- 1 A Comparison between 2010 and 2006 Air Quality and Meteorological Conditions, and
- 2 Emissions and Boundary Conditions used in Simulations of the AQMEII-2 North
- 3 American Domain
- 4
- 5 Till E. Stoeckenius¹*, Christian Hogrefe², Justin Zagunis¹, Timothy M. Sturtz¹, Benjamin

- 6 Wells², and Tanarit Sakulyanontvittaya¹
- 7 ¹ENVIRON International Corp., Novato, CA, USA
- 8 ²U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
- 9
- 10
- 11 *Corresponding Author:
- 12 Till Stoeckenius
- 13 773 San Marin Dr., Suite 2115
- 14 Novato CA, 94998
- 15 USA
- 16 T: 415.899.0709
- 17 F: 415.899.0707
- 18 till@environcorp.com
- 19 20

21 Abstract

22 Several participants in Phase 2 of the Air Quality Model Evaluation International Initiative 23 (AQMEII-2) who are applying coupled models to the North American domain are comparing 24 model results for two years, 2006 and 2010, with the goal of performing dynamic model 25 evaluation. From a modeling perspective, the differences of interest are the large reductions in 26 domain total emissions of NO_x (21%) and SO₂ (37%) from 2006 to 2010 and significant 27 differences in meteorological conditions between these two years. The emission reductions 28 occurred mostly in the eastern U.S, with some reduction in emissions from western wildfires 29 in 2010. Differences in meteorological conditions both confound the impact of emission 30 reductions on ambient air quality and provide an opportunity to examine how models respond 31 to changing meteorology. This study is aimed at documenting changes in emissions, modeled 32 large-scale background concentrations used as boundary conditions for the regional models, 33 and observed meteorology and air quality to provide a context for the dynamic model 34 evaluation studies performed within AQMEII-2. In addition to warmer summer temperatures, 35 conditions in the eastern U.S. summer of 2010 were characterized by less precipitation than in 36 2006, while western portions of the U.S. and Canada were much cooler in 2010 due to a 37 strengthening of the thermal trough over the Southwest and associated onshore flow. Summer 38 ozone levels in many portions of the Northeast and Midwest were largely unchanged in 2010 39 despite reductions in precursor emissions. Normalization of the ozone trend, to account for 40 differences in meteorological conditions, including warmer summer temperatures in 2010, 41 shows that the emission reductions would have resulted in lower ozone levels at these 42 locations if not for the countervailing influence of meteorological conditions. Winter mean 43 surface temperatures were generally above average in 2006 whereas below average 44 temperatures were noted in the Southeast and northern plains in 2010, consistent with a 45 greater frequency of cold arctic air outbreaks. In general, changes in observed air quality as 46 measured at U.S. monitoring sites appear to be consistent with differences in emissions and 47 meteorological conditions between 2006 and 2010. Two potential inconsistencies were noted 48 which warrant further investigation: 1) an increase in particulate nitrate during the winter in 49 the Midwest despite lower emissions of NO_x and 2) lower than expected SO_2 reductions in the 50 Southeast during the winter.

51 Keywords

52 AQMEII, air quality – meteorology interactions, emission trends, ozone trends, synoptic types

53 **1. Introduction**

54 Development of accurate models for simulating atmospheric trace gas composition is a key 55 component of an effective air quality management program. The Air Quality Model 56 Evaluation International Initiative (AQMEII) was developed to fulfill the need to both better 57 understand uncertainties in regional-scale model predictions and to foster continued model 58 improvement by providing a collaborative, cross-border platform for model development and 59 evaluation in North America and Europe (Galmarini and Rao, 2011).

60 While Phase 1 of the AQMEII focused on evaluation of offline air quality models forced by

61 results from separately executed meteorological models (Galmarini et al., 2012), Phase 2 of

62 AQMEII (AQMEII-2) focused on evaluation of online-coupled models capable of simulating

63 feedbacks between atmospheric trace gas composition and meteorological conditions.

64 AQMEII-2 included the option for participants to evaluate model performance for two

65 individual calendar years: 2006 and 2010. As emissions from anthropogenic sources were

66 reduced substantially during the interval between these two years, comparing model results

67 for 2006 with 2010 provides an opportunity to examine the ability of coupled models to

68 simulate the impact of emission reductions on both air quality and the potential feedbacks

69 from air quality - to meteorology. More generally, comparing model predictions across

70 multiple years allows dynamic model evaluation, i.e. assessing the models' ability to respond

71 to changes in forcing factors (Dennis et al., 2010).

72 Regional scale online-coupled models are driven by estimates of trace gas and particulate 73 matter emissions and meteorological and chemical boundary and initial conditions. Changes 74 in these inputs between 2006 and 2010 drive the 2006 – 2010 differences in predicted air 75 quality. It is therefore important to understand observed changes in air quality and 76 meteorological conditions between the two years in order to better understand the model 77 results and provide a context for dynamic model evaluation studies. We present here a 78 summary of the key observed meteorological and air quality features of 2006 and 2010 79 together with a summary of the emission inventories and large-scale modeled air quality fields 80 used to specify chemical boundary conditions used by all AQMEII-2 participants. As 81 modeling of both 2006 and 2010 has thus far only been conducted by AQMEII-2 participants 82 for the North American domain, our analysis focusses on North America. Moreover, as 83 discussed in the next section, year specific emission information for 2006 and 2010 was 84 available only for the U.S., therefore the analysis of emissions and observed air quality is

- 85 limited to the U.S. Comparisons of observed meteorological and air quality conditions with
- 86 model predictions are not included in this paper but are the subject of several companion
- 87 papers (Campbell et al., 2014; Hogrefe et al., 2014; Wang et al., 2014); the current study
- 88 provides context for these studies.

89 **2. Materials and Methods**

90 2.1 Air Quality

91 Air quality observations from all available monitoring sites in the U.S. for 2006 and 2010 92 were extracted from the U.S. Environmental Protection Agency (EPA) Air Quality System 93 (AQS) and processed into seasonal means by Hogrefe et al. (2014). Seasons were defined by 94 month as follows: winter (December – February), spring (March – May), summer (June – 95 August) and fall (September - November). Monitoring data from sites in Canada and Mexico 96 were not included in this study because year specific emissions for 2006 and 2010 were only 97 available for the U.S. (Section 2.2) and the resulting air quality impacts are expected to be 98 most pronounced at U.S. monitoring locations. Daily maximum running 8-hour average ozone 99 concentrations (MDA8O3) were extracted from AQS and averaged over each season. Sites 100 with less than 75% valid MDA8O3 for a season were excluded from the analysis. Daily 101 average PM_{2.5} concentrations were obtained from both 24-hour averages of continuous PM_{2.5} 102 monitors which report hourly data and 24-hour integrated (filter-based) PM_{2.5} measurements; 103 the daily averages were then averaged over each season. Seasonal averages based on PM_{2.5} 104 sites which report hourly data were excluded if less than 75% of hours had valid data, PM_{2.5} 105 sites with either daily or 1-in-3 day sampling schedules were excluded if fewer than 75% of 106 schedule sample days had valid daily averages; PM_{2.5} sites with 1-in-6 day sampling 107 schedules were excluded if fewer than 15 valid samples were reported for the season. Hourly 108 SO₂ data were averaged over each season and sites with less than 75% valid hourly values 109 were removed from the analysis.

110 2.2 Emissions

111 Gridded, hourly, model-ready emissions for 7 species (CO, NH₃, NO_x, PM₁₀, PM_{2.5}, SO₂,

- 112 VOC) and 20 major anthropogenic source categories were extracted from data files used by
- all AQMEII-2 North American domain participants (Pouliot et al., 2014), processed into
- seasonal totals, and then divided by the number of days in each season to obtain daily average
- 115 emissions by season for each U.S. state and for Canada and Mexico. For model grid cells

116 which straddle state or country boundaries, non-point source emissions were assigned to the

- state or country accounting for the majority of the grid cell area. Given the relatively small 12
- 118 km horizontal grid resolution, the resulting emission allocation errors are negligible. Point
- sources were assigned to states and countries based on their actual location.

120 Biogenic and geogenic emissions, which can have significant impacts on air quality, were not

- 121 provided as *a priori* emission inputs, rather AQMEII-2 participants were expected to derive
- 122 the emissions using coupled models. In-line calcuations of these emissions generally differ
- 123 from one model to the next, but were not included here given our focus on characterizing
- 124 forcings common to all models (i.e., anthropogenic emissions and large-scale background
- 125 concentrations used to specify chemical boundary conditions) as well as observed
- 126 meteorological and air quality conditions. We note, however, that the bio- and geogenic
- 127 emissions derived within the coupled models were likely influenced by the 2006 2010
- 128 differences in meteorological conditions.

129 2.3 Meteorology

- 130 Meteorological data were obtained from two sources: 1) gridded (approximately 12 km
- horizontal resolution) 2006 and 2010 seasonal means for key surface and upper air parameters
- and cumulative precipitation data were obtained from initialization fields for the North
- 133 American Model via the NOAA NOMADS server (Rutledge et al., 2006) and 2) seasonal
- anomalies were obtained from the NCEP/NCAR 40-year Reanalysis data (Kalney, et al.,
- 135 1996) via the NOAA/ESRL Physical Sciences Division, Boulder Colorado from their Web
- 136 site at http://www.esrl.noaa.gov/psd/.

137 3. Results

138 3.1 Emissions

- 139 Modeling of the North American domain by AQMEII-2 participants used emission
- 140 inventories for 2006 and 2010 derived from U.S. EPA's 2008 emissions modeling platform
- 141 with year-specific adjustments to activity levels and emission factors for on-road and off-road
- 142 mobile sources, use of year-specific continuous emissions monitoring systems (CEMS) data
- 143 for the large point sources where CEMS data were available, and year-specific fire emissions
- 144 estimates. Updated estimates of Canadian emissions and Mexican emissions developed for
- 145 2006 were used without adjustment in the 2010 inventory (Pouliot, et al., 2014). Thus the only
- 146 differences between the 2006 and 2010 modeling inventories are changes to mobile sources,

147 CEMS point sources and fire emissions in the U.S. For this reason, the following discussion

148 of emission changes is limited to U.S. emissions and the subsequent discussion of observed

149 differences in air quality is focused on the U.S as well. Biogenic and wind-blown dust

150 emissions were calculated on-line by each modeling group and were not available for use in

151 this study.

152 Significant reductions in emissions from electric power generation occurred between 2006 153 and 2010 in the eastern U.S. as reflected in summaries of total U.S. sub-regional emissions 154 (Fig. 1; sub-region definitions in Fig. 2). Seasonal reductions of 31% to 52% occurred in SO₂ 155 and 22% to 15% in NO_x in the Midwest, Northeast, and Southeast (Table 1). SO₂ emissions 156 also decreased in other sub-regions but by smaller amounts. Comparable NOx reductions 157 occurred in other sub-regions except for a smaller (11%) reduction in the South-Central sub-158 region. NOx reductions varied seasonally for the large sources with CEMS (mostly electric 159 utilities) as shown in Table 2. Utilities in the Midwest and Northeast already had significant 160 controls in effect during the summer season by 2006 and only minor additional summer 161 season reductions occurred by 2010 whereas large reductions occurred year-round between 162 2006 and 2010 in the Southeast where summer season controls had not previously been 163 widely applied. Winter season NO_x reductions for large point sources with CEMS were more 164 comparable across these regions, reflecting the expansion of ozone focused summer season 165 NO_x controls to year round controls aimed at reducing PM_{2.5} under the Clean Air Interstate 166 Rule (CAIR). Nevertheless, total NO_x emission reductions were similar in winter and summer 167 in the Northeast as the seasonal difference in the utility emission reductions is diluted by large 168 but seasonally invariant reductions in mobile sources and the (assumed) 0% change in area 169 source emissions.

PM_{2.5} emissions showed little change overall except in the western sub-regions. Both PM and
anthropogenic VOC emissions were strongly elevated in the summer of 2006 in the West due
to major wildfires: in the 13 western states, 6.7 million acres burned in 2006 as compared to
1.5 million acres in 2010 (NIFC, 2014). Apart from the influence of fires, there were small
reductions in on-road and off-road mobile source VOC emissions.

- 175 Fig. 1. Winter (Win) and summer (Sum) mean daily emissions for 2006 and 2010 used in
- AQMEII-2 simulations for U.S. regions defined in Fig. 2. (biogenic VOC and NO_x emissionsare not included).

179 Fig. 2. U.S. sub-regions used to summarize emissions and air quality.

- 180
- 181

182 Table 1. Fractional changes in annual U.S. emissions [(2010 – 2006)/2006] by sub-region

183	(non-U.S.	emissions	in the	North A	America	modeling	domain	are unchanged	d)
	`					0		0	

	CO	NH ₃	NO _x	PM ₁₀	PM2.5	SO_2	VOC
Midwest	-20%	1%	-25%	5%	7%	-36%	-7%
Northeast	-25%	-1%	-22%	-1%	-3%	-44%	-11%
Plains	-6%	1%	-18%	-5%	10%	-17%	3%
South-Central	-15%	1%	-11%	1%	4%	-11%	-2%
Southeast	-23%	0%	-25%	0%	0%	-52%	-9%
West	-50%	-16%	-19%	-22%	-46%	-26%	-36%
West Coast	-37%	-13%	-25%	-36%	-50%	-25%	-33%
TOTAL:	-26%	-3%	-21%	-9%	-14%	-37%	-13%

185

186	Table 2. Reductions in NOx emissions by 2010 relative to 2006 levels for U.S. regions (CEMS
187	point source emissions values obtained from continuous emission monitoring data).

NO	CEMS	S Point	All Sources		
NOx	Sou	rces			
% change	Winter	Summer	Winter	Summer	
Midwest	-54%	-7%	-30%	-16%	
Northeast	-37%	-6%	-21%	-19%	
Plains	-35%	-29%	-20%	-17%	
South-Central	-8%	-13%	-11%	-11%	
Southeast	-55%	-36%	-26%	-22%	
West	-23%	-26%	-16%	-22%	
West Coast	26%	1%	-22%	-27%	

188

189 *3.2 Boundary Conditions*

190 Chemical boundary conditions for a number of gas phase species as well dust, elemental 191 carbon, organic carbon, and sulfate used in the coupled model simulations performed by each 192 AQMEII-2 participating group were derived from global fields generated under the MACC 193 project using the IFS-MOZART modeling system which also incorporated satellite data for 194 selected variables (Inness et al., 2013). Boundary conditions (BCs) can have a significant 195 impact on regional model predictions (Schere et al., 2012) and therefore differences between 196 2006 and 2010 in IFS-MOZART simulations over North America, in particular over inflow 197 regions, can be expected to significantly contribute to differences in regional model 198 predictions. While quantitative estimates of the impact of changed BC between 2006 and

199 2010 on changes in total pollutant loadings in the North America simulations were not 200 available at the time of this analysis, Hogrefe et al. (2014) present a sensitivity study towards 201 changed BC for January and July 2006 while Giordano et al. (2014) compare pollutant 202 concentrations simulated by IFS-MOZART and the AQMEII-2 regional models for 2010 to 203 estimate the degree to which BC affect regional simulations. In this study, we complement 204 their analyses by presenting comparisons of IFS-MOZART seasonal mean mid-tropospheric predictions over North America to gain some insight into the likely influence of large-scale 205 206 background changes between 2006 and 2010 on the regional model predictions based on the 207 assumption that mid-tropospheric conditions are roughly indicative of impacts of BC

208 tendencies on concentrations at the surface.

209 IFS-MOZART mid-tropospheric seasonal mean ozone is generally lower in 2010 as compared 210 to 2006; the decreases are smaller during the summer (generally less than 5 ppb though as 211 large as 10 ppb in some inflow regions over the Pacific, Canada and the Gulf of Mexico) but 212 larger during the rest of the year with winter and spring decreases reaching 10-20 ppb over 213 the Pacific and Canada (Fig. 3). Mid-tropospheric fine dust was predicted by IFS-MOZART 214 to be significantly lower during the summer and fall of 2010 as compared to 2006 but during 215 spring dust levels over the Pacific (which are typically transported westward towards the 216 U.S.) were higher in 2010, potentially indicating greater influx of fine dust over the North 217 American west coast. Spring dust levels over the interior west and eastern U.S. were 218 nevertheless lower, suggesting reductions in windblown dust emissions simulated by the IFS-219 MOZART system over most of the U.S. in 2010 outweighed any influence of long-range 220 transport (Fig. 4). Examination of seasonal mean IFS-MOZART fine dust patterns in 2006 221 and 2010 (not shown) indicates that the pattern of 2010-2006 differences seen in Fig. 4 is due 222 primarily to the presence of a more concentrated Asian dust plume stretching further west 223 across the Pacific coupled with less dusty conditions over the Great Plains in 2010 224 presumably due to meteorological conditions less conducive to the formation of windblown 225 dust. The summer mean IFS-MOZART fine dust maps are also suggestive of less African dust 226 reaching the U.S. during the summer of 2010. The spring spatial pattern of mid-tropospheric 227 sulfate aerosol 2010 – 2006 differences predicted by IFS-MOZART (Fig. S3) also shows 228 enhanced transport across the Pacific in 2010 relative to 2006, consistent with a 229 meteorological regime more favorable to eastward transport in 2010 although higher 230 emissions of both sulfate and dust in Asia may have been a contributing factor. Organic

- 231 matter and fine sea salt 2010-2006 differences in the IFS-MOZART fields were small except
- 232 for localized large decreases in summer organic matter in western fire areas (not shown).

Fig. 3. Difference (2010 – 2006) in seasonal mean mid-tropospheric (~750 mb) ozone

235 concentrations (ppb) as predicted by IFS-MOZART.

236

- Fig. 4. Difference (2010 2006) in seasonal mean mid-tropospheric (~750 mb) fine dust concentrations (μ g/m³) as predicted by IFS-MOZART.
- 240
- 241 3.3 Observed Air Quality
- 242 Significant differences are evident in observed air quality conditions in the U.S. between 2010
- and 2006. Summer mean MDA8O3 concentrations were generally lower in 2010 than in 2006
- 244 except for the Northeast and upper Midwest where there were increases at many sites along

- the Washington to Boston urban corridor and in the Chicago area, and near zero (+/- 2 ppb)
- changes away from the major urban areas (Fig. 5). Increases also occurred in extreme
- 247 southeastern California, Phoenix, and at one site in southwestern Colorado. Similar spatial
- 248 patterns are seen in 2010 2006 differences in the annual 4th highest MDA8O3, the
- 249 contiguous three year average of which is the summary statistic referenced in the U.S. EPA's
- 250 primary (health-based) National Ambient Air Quality Standard (Fig. S1). Winter mean
- 251 MDA8O3 concentration differences (2010 2006) are mixed: increases were observed at
- 252 most eastern urban sites while a combination of increases and decreases occurred in the west.
- 253 Note that fewer ozone monitoring sites operate during the winter as compared to the summer.

Fig. 5. Difference (2010 – 2006) in seasonal mean MDA8O3 ozone concentrations (ppb)
during winter (top) and summer (bottom) at U.S. monitoring sites.

- 258 Summer and winter mean SO₂ concentrations generally declined in the Northeast and upper
- 259 Midwest between 2006 and 2010 with smaller reductions in the Southeast although increases
- 260 were observed at isolated sites (Fig. 6). Many SO₂ monitors are located near large sources and
- 261 may thus be more influenced by emission changes occurring for a variety of reasons at the
- 262 individual sources rather than at a region-wide level.

Fig. 6. Change (2010 – 2006) in seasonal mean SO₂ concentration (ppb) during winter (top)
and summer (bottom) at U.S. monitoring sites.

266 Summer mean PM_{2.5} concentrations decreased at many sites throughout the U.S. (Fig. 7). Of

267 the sites shown having differences falling within $\pm -2 \mu g/m^3$, the sites in the Florida peninsula

268 in particular (where African dust impacts are most noticeable) all showed negative

269 differences, consistent with the IFS-MOZART simulation results (Fig. 4). Winter mean

- 270 concentrations also decreased in the major urban areas in the Northeast, upper Midwest and
- the far west but increased or were largely unchanged elsewhere with increases most notable in
- 272 central Ohio, central Indiana, Iowa, Minnesota, and a few locations in the Intermountain
- 273 West. Annual 98th percentile daily maximum PM_{2.5} concentration (which is the design value

- 274 referenced in U.S. EPA's NAAQS), showed a mixed pattern of increases and decreases,
- 275 depending on local conditions (Fig. S2).

279 3.4 Meteorological Conditions

280 Meteorological conditions during 2006 and 2010 differed markedly in both the winter and

- summer seasons. Winter surface temperatures were below normal in the Southeast and
- 282 northern plains during 2010. In contrast, the winter of 2006 was generally warmer than
- average (Fig. 8). Wind speeds were also generally lower in the winter of 2010. Winter sea-
- 284 level pressure patterns (Fig. 10) are consistent with greater northerly component winds during

- 285 2010 as compared to 2006 in the eastern U.S. and Canada. This enhanced flow out of the
- 286 north is consistent with the negative temperature anomalies shown in Fig. 8. Winter
- 287 precipitation patterns were generally similar in 2006 and 2010 but with more precipitation in
- 288 California during 2006 (Fig. 11).
- 289 Summer surface temperatures were above normal and wind speeds were below normal in the
- eastern U.S. in 2010 as compared to 2006 whereas most of the central and western US and
- 291 Canada experienced above normal temperatures and near normal to below normal wind
- speeds in 2006 (Fig. 9). This pattern is consistent with a stronger surface pressure gradient
- 293 between the pacific southwest high and thermal trough over the Southwest during the summer
- of 2010 (Fig. 10), which created stronger northwest flow along much of the west coast.
- 295 Surface pressures were higher than average and pressure gradients less tight in the Southeast
- during summer 2006 as compared to 2010. Summer precipitation throughout much of the
- eastern U.S. and Canada was lower in 2010 as compared to 2006 (Fig. 11).
- 298
- 299
- 300
- 301
- 302
- 303

Fig. 8. Surface wind speed (top) and temperature (bottom) anomalies for winter 2006 (left)
 and 2010 (right). Image provided by the NOAA/ESRL Physical Sciences Division, Boulder

- 308 Colorado from their Web site at http://www.esrl.noaa.gov/psd/.
- 309
- 310

- 311 Fig. 9. Surface wind speed (top) and temperature (bottom) anomalies for summer 2006 (left)
- and 2010 (right). Image provided by the NOAA/ESRL Physical Sciences Division, Boulder
- 313 Colorado from their Web site at http://www.esrl.noaa.gov/psd/.
- 314
- 315

- 316 Fig. 10. Winter (top) and summer (bottom) season mean sea level pressure for 2006 (left) and
- 317 2010 (right); data from NCEP NAM analysis field via NCDC NOMADS GrADS server
- 318 (http://nomads.ncdc.noaa.gov/dods/NCEP_NAM_ANALYSIS/Anl_Complete).
- 319

- 320 Fig. 11. Cumulative total precipitation for winter (top) and summer (bottom) in 2006 (left)
- and 2010 (right); data from NCEP NAM 6-hour precipitation analysis field via NCDC
- 322 NOMADS GrADS server
- 323 (http://nomads.ncdc.noaa.gov/dods/NCEP_NAM_ANALYSIS/6hr_Pcp).

324 **4. Discussion**

- Results presented in the previous section show the 2006 and 2010 differed substantially in
- 326 terms of emissions, boundary conditions, meteorological conditions and observed air quality.
- 327 Large reductions in SO₂ and, to a lesser extent, NO_x emissions in 2010 relative to 2006 would,
- 328 in the absence of other factors, be expected to result in significant reductions in SO₂ and
- 329 sulfate and nitrate PM concentrations. O₃ reductions would also be expected in at least some
- 330 locations as a result of NO_x and VOC emission reductions. Factors potentially modulating
- these expected changes in ambient concentrations include the influences of large-scale
- 332 background concentrations specified through boundary conditions, meteorology, and changes

in the efficiency of secondary PM and O₃ formation from precursor species via non-linearchemical reactions.

335 Meteorological conditions during 2010 differed in significant ways from 2006 as described in 336 Sec. 3.4 and these differences can be expected to have influenced differences in ambient air 337 quality. Stronger high pressure in the Southeast, warmer temperatures and below normal 338 precipitation in the eastern U.S. and lower wind speeds along the East Coast during the 339 summer of 2010 suggest greater stagnation and more favorable conditions for primary 340 pollutant buildup and ozone formation throughout much of the East in 2010 as described 341 below. During 2006 on the other hand, above normal temperatures and lower wind speeds 342 prevailed in much of the central and western U.S., suggesting conditions potentially more 343 favorable to ozone formation in these locations as compared to 2010. Colder temperatures and 344 lighter average winds in the northern plains and southeast during winter 2010 as compared to 345 2006 are conducive to shallow mixing layers and reduced dispersion. These conditions may 346 have contributed to the higher SO₂ concentrations during the winter of 2010 seen at some 347 monitors in these areas (Fig. 6). Enhanced precipitation along the California coast in the 348 winter of 2010 is consistent with stormier weather and associated stronger mixing and marine 349 air mass influence, suggesting a reduced occurrence of winter stagnation events and may have 350 contributed to lower pollutant concentrations as see, for example, for PM2.5 (Fig. 7).

351 Lower IFS-MOZART predicted mid-tropospheric ozone in 2010 (Fig. 3) over inflow regions 352 suggests lower BC ozone influx with concentrations as much as 10-20 ppb lower during non-353 summer months and 5 - 10 ppb lower during the summer. However, observed surface ozone 354 concentrations in the U.S. are not uniformly lower in either season. Factors influencing 2010 - 2006 ozone differences are discussed later in this section. IFS-MOZART mid-tropospheric 355 356 fine dust and sulfate aerosol patterns described in Sec. 3.2 appear consistent with the observed 357 stronger, more zonal mean 700 mb flow producing more westward transport over the Pacific 358 and looser 700 mb height gradients over the Great Plains (consistent with less windblown 359 dust) in 2010 (not shown). Differences in IFS-MOZART fine dust and sulfate aerosol 360 patterns between 2006 and 2010 suggest BCs likely contributed $0.5 - 2 \,\mu g/m^3$ more fine PM 361 during the spring (especially in the western U.S. and Canada) but summer PM levels in the 362 interior West and eastern portions of the domain were likely driven lower by a similar size 363 reductions in BC concentrations within the characteristic summer southwest monsoon in the 364 West and prevailing southeasterly flow in the Southeast, respectively. Summer PM_{2.5} 365 concentrations were lower at surface monitoring sites in both regions in 2010 although

determining the degree to which the cleaner BCs contributed to this reduction will requirefurther analysis.

368 Comparison of 2006 – 2010 changes in SO₂ emissions (Fig. 1) and seasonal mean 369 concentrations (Fig. 6) suggest there may be some mismatches between emission reductions 370 and concentration reductions for this primary pollutant. Regional comparisons of SO₂ 371 reductions in the inventory with changes in sub-region average seasonal mean concentrations 372 for winter and summer are shown in Fig. 12. As shown in Fig. 1, emissions in the Midwest, 373 Northeast, and Southeast sub-regions are much larger than in other sub-regions so the 374 comparisons in Fig. 12 are most useful for these three sub-regions; concentrations and relative 375 changes in concentrations in the other sub-regions are likely influenced by outliers and 376 emissions transported from upwind areas. During the summer, relative concentration 377 reductions were roughly similar to the emission reductions. Concentration reductions during 378 the winter were also similar to the emission reductions in the Midwest and Northeast. In the 379 Southeast, however, the 45% reduction in emissions far exceeds the 16% reduction in average 380 ambient concentration. Over 80% of the SO₂ emissions in the Southeast for 2006 (and over 381 95% of the 2006 - 2010 SO₂ emission reductions) are attributed to CEMS sources where 382 stack emissions are directly measured, so any errors in the emission totals are likely to be 383 minor. Examination of the ambient monitoring data reveals large inter-site variability in SO₂ 384 trends, suggesting that intra-sub-regional differences in seasonal emission patterns coupled 385 with the relatively sparse SO₂ monitoring network could be responsible for the apparent 386 inconsistency. Enhanced stagnation, consistent with the colder temperatures and lighter winds 387 in the winter of 2010 (Fig. 8) may have further contributed to the less than expected reduction 388 in SO₂ concentrations. AQMEII-2 model performance results for SO₂ should be examined 389 closely for the Southeast region to verify if the emissions and ambient trends are actually 390 consistent with each other.

Fig. 12. Comparison of 2006 to 2010 sub-regional relative changes (2010/2006 – 1) in SO₂

- 393 Differences (2010 2006) in seasonal mean PM_{2.5} concentrations show spatial
- inhomogeneities during winter (Fig. 7) which appear inconsistent with reductions in SO₂ and
- 395 NO_x emissions (Fig. 1). Seasonal mean PM_{2.5} speciation data calculated from observations
- 396 collected at CSN and IMPROVE network monitoring sites as provided by Hogrefe (2014)
- 397 were examined to determine which PM species contributed to the different trends in winter
- 398 mean PM_{2.5} in the Northeast, where PM_{2.5} mass was generally 2 to $6 \mu g/m^3$ lower in 2010 in
- 399 both summer and winter, as compared to the Midwest where PM_{2.5} was higher in 2010 at most
- 400 sites during the winter but lower during the summer. This analysis was restricted to 15 sites
- 401 with valid data in both 2006 and 2010 in 5 Midwest states (IL, IN, IA, MN, OH) and 4

402 Northeastern states (MA, NH, RI, VT). Results for elemental carbon (EC), NH4, NO3, organic 403 carbon (OC), SO₄, total carbon (TC), soil particles and other PM mass are summarized in Fig. 404 13 (see RTI, 2013 for details of data collection and analysis methods). Winter PM increases in 405 the Midwest were found to be associated with a 60% increase in the average NO₃ 406 concentration and a 28% increase in the average NH₄ concentration whereas SO₄ declined 407 slightly (5%). Changes in the remaining species were smaller except for an average 14% 408 reduction in unidentified ("Other") PM. However, valid values of Other PM were only 409 available at 7 of the 15 monitoring sites where valid NO₃, SO₄ and NH₄ differences could be 410 calculated and may not be representative of average changes over the full 15 site network. In 411 the Northeast, on the other hand, reductions were observed in all species during the winter. 412 Changes in PM component species were similar between the two sub-regions during summer. 413 Inspection of seasonal mean species concentrations (Table 3) shows that summer particulate 414 nitrate mass is low, consistent with greater partitioning of total NO₃ as HNO₃ under warmer

415 temperatures.

416 The observed large, year round reductions in SO₄ concentrations in the Northeast are

417 consistent with the SO₂ emission reductions shown in Fig. 1. A similar relationship is seen

418 during summer in the Midwest but winter mean SO₄ concentrations declined only slightly as

419 noted above despite a 32% reduction in Midwest winter SO₂ emissions. In contrast, reductions

420 in winter mean SO₂ concentrations in the Midwest (averaged over 82 sites with valid data in

421 both years) are on par with the Midwest winter SO₂ emission reductions (Fig. 12). Assuming

422 SO₄ neutralization was not limited by availability of free ammonia, particulate SO₄ formation

423 must have responded to factors which overrode the influence of lower SO_2 emissions. In fact,

424 2010-2006 SO_4 concentration differences ranged from -32% to +36% over the 15 monitoring

sites included in this analysis, indicating a wide variation in SO₄ formation efficiencies. The

426 correlation between relative SO₂ and SO₄ changes at the 6 sites with co-located measurements

427 is very poor ($\mathbb{R}^2 < 0.01$), also indicating variable local influences of meteorological and

428 chemical conditions on SO₂ oxidation during winter. Winter NO_x emissions decreased 30% in

429 the Midwest (Table 1) while NH₃ emissions were nearly unchanged in the modeling

430 inventory. Particulate NH4 increased at all but one site and increases in NO3 are closely

431 correlated with the increases in NH₄ ($r^2 = 0.84$) although the regression fit shows a 2.3 μ g/m³

432 increase in NO₃ for each 1 µg/m³ increase in NH₄, well below the 3.4:1 NO₃/NH₄ molar mass

433 ratio for NH₄NO₃.

- 434 Stanier et al. (2012) studied winter NO₃ episodes in Wisconsin and identified a relationship
- 435 between elevated NO₃, snow cover and near freezing temperatures which promote fog
- 436 formation and stabilization of the boundary layer. While the causality chain resulting in the
- 437 winter NO₃ episodes remains uncertain, it is interesting to note that the 2009-2010 winter was
- 438 exceptionally snowy in many parts of the eastern U.S., including the Midwest (NCDC, 2010),
- 439 thus suggesting the conditions found by Stanier et al. to be favorable for elevated NO₃
- 440 concentrations may have been more prevalent in 2010. The simple fact that colder
- 441 temperatures prevailed during the 2010 winter may also have reduced NO₃ volatilization
- 442 relative to winter 2006. AQMEII-2 modeling results should be examined to determine if the
- 443 2010 upper Midwest particulate NO3 increase is reproduced in the simulations. Diagnostic
- 444 analyses of model results may shed further light on the underlying causes of the winter NO3
- 445 increase.

447 Table 3. Winter and summer mean SO₄ and NO₃ concentrations (µg/m³) in 2006 and 2010

448 from CSN monitoring data for Northeastern states (Region 1) and five Midwestern states

449	(Region 2)	during	winter	and	summer.
-----	------------	--------	--------	-----	---------

$\mu g/m^3$	Winter					
	SC	SO_4		O 3		
<u>Region</u>	2006	2010	2006	<u>2010</u>		
Northeast	2.90	2.14	2.54	2.27		
Midwest	2.57	2.47	3.36	4.56		
		Summer				
	SC	SO ₄		O 3		
Region	2006	<u>2010</u>	2006	2010		
Northeast	5.33	3.54	0.521	0.550		
Midwest	4.57	3.35	0.582	0.743		

452 Fig. 13. Tukey box plots (outliers not shown) of PM_{2.5} species concentration differences 453 ($2010 - 2006; \mu g/m^3$) as measured at CSN sites in the Northeast (left) and Midwest (right) 454 during winter (top) and summer (bottom).

- 455 Ozone concentration differences between 2010 and 2006 shown in Fig. 5 exhibit distinctive
- 456 regional patterns resulting from a combination of ozone sensitivity to NO_x emission
- 457 reductions, boundary conditions, and meteorological conditions. Higher winter mean
- 458 MDA8O3 in eastern urban areas in 2010 may be linked to reduced titration by NO which is
- 459 more of a controlling factor during winter as a result of lower NOx emissions (Fig. 1).
- 460 Mixed trends in winter ozone levels at rural locations (Fig. S4) suggest either that local
- 461 conditions overwhelmed expected reductions from lower large-scale background ozone levels
- 462 or that the IFS-MOZART predictions of lower background ozone in 2010 are not valid.

During summer, the higher temperatures in most U.S. locations east of the Mississippi River 463 464 and lower wind speeds along the East Coast in 2010 (Fig. 9) are consistent with conditions 465 generally more favorable to ozone formation (NRC, 1991). As a result, any ozone reductions 466 resulting from emission decreases or reductions in large-scale background ozone in 2010 may 467 have been masked by the more favorable meteorological conditions. BC influences during the 468 summer peak ozone season in eastern North America are generally at a minimum in any case 469 (EPA, 2013). Camalier et al. (2007) developed a generalized linear model (GLM) from 470 historical data relating MDA8O3 in major U.S. cities to key meteorological parameters and 471 used the fitted model to calculate adjusted multi-year trends in summer (May – September) 472 mean MDA8O3 that compensate for year-to-year variations in meteorological conditions. 473 Analysis of the GLM fits by Camalier et al. showed that a set of eight meteorological 474 variables related to temperature, relative humidity, vertical stability and wind patterns are the 475 most important variables associated with ozone at most locations. Model fits to MDA8O3 476 were best in eastern U.S. cities with weaker correlations in other U.S. cities. Adjustments 477 calculated from the GLM model fits to the maximum MDA8O3 across the monitoring 478 network in each U.S. city (based on Core-Based Statistical Areas or CBSAs as defined by the 479 U.S. Census Bureau) and to the MDA8O3 at each rural site included in the CASTNET 480 monitoring network have been computed by U.S. EPA 481 (http://www.epa.gov/airtrends/weather.html). The adjusted values were calculated as the 482 GLM model prediction of the May-September mean MDA8O3 concentrations after removing 483 the variability due to meteorological effects (i.e., the GLM prediction when all daily 484 meteorological parameter values for a given location are set equal to their long-term mean). 485 The top row of Fig. 14 shows the magnitude of the meteorological adjustment for 2006 and 486 2010 (computed as difference between the unadjusted and adjusted seasonal mean MDA8O3 487 concentrations), positive values indicate regions where meteorological conditions increased 488 ozone concentrations over what they would have been under more typical conditions while 489 negative values indicate the opposite. The bottom row shows the difference in these 490 adjustments between 2010 and 2006 with positive values indicating regions where the 491 changes in meteorological conditions between 2006 and 2010 led to an ozone increase and 492 vice versa. These results confirm the hypothesis that conditions more favorable for ozone 493 formation occurred in 2010 as compared to 2006 in the Northeast, Mid-Atlantic and Midwest 494 regions with mostly near zero to -3 ppb adjustments elsewhere. Application of these 495 meteorological adjustment factors to the 2006 and 2010 ozone data shows that ozone is lower 496 in nearly all urban areas throughout the U.S. in 2010 compared to 2006 after compensating for meteorological influences (Fig. 15), consistent with the lower NO_x and VOC emissions noted
in Sec. 3.1. Photochemical model results should be analyzed to verify that they reproduce this
meteorological impact on predicted ozone trends.

500

2006 Met Effect (2006 raw - 2006 adj)

2010 Met Effect (2010 raw - 2010 adj)

2010-2006 Change Due to Met ((2010 raw - 2010 adj)-(2006 raw - 2006 adj))

501

Fig. 14. Meteorological adjustment factors (observed ozone – adjusted ozone) for 2006 (top
left) and 2010 (top right) and difference (2010 – 2006) in the adjustment factors (bottom) as
applied to May – September mean MDA8O3 ozone.

505

Fig. 15. Unadjusted (left) and meteorologically adjusted (right) change (2010 – 2006) in U.S.
urban area May-September mean MDA8O3.

509 5. Summary and Conclusions

510 Several participants in the AQMEII-2 collaboration who are applying coupled models to the 511 North American domain are comparing model results for two very different years: 2006 and 512 2010 (Campbell et al., 2014; Hogrefe et al., 2014; Wang et al., 2014). While the key 513 differences of interest between these two years from a modeling perspective are the predicted 514 air quality impacts of the large reductions in emissions of NO_x (21%) and SO_2 (36%) which 515 occurred mostly in the eastern U.S. and the lower emissions from wild fires in the western 516 U.S., meteorological conditions and model boundary conditions (BCs) also differed 517 significantly between these two years. Differences in meteorological conditions both 518 confound the impact of emission reductions on ambient air quality and provide an opportunity 519 to examine how models respond to changing meteorology. Similarly, the contribution of 520 differences in pollutant fluxes into North America to observed and simulated air quality also 521 need to be taken into account. To provide information needed to put model results in 522 perspective and aid AQMEII-2 modeling groups with their evaluations of model performance, 523 we undertook a comparison of emissions, large-scale background concentrations simulated by 524 a global model used to specify BCs for the AQMEII-2 regional models, and observed air 525 quality and meteorological conditions between the two modeled years. Results of our analysis 526 showed that significant differences are evident in observed air quality between 2006 and 2010 527 based on data collected at U.S. monitoring sites and that meteorological variations and 528 potentially changes in large-scale background concentrations can mask the expected influence 529 of emission reductions in some cases.

530 Meteorological conditions in 2010 differed from 2006 in a number of ways, including higher

summer surface temperatures in the eastern U.S. Summer precipitation throughout much of

the eastern U.S. and Canada was lower in 2010 which may have reduced the benefits of

533 emission reductions. Winter mean surface temperatures were generally above average in

534 2006, whereas in 2010, below average temperatures were noted in the Southeast and northern

535 plains, consistent with a greater frequency of cold arctic air outbreaks.

536 Despite the reductions in anthropogenic ozone precursor emissions, changes in summer mean

537 and annual 4th highest daily maximum 8-hour average ozone concentrations were limited to

538 +/- 2 ppb in many parts of the Northeast and Midwest although larger reductions were found

- 539 in the Southeast. Inter-annual comparisons of meteorological factors known to influence
- 540 ozone levels suggested that conditions, including higher temperatures in the eastern U.S.,

541 were more favorable for ozone production in 2010, largely masking the influence of reduced 542 emissions. Removing the influence of these differences in meteorological conditions using the 543 regression model developed by Camalier et al. (2007) confirmed that ozone would have been 544 lower in 2010 than in 2006 if meteorological conditions had been similar during the two

545 summers.

546 A marked seasonal difference in ambient PM_{2.5} concentration changes between 2006 and

547 2010 was noted with winter mean concentrations higher in 2010 at many locations and

548 particularly in the Midwest despite lower emissions of SO₂ and NO_x and little change in

549 primary PM, NH₃ or anthropogenic VOC emissions. In contrast, summer PM_{2.5} concentrations

550 were lower throughout most of the U.S. in 2010 with reductions in the western U.S. likely due

551 in part to the large reduction in wildfires. The Midwestern winter PM_{2.5} increases appear to

have been primarily driven by higher particulate NO₃ levels, the underlying cause of which

are not immediately apparent and will require further analysis.

554 Reductions in ambient SO₂ concentrations consistent with reductions in SO₂ emissions were 555 found to have occurred during both summer and winter in two of the three U.S. sub-regions 556 with significant SO₂ emissions (the Northeast and Midwest) and also during the summer in 557 the Southeast sub-region. However, the reported 22% reduction in winter SO₂ emissions in 558 the Southeast were not accompanied by corresponding reductions in ambient SO₂ levels. 559 Meteorological conditions conducive to greater stagnation and primary pollutant buildup in 560 2010 may partially explain the discrepancy but it is also possible that intra-sub-regional 561 differences in seasonal emission patterns coupled with the relatively sparse SO₂ monitoring 562 network could have led to a spurious result. AQMEII-2 model performance results for SO₂ 563 should be examined closely for the Southeast region to verify if the emissions and ambient 564 trends are actually consistent with each other.

565 Comparison of 2006 and 2010 global simulations used to specify BCs for the AQMEII-2

simulations showed lower seasonal mean ozone concentrations in 2010 although the

567 differences were relatively small during the summer when ozone production is at a maximum,

thus suggesting limited BC influences on peak ozone. Observed 2010-2006 differences in

569 winter mean ozone varied from positive to negative across the U.S. even at rural sites, raising

570 the possibility that the broad background ozone reductions predicted by IFS-MOZART are

571 not realistic. AQMEII-2 model performance for ozone at rural sites during winter and spring

572 should be closely examined to see if a bias is being introduced by lower BCs derived from

- 573 IFS-MOZART. There are indications of enhanced fine dust and sulfate aerosol transport
- eastward across the Pacific during spring and enhanced fine dust transport westward across
- 575 the subtropical Atlantic during winter and spring in 2010 but summer and fall dust transport
- 576 across the subtropical Atlantic was reduced in 2010. The reduced summer African dust
- 577 transport is quantitatively consistent with observed PM2.5 reductions in Florida.
- 578 In general, differences in emissions from U.S. sources and meteorological conditions during
- 579 2006 and 2010 in North America appear to be consistent with changes in observed air quality
- 580 at U.S. monitoring sites except as noted above. Changes in emissions, BCs and differences in
- 581 meteorological conditions between these two years provide an informative test case for
- 582 examination of regional coupled model performance under changing conditions. Two
- 583 potential inconsistencies (higher 2010 winter PM_{2.5} in the Midwest and lower than expected
- 584 winter SO₂ reductions in the Southeast) were noted which warrant further investigation via
- targeted model performance analyses by the AQMEII-2 community.

586 Acknowledgements and Disclaimer

- 587 This study was supported by Coordinating Research Council Atmospheric Impacts Committee
- 588 (CRC Project A-87). The authors thank George Pouliot for providing the emissions data. The
- 589 views expressed here are those of the authors and do not necessarily reflect the views and
- 590 policies of the U.S. Environmental Protection Agency (EPA) or any other organization
- 591 participating in the AQMEII project. This paper has been subjected to EPA review and
- 592 approved for publication.

593 References

- 594 Camalier, L., W. Cox and P. Dolwick, 2007. The effects of meteorology on ozone in urban
- areas and their use in assessing ozone trends. Atmospheric Environment 41, 7127-7137.
- 596 Campbell, P., K. Yahya, K. Wang, Y. Zhang, C. Hogrefe, G. Pouliot, R. San Jose and P.
- 597 Makar, 2014. Indicators of the Sensitivity of O3 and PM2.5 Formation to Precursor Gases
- 598 over the Continental United States: A Multi-Model Assessment for the 2006 and 2010
- 599 Simulations under the Air Quality Model Evaluation International Initiative (AQMEII) Phase
- 600 2. Atmospheric Environment (this issue).
- 601 Dennis, R., T. Fox, M. Fuentes, A. Gilliland, S. Hanna, C. Hogrefe, J. Irwin, S.T. Rao, R.
- 602 Scheffe, K. Schere, D. Steyn, A. Venketram, 2010. A framework for evaluating regional-scale

- numerical photochemical modeling systems. Environ Fluid Mech (Dordr). 2010; 10(4): 471–
 489
- 605 EPA, 2013. Integrated Science Assessment for Ozone and Related Photochemical Oxidants.
- 606 EPA 600/R-10/076F. U.S. Environmental Protection Agency, Research Triangle Park, NC.
- 607 February.
- 608 Galmarini, S. and S.T. Rao, 2011. The AQMEII two-continent Regional Air Quality Model
- 609 Evaluation study: fueling ideas with unprecedented data. Atmospheric Environment 45, 2464.
- 610 Galmarini, S., S.T. Rao and D.G. Steyn, 2012. Preface to the special issue: AQMEII: An
- 611 International Initiative for the Evaluation of Regional-Scale Air Quality Models Phase 1.
- 612 Atmospheric Environment 53, 1-3.
- 613 Giordano, L., Brunner, D., Flemming, J., Im, U., Hogrefe, C., Bianconi, R., Badia, A.,
- Balzarini, A., Baro, R., Chemel, C., Curci, G., Forkel, R., Jimenez-Guerrero, P., Hirtl, M.,
- 615 Hodzic, A., Honzak, L., Jorba, O., Knote, C., Kuenen, J.J.P., Makar, P.A., Manders-Groot,
- A., Neal, L., Perez, J.L., Pirovano, G., Pouliot, G., San Jose, R., Savage, N., Schroder, W.
- , Sokhi, R.S., Syrakov, D., Torian, A., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R.,
- 618 Zhang, Y., and Galmarini, S., 2014. Assessment of the MACC/IFS-MOZART model and its
- 619 influence as chemical boundary conditions in AQMEII phase 2. Atmospheric Environment
- 620 (this issue).
- 621 Hogrefe, C., G. Pouliot, D. Wong, A. Torian, S. Roselle, J. Pleim and R. Mathur, 2014.
- 622 Annual application and evaluation of the online coupled WRF-CMAQ system over North
- 623 America under AQMEII Phase 2. Atmospheric Environment (this issue).
- 624 Inness, A., F. Baier, A. Benedetti, I. Bouarar, S. Chabrillat, H. Clark, C. Clerbaux, P. Coheur,
- 625 R.J. Engelen, Q. Errera, J. Flemming, M. George, C. Granier, J. Hadji-Lazaro, V. Huijnen, D.
- 626 Hurtmans, L. Jones, J.W. Kaiser, J. Kapsomenakis, K. Lefever, J. Leitão, M. Razinger, A.
- 627 Richter, M.G. Schultz, A.J. Simmons, M. Suttie, O. Stein, J.N. Thépaut, V. Thouret, M.
- 628 Vrekoussis, C. Zerefos, and the MACC team, 2013: The MACC reanalysis: an 8 yr data set of
- atmospheric composition, Atmospheric Chemistry and Physics 13, 4073-4109,
- 630 doi:10.5194/acp-13-4073-2013.
- Kalnay, E. and Coauthors, 1996: The NCEP/NCAR Reanalysis 40-year Project. Bull. Amer.
- 632 Meteor. Soc., 77, 437-471.NIFC, 2014. Total Wildland Fires and Acres. National Interagency

- Fire Center , http://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html (accessed 1 May2014).
- 635 NCDC, 2010. "2009-2010 Cold Season"; National Climatic Data Center, National Oceanic
- 636 and Atmospheric Administration, Asheville, NC
- 637 (http://www.ncdc.noaa.gov/extremeevents/specialreports/2009-2010-Cold-Season.pdf).
- 638 NRC, 1991. Rethinking the Ozone Problem in Urban and Regional Air Pollution. National
- 639 Research Council, Washington DC.
- 640 Pouliot, G., H. Denier van der Gon, J. Kuenen, P. Makar, M. Moran and J. Zhang, 2014.
- 641 "Analysis of the Emission Inventories and Model-Ready Emission Datasets of Europe and
- 642 North America for Phase 2 of the AQMEII Project" Atmospheric Environment (this issue)
- 643 RTI, 2013. Annual Data Summary Report for the Chemical Speciation of PM_{2.5} Filter
- 644 Samples Project. RTI/0212053/04ADS, Research Triangle Institute, Research Triangle Park,
- 645 NC. 1 July (http://www.epa.gov/ttnamti1/files/ambient/pm25/spec/2012ADSReport.pdf)
- 646 Rutledge, G.K., J. Alpert and W. Ebuisaki, 2006: NOMADS: A Climate and Weather Model
- 647 Archive at the National Oceanic and Atmospheric Administration. Bulletin of the American
- 648 Meteorological Society 87, 327-341
- 649 (http://nomads.ncdc.noaa.gov/dods/NCEP_NAM_ANALYSIS/Anl_Complete).
- 650 Stanier, C., A. Singh, W. Adamski, J. Baek, M. Caughey, G. Carmichael, E. Edgerton, D.
- 651 Kenski, M. Koerber, J. Oleson, T. Rohlf, S.R. Lee, N. Riemer, S. Shaw, S. Sousan and S.N.
- 652 Spak, 2012. Overview of the LADCO winter nitrate study: hourly ammonia, nitric acid and
- 653 PM2.5 composition at an urban and rural site pair during PM2.5 episodes in the US Great
- 654 Lakes region. Atmos. Chem. Phys., 12, 11037-11056.
- 655 Schere et al., 2012. Trace Gas/Aerosol concentrations and their impacts on continental-scale
- 656 AQMEII modelling sub-regions. Atmospheric Environment, 53, 38-50.
- 657 Wang, K., K. Yahya, Y. Zhang, C. Hogrefe, G. Pouliot, C. Knote, A. Hodzic, R. San Jose and
- J. L. Perez, P. J. Guerrero, R. Baro, and P. Makar, 2014. Evaluation of column variable
- 659 predictions using satellite data over the continental United States: A multi-model assessment
- 660 for the 2006 and 2010 simulations under the Air Quality Model Evaluation International
- 661 Initiative (AQMEII) Phase 2. Atmospheric Environment (this issue).