.  Levels of urinary and blood-339 

based biomarkers, in particular, may require adjustment for variable urine output and lipid content, 340 

respectively.  A recent study found that the direction (+/-), magnitude, and significance of 341 

associations between urinary phthalate metabolites and body size (waist circumference and body 342 

mass index) can differ depending on adjustments to the biomarkers (e.g., creatinine-adjusted vs. 343 

unadjusted concentration) (Christensen et al. 2014).  These results highlight a clear need for 344 

standardized biomarker adjustment and analysis practices. 345 
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Guidance documents exist that can aid the planning, analysis, reporting, and interpretation 346 

of health association studies (Rooney et al. 2014; Vandenbroucke et al. 2007).  In particular, the 347 

Biomonitoring, Environmental Epidemiology, and Short-Lived Chemicals (BEES-C) instrument 348 

developed by Lakind and colleagues (2014) targets critical issues that are unique to studies of 349 

short-lived chemical biomarkers.   This instrument can be used for assessing the quality of health 350 

association research based on epidemiological study design and biomarker selection and 351 

measurement.  It therefore serves as a resource for those planning studies using the NHANES 352 

chemical biomarker data, or those looking to evaluate published studies as part of a weight-of-353 

evidence assessment.  Discussions and evaluations surrounding the BEES-C instrument and other 354 

guidance documents are needed in order to clearly define and communicate best practices for 355 

health association studies involving the NHANES data. 356 

 357 

Challenges and opportunities for exposure assessment studies 358 

Challenges exist for certain exposure assessment studies just as they do for health 359 

association studies.  For example, measurement error can bias statistical associations between 360 

exposure metrics (e.g., dietary information and occupation) and chemical biomarker levels.  This 361 

bias can impact the identification of important exposure sources and pathways for target chemicals.  362 

From a risk assessment standpoint, however, the most important challenges are those faced when 363 

linking chemical biomarker measurements to reference exposure levels.  Since models are 364 

generally required to make these linkages, results are prone to error stemming from both the 365 

models themselves and the data inputs.  Based on our review, studies that utilized models fell into 366 

two general categories: 1) those that reconstructed exposure levels from NHANES biomarker data 367 

(reverse modeling) (e.g., (Blount et al. 2007)); and 2) those that compared biomarker 368 
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measurements to model-predicted biomarker estimates (forward modeling) (e.g., (LaKind et al. 369 

2009)).  Models used for forward (biomarker) and reverse (exposure) predictions varied 370 

tremendously in terms of their complexity, ranging from simple analytical models to complex 371 

physiologically-based pharmacokinetic (PBPK) models involving Markov Chain Monte Carlo 372 

analyses (Allen et al. 2007; Lyons et al. 2008).  In each study, the ability to make accurate exposure 373 

or biomarker predictions was dependent upon the model applicability (e.g., how well the model 374 

described the exposure-biomarker relationship), existing knowledge about the likely exposure 375 

scenarios (e.g., frequency of exposure), and measurement error (Tan et al. 2012).  376 

Challenges related to measurement error stem from a lack of repeated chemical biomarker 377 

measurements in the NHANES. Spot biomarker distributions may not reflect distributions of 378 

average biomarker concentrations, which can only be obtained from repeated measures.  For 379 

example, distribution tails (e.g., 5th and 95th percentile) are often wider for spot measurements, 380 

particularly when examining short-lived biomarkers (Aylward et al. 2014; Christensen et al. 2012; 381 

Koch et al. 2014; Sobus et al. 2011).  As such, most NHANES-related studies have compared the 382 

median (or other central tendency estimate) of a spot biomarker distribution to a point estimate 383 

based on an exposure reference level (Aylward et al. 2013).  While this approach informs 384 

exposures to the US population as a whole, it does not fully utilize the data in the upper percentiles, 385 

where there is increased probability of higher exposures.  A recent article addressed this issue by 386 

offering a mathematical approach to estimate distributions of average biomarker levels given 387 

distributions of spot measurements (Pleil and Sobus 2013).  This approach can be used to calculate 388 

population exceedance against chronic exposure-based reference levels – that is, the percentage of 389 

the US population (or subset) with inferred average exposure in excess of a reference level. 390 
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A second issue related to modeling and the lack of repeated measurements in the NHANES 391 

is the inability to interpret biomarker results for individual participants.  Especially for a short-392 

lived biomarker, a single high measurement may reflect a consistently high exposure, or a single 393 

recent elevated exposure.  Such a determination generally cannot be made given a lack of 394 

supplemental exposure data in the NHANES.  As such, individuals’ measurements have often been 395 

collectively considered to make population inferences (Angerer et al. 2011).  As an alternative, a 396 

stochastic modeling method was recently published that allows exposure evaluation at the 397 

individual participant level (Phillips et al. 2014).  This method combines exposure models and 398 

PBPK models to predict biomarker distributions that are consistent with a reference exposure level.  399 

Measurements from NHANES individuals are then interpreted probabilistically with respect to the 400 

reference level.  This approach marks a significant advancement towards interpreting participant-401 

level biomarker measurements without collecting additional samples and data.      402 

In this article, significant advancements in the approaches used to interpret NHANES 403 

chemical biomarker data have been highlighted.  Methods are now systematically evaluating data 404 

across chemicals, health measures, and study participants.  These methods are facilitating multi-405 

chemical/group assessments that will help prioritize needs for follow-up targeted assessments.  406 

Moving forward, it will become increasingly important to articulate and follow best practices for 407 

assessing biomarkers of individual chemicals, chemical groups, and the expanding NHANES 408 

chemical inventory.  This review plays an important role in this process by highlighting trends in 409 

recent research, as well as key challenges and research opportunities moving forward.   410 

 411 

Limitations of this study 412 
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A major goal of this study was to evaluate trends in the uses of NHANES chemical 413 

biomarker data using a sample of publications.  There are some limitations with the methods used 414 

for sample selection and analysis.  First, all publications evaluated here were identified using the 415 

PubMed advanced search builder.  Articles not indexed on PubMed were not captured in our 416 

search.  Second, our search was restricted to publications that explicitly listed the NHANES in the 417 

title/abstract.  It is likely that there will be some studies that utilized NHANES data without 418 

mentioning the survey name in the publication title/abstract.  Third, all PubMed searches included 419 

query terms related to “US” in the title/abstract.  This search criteria guarded against the inclusion 420 

of non-NHANES studies, but restricted the number of publications that were curated and included 421 

in the trends analysis.  Fourth, electronic publications (epubs) for 2013 were included in the results 422 

from all PubMed searches and manual curations.  The inclusion of these results elevated the 423 

number of 2013 publications for each search step.  However, only two out of 43 publications in 424 

2013 were included as part of the final manually-curated list, indicating that this should have little 425 

or no impact on the trends seen.   426 

The final limitation of this study relates to the binning of publications (second curation) 427 

based on chemical group.  NHANES biomarkers have been defined with slight differences across 428 

survey years.  As such, groupings here were based on both recent NHANES documents and 429 

empirical evidence from the selected literature (specifically, biomarkers that have been routinely 430 

co-examined were grouped together).  Using this approach, the number of biomarkers across 431 

chemical groups was variable.  For example, the group “environmental phenols” included few 432 

biomarkers, whereas “pesticides” included many biomarkers from a variety of classes.  No attempt 433 

was made to weigh groups based on the number of biomarkers.  This has implications when 434 

designating certain publications as “multi-group”.  Specifically, some multi-group publications 435 
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examined many biomarkers across all chemical groups.  Others investigated few biomarkers across 436 

only two groups.  A few publications examined many biomarkers as part of one large chemical 437 

group, and were not considered “multi-group”.        438 

Each of the limitations discussed above may have introduced some amount of error or bias 439 

into our analysis.  The main objective of this investigation, however, was to gain a better 440 

understanding of the primary uses of the NHANES data based on a sample of studies from the 441 

published literature.  The trends observed here do indeed highlight existing research challenges 442 

and opportunities to advance the science.  Future investigations of NHANES data usage will 443 

provide further information regarding the recent trends observed in the present study.   444 

 445 

6. Conclusions 446 

This article is amongst the first to investigate trends in the uses of NHANES chemical 447 

biomarker data.  Extrapolating from our results, it is likely that more than 100 articles will be 448 

published each year that examine these data.  Given this usage, it is likely that NHANES data will 449 

impact chemical risk assessment decisions.  New methods and guidelines are rapidly emerging to 450 

address challenges that face analysis, reporting, and interpretation of the NHANES data.  Since 451 

exposure assessment and health association studies are moving towards multi-chemical/group 452 

assessments (Belova et al. 2013; Patel et al. 2013; Wambaugh et al. 2013), it is increasingly 453 

important to define and adopt best research practices.  Such measures will allow the full potential 454 

of the NHANES to be realized, and defensible decisions based on the data and emerging science 455 

to be made. 456 

 457 

Figure legends 458 
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Figure 1. Yearly publications (1999-2013) related to the US NHANES (asterisks), biomarkers 459 

(squares), and biomarkers of environmental chemicals (circles).  PubMed search and selection 460 

methods are given in Supplemental Material, Table S1.   461 

Figure 2. Chemical groups studied using NHANES biomarker data. 462 

Figure 3.  Tree diagram for publications identified via PubMed searches, selected via manual 463 

curation, and categorized by data analysis approach (A).  Trends in data analysis approaches from 464 

1999-2013 (B). 465 

Figure 4. Yearly chemical biomarker-related publications stratified by chemical group and analysis 466 

category.  Darker colors reflect a higher number of publications for a particular chemical group in 467 

a particular year.  The legend (right) shows the mapping of publication count to color.  (E) = 468 

exposure assessment; (H) = health association. 469 

 470 
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