1	
2	
3	Analysis of the Emission Inventories and Model-Ready Emission Datasets of Europe and
4	North America for Phase 2 of the AQMEII Project
5	
6	George Pouliot ^{1*} , Hugo A.C. Denier van der Gon ² , Jeroen Kuenen ² , Junhua Zhang ³ , Michael D.
7	Moran ³ , Paul A. Makar ³
8	
9	¹ Atmospheric Modeling and Analysis Division, USEPA, RTP, North Carolina, USA
10	² TNO department Climate, Air and Sustainability, Utrecht, The Netherlands
11	³ Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada
12	
13	
14	
15	For consideration in the AQMEII Special Issue of Atmospheric Environment
16	31 May 2014
17	
18	
19	* Corresponding author. Email: pouliot.george@epa.gov ; Phone: +1-919-541-5475;
20	Fax: +1-919-541-1379; Address: USEPA (MD-E243-04), RTP, NC 27711, USA.
21	

22	Analysis of the Emission Inventories and Model-Ready Emission Datasets of Europe and
23	North America for Phase 2 of the AQMEII Project
24	
25	George Pouliot ^{1*} , Hugo A.C. Denier van der Gon ² , Jeroen Kuenen ² , Junhua Zhang ³ , Michael D.
26	Moran ³ ,Paul A. Makar ³
27	
28	¹ Atmospheric Modeling and Analysis Division, USEPA, RTP, North Carolina, USA
29	² TNO Environment and Geosciences, Utrecht, The Netherlands
30	³ Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada
31	
32	
33	Abstract
34	This paper highlights the development of the emission inventories and emission processing for
35	Europe (EU) and North America (NA) in the second phase of the Air Quality Model Evaluation
36	International Initiative (AQMEII) project. The main purpose of the second phase of the
37	AQMEII project is to understand the importance of coupled meteorological-chemical models in
38	our understanding of the feedback of chemistry on the meteorology. A second purpose of the
39	second phase of the AQMEII project is to explore the differences between EU and NA in a
40	dynamic evaluation of two modeling years (2006 and 2010). For the EU domain, there was
41	substantial decrease in CO (-19%), NH ₃ (-11%), and SO ₂ (-12%) emissions between phase 2 and
42	phase 1 emissions for 2006. For the NA domain, there were decreases in CO (-10%), non-
43	methane hydrocarbons (-5%), PM2.5 (-8%), PM10 (-18%), SO ₂ (-12%), with an increase of 4% in
44	NOx. Between 2006 and 2009, considerable emission reductions were achieved for 17 EU

45	countries, Norway and Switzerland as well as EU-Non-Member States, for all emissions classes
46	aside from NH ₃ , which increased. Non-EU countries showed little change in emissions levels,
47	though this may be a result of poor data quality. Shipping emissions decreased for PM and SO ₂
48	due to Sulfur Emission Control Areas on the North Sea and the Baltic Sea, while increasing for
49	other species. Between 2006 and 2010, estimated US NOx emissions decreased by 17%, SO ₂ by
50	29%, CO by 21%, PM _{2.5} by 12%, PM10 by 7%, NMHC by 4% and NH ₃ by 2%. Between 2006
51	and 2010, biogenic emissions in North America increased in the east and decreased in the west,
52	due to regional temperature differences between the years. The European emissions of isoprene
53	peaked earlier in 2006, but achieved higher levels in 2010.
54	Highlights
55	We compared the 2006 anthropogenic emission estimates between phase 1 and phase 2.
56	We compared the 2006 and 2010 anthropogenic emission estimates.
57 58	We compared the biogenic emission estimates from BEIS and LOTOS_EUROS for 2006 and 2010
59	
60	Key words: AQMEII; regional air quality models; emission inventories, emission preparation for
61	
	modeling; biogenic emissions
62	modeling; biogenic emissions
62 63	modeling; biogenic emissions1. Introduction
62 63 64	modeling; biogenic emissions1. IntroductionA key input to all regional air quality models is the emission estimates that provide the chemical
62 63 64 65	 modeling; biogenic emissions 1. Introduction A key input to all regional air quality models is the emission estimates that provide the chemical forcing for chemical transport models. To support one of the protocols of the second phase of
62 63 64 65 66	 modeling; biogenic emissions 1. Introduction A key input to all regional air quality models is the emission estimates that provide the chemical forcing for chemical transport models. To support one of the protocols of the second phase of the Air Quality Model Evaluation International Initiative (AQMEII), emission datasets were
 62 63 64 65 66 67 	 modeling; biogenic emissions 1. Introduction A key input to all regional air quality models is the emission estimates that provide the chemical forcing for chemical transport models. To support one of the protocols of the second phase of the Air Quality Model Evaluation International Initiative (AQMEII), emission datasets were created for the European and North American study domains, to be used by the participating

69 and descriptions can be found in Pouliot et al. (2012). For this second phase of the project,

guiding principles for the construction of the emission datasets included: (1) consistent base
inventories be applied for the EU and NA domains; (2) emission datasets be made available to all
modeling groups for both 2006 and 2010 study years; (3) consistent methodologies be used in
the two study years so that any differences in emission estimates arise from actual trends and not
differing methodologies.

75

76 Here, we focus on relative differences in the emission inventories in order to provide insight into 77 the evaluation of the chemical transport modeling results. This necessitated collecting emissions 78 data and generating new model input emissions relative to phase 1 of AQMEII – comparisons 79 with the earlier emissions highlight changes in methodologies between the two phases of the 80 experiment, while ensuring that the emissions for the current phase are internally consistent. 81 This paper focuses on two aspects of the emission inventory: (1) how the emission inventories in 82 phase 2 compare to the emission inventories used in phase 1; (2) the emission trends between 83 2006 and 2010 that provide a "signal" to the chemical transport modeling for the two years. 84 Numerous additional inputs and assumptions are used in the development of model-ready 85 emission datasets, including annual emission estimates, and their temporal allocation, spatial 86 allocation, and chemical speciation. The purpose of this paper is to focus on relative differences 87 in the emission inventories in order to provide insight into the evaluation of the chemical 88 transport modeling results. We summarize the biogenic emission estimates two of the biogenic 89 models shown in Table 1 of Im et al. (2014).

90

91 2. How the emissions were assembled

92 In this section, we describe the basis of the model-ready inventory datasets created for the93 European and North American domains.

95 **2.1 European domain**

96 A major difference between the EU and NA AQMEII domains is that, despite being of 97 about equal size, the European domain consists of many individual countries. European 98 countries are party to the Convention for Long-Range Transboundary Air Pollution (CLRTAP; 99 http://www.unece.org/env/lrtap/), which requires parties to the convention to report their 100 emissions to European Monitoring and Evaluation Programme (EMEP), a co-operative program 101 for monitoring and evaluation of long-range transmission of air pollutants in Europe. The 102 reporting follows well-defined Guidelines and asks countries to complete a pre-defined template 103 with emissions by year, pollutant and sector (defined by the Nomenclature for Reporting; NFR). 104 These emissions data can be accessed through the EMEP Centre on Emission Inventories and 105 Projections (CEIP; http://www.ceip.at). Despite this organizational framework, the available 106 emissions data are not directly suitable or optimal for air quality modeling. In many cases gaps 107 and errors exist in the reported emission data. Consistency in emissions reporting for 108 consecutive years is a particular problem. Moreover the spatial resolution of gridded data is 109 rather coarse (currently still \sim 50 km) and not consistent with the requirements of current air 110 quality models. The procedure to process, gap fill, and redistribute the European emissions data 111 on a high- resolution (0.125° x 0.0625° longitude-latitude) grid is described by Kuenen et al., 112 2014. The time series of the most recent data set covers the years 2003-2009: an update to the 113 years 2003-2011 is foreseen for summer 2014.

114

For AQMEII phase 2 the years 2006 and 2010 were selected as the years of study.
Unfortunately, for the European domain no emissions data for the year 2010 were available in
fully processed form at the start of AQMEII phase 2. Therefore, it was decided to use year 2009

data as the best approximation of year 2010 for the anthropogenic emissions data. Biogenic VOC
emissions, driven by year-specific meteorology (see section 5), were calculated for the years
2006 and 2010.

121

1 2.1.1. European fire emission data for 2006 and 2010

122 The European wildfire emissions for 2006 and 2010 were provided by the Finnish 123 Meteorological Institute using the IS4FIRES model (Sofiev et al., 2009). The current fire 124 emission dataset has been obtained by re-analysis of fire radiative power data obtained by 125 MODIS instrument onboard of Aqua and Terra satellites. The algorithm of the emission 126 evaluation and comparison of the results for Europe with the GFEDv2 (Giglio et al., 2006) is 127 presented in the IS4FIRES description (Sofiev et al., 2009). The IS4FIRES output data for 128 Europe consist of daily emissions data at a 0.1 x 0.1 degree spatial resolution), were provided in 129 a netcdf format and described in detail by Soares et al. (2014, this issue). We refer to Soares et 130 al. (2014, this issue) for further details including an uncertainty analysis of the European fire emissions data. 131

132

133 2.2 North American domain

134 The emissions for the North American domain used for the 2006 and 2010 study years were

135 based on selected national emission inventories from the USA, Canada, and Mexico.

136

137 **2.2.1 US emissions**

138 For the US, the 2008 National Emission Inventory (NEI) (version 2, released April 10, 2012)

139 was used as the basis for both the 2006 and 2010 model-ready emission datasets

140 (http://www.epa.gov/ttn/chief/net/2008inventory.html). The 2008-based modeling platform

141 dated 12/14/2012 at http://www.epa.gov/ttn/chief/emch/index.html#2008 provided all the inputs 142 and datasets for processing with SMOKE (http://cmascenter.org/smoke). These files contain the 143 chemical speciation files, the temporal allocation, and spatial allocation used for emission 144 processing with SMOKE. A technical support document (Mason et al. 2012) for this modeling 145 platform containing the full details of the inventory preparation and processing is available. We 146 will focus on year-specific updates made to particular sectors in this paper. Table 1 provides a 147 list of sectors and their descriptions for the US inventory. We note that the US inventory has 148 been divided somewhat differently compared to phase 1. Notes indicating differences between 149 sector names in phase 2 versus phase 1 are included in Table 1.

150

Year-specific updates were made for the following US sectors: Electric Generating Unit (EGU) point sources, wildfires and prescribed burns, on-road mobile sources, residential wood combustion (temporal allocation only), biogenic sources, and area source fugitive dust, each of which will be discussed later. All other sectors (nonpoint sources, off-road (or nonroad) sources, non-EGU point sources, agricultural ammonia sources, agricultural fires, commercial marine vessels classes 1 and 2, and commercial marine vessels class 3) were assumed to be constant for the two study years.

158

Emission estimates for SO₂ and NO_x for the EGU sector were based on the Continuous Emission
Monitors (CEMs) database from EPA's Clean Air Markets Division (CAMD)

161 (http://ampd.epa.gov/ampd). For all other EGU sector pollutants, the emissions were allocated

162 using the hourly heat inputs divided by the annual heat input as a temporal allocation factor

163 multiplied by annual emission estimates. The annual emission estimates for pollutants other than

164 NO_x and SO₂ were based on the 2008 NEI and did not change for the two study years of 2006 165 and 2010 for the EGU sector. For wildfires and prescribed burns, emission estimates were 166 based on year-specific satellite data and SMARTFIREv2 for 2010 and SMARTFIREv1 for 2006 167 (Raffuse et al. 2009). The SMOKE/MOVES modeling system (a combination of the MOVES 168 model with the SMOKE emissions processing system) was used to estimate mobile source 169 emissions. This is in contrast to MOBILE6 modeling system used in phase 1 of AQMEII. The 170 MOVES model creates emission factors (not emission totals) by county, pollutant, vehicle mode, 171 vehicle type, temperature bin, and road type for the SMOKE system. In addition to the MOVES-172 generated emission factor inputs, SMOKE uses year-specific hourly meteorological data 173 (temperature and relative humidity) and vehicle activity data, to create model-ready emissions. In 174 phase 1 of the AQMEII project, MOBILE6 emission estimates were created at the county level 175 using monthly average temperatures. The processing required by MOVES can be very time 176 consuming when applied to the entire continental US, due to the large number of combinations 177 of the inputs, and the high level of detail in the inputs themselves on a county basis. MOVES-178 generated emission factors were already available for 2005 and 2009 at the inception of phase 2 179 of AQMEII – these were used for this project rather than reprocessing 2006 and 2010 separately, 180 in order to meet AQMEII-2 emissions delivery requirements. Vehicle activity data from 2006 181 and 2010 along with these emission factors were used to create the model-ready mobile source 182 emissions. To further reduce processing requirements, representative counties by state were used 183 rather than county-specific factors.

For residential wood combustion and anthropogenic fugitive dust sectors, the annual estimate for both 2006 and 2010 remained the same as for 2008 but the temporal allocation was a function of the meteorological conditions. For residential wood combustion, the annual estimates are

187 temporally allocated as a function of 2 meter temperature derived from a previously created 188 annual WRF simulation. For anthropogenic fugitive dust, the emissions are adjusted downward 189 based on the soil moisture and snow fields from a WRF simulation of that particular year (Appel 190 et al. 2013). This adjustment was applied after the emissions were processed with SMOKE but 191 before the chemical transport model simulation. Some modeling groups used the model-ready 192 emissions input files from SMOKE; here it has been applied to both US and Canadian fugitive 193 dust emissions. However, if the pre-processed annual emission estimates were used, then the 194 adjustment would not carried out by all models making use of the combined inventory – the 195 Environment Canada simulations were based on separate processing of the same inventory. 196 Without this correction, a subsequent degradation of PM2.5 and PM10 performance would be 197 expected. Biogenic Emissions based on BEIS3.14 for the Model labelled "M14" from Group 198 "US6" for the NA domain are discussed in later in this paper in section 5.2. For a complete 199 summary of the biogenic models used in this phase 2 of AQMEII, see Table 1 of Im et al, (2014). 200

201 2.2.2 Canadian and Mexican emissions

202 Canadian emissions were based on the national 2006 Criteria Air Contaminants Emissions 203 Inventory (Environment Canada, 2008; Sassi et al., 2010). This inventory was used to represent 204 Canadian emissions for both 2006 and 2010. The version of the Canadian inventory used for AQMEII-2 contains more recent updates compared to the 2006 Canadian inventory used in 205 206 AQMEII phase 1 (Pouliot et al., 2012). These updates included revised residential wood 207 combustion (RWC) emissions, which were generally revised downward (Moran et al., 2012), and 208 a more detailed description of agricultural ammonia emissions (from 10 to 53 subsectors and 209 from provincial-level to agricultural-census subdivision level: c.f. Lillyman and Buset, 2009),

210 which were 3% lower overall than in the older inventory version. Canadian wildfire and 211 prescribed burning emissions were not used in either AQMEII phase because they were only 212 available as annual values without any information on fire timing or location that could be used 213 for temporal and spatial allocation. Lack of Canadian fire emissions may negatively affect model 214 performance in the northern part of the NA domain. Note that the same downward adjustment 215 applied to U.S. anthropogenic fugitive dust emissions based on day-specific soil moisture and 216 snow fields was also applied to Canadian anthropogenic fugitive dust emissions in the processed 217 emissions discussed here.

218

Mexican emissions were based on a projected national 2008 Mexican inventory (Wolf et al., 2009). This inventory was used to represent both 2006 and 2010 Mexican emissions. This projected 2008 inventory was a change from AQMEII phase 1, which had used a regional 1999 inventory. Table 2 contains a list of the source sectors and their descriptions for the Canadian and Mexican part of the 2008-based modeling platform inventory for North America. Canadian and Mexican emissions were separated into their own sectors in phase 2 whereas they had been combined in phase 1.

226

227 **3.** Emission Differences between phase 1 and phase 2 for the year 2006

We begin with a detailed comparison of the emissions for the study year of 2006 from phase 1 and phase 2 of the AMQEII project.

230

231 **3.1 European Domain**

232 The emissions data prepared and used in the AQMEII project phase 1 and 2 were 233 respectively partly developed in the framework of the EUFP 7 projects: Monitoring Atmospheric 234 Composition and Climate (MACC) and the successor to MACC (MACC-II) (https://www.gmes-235 atmosphere.eu). The AQMEII phase 1 year 2006 emissions were a subset of a time series of a 236 dataset constructed for the years 2003-2007. These data are described in more detail by Pouliot et 237 al., 2012 and Kuenen et al., 2011. For AQMEII phase 2 the new TNO-MACC-II emissions data 238 set was used, an emissions data time series for the years 2003-2009 (Kuenen et al, 2014). To get 239 consistent time series within the new TNO-MACC-II dataset, the years 2003 to 2007 were re-240 estimated and re-processed for AQMEII phase 2. The new, re-estimated European emissions for 241 2006 are lower than in the previous AQMEII phase I dataset (Table 3). The changes differ by 242 country (not shown) and by country group and by pollutant. Overall NO_x and PM10 emissions 243 were quite similar but CO, NH₃ and SO₂ emissions were substantially lower in the more recent 244 data set (Table 3). There are several reasons for these differences. For the EU15 including 245 Norway and Switzerland as well as the group of EU new member states (EU-NMS), the 246 differences are due to recent revisions of the reported historic emissions data by countries. For 247 the other non-EU countries in general no reported emissions were available but emissions were 248 taken from the International Institute for Applied Systems Analysis (IIASA) Greenhouse Gas 249 and Air Pollution Interactions and Synergies (GAINS) model (IIASA, 2012). For the countries 250 Armenia, Azerbaijan and Georgia data from Emissions Database for Global Atmospheric 251 Research (EDGAR) (JRC, 2011) were used at SNAP (Selected Nomenclature for Air Pollutants) 252 level 1 for all pollutants and all years. See Table S2 for a mapping of SNAP codes to NFR codes. 253 The revision of these bottom-up emissions data in recent years caused substantial changes. In 254 particular, the revision of NH₃ and SO₂ emissions in the IIASA GAINS model had an impact on

255 the year 2006 emissions data (Table 3). The large discrepancy for CO is a special case. In the 256 AQMEII phase 1 dataset no CO data were available for the non-EU countries to make a time 257 series. Therefore a TNO estimate for the year 2000 from Visschedijk and Denier van der Gon 258 (2005) was used and kept constant over time. In the new TNO-MACC-II data set used in 259 AQMEII phase 2 this estimate was replaced by a new TNO bottom-up estimate for the year 260 2006. Although the uncertainty in CO emission estimation is high, simply because it receives 261 little attention, the new estimate is considered better than continuing the use of the previous year 262 2000 estimates because 2006 estimates are closer to the modeling year of 2010. Here, the 263 objective is merely to document changes between the data used in AQMEII phase 1 and 264 AQMEII phase 2.

265

266 3.1.1. Suitability of 2009 European anthropogenic emission data as approximation for 2010 267 At the start of AQMEII phase 2 no high resolution gridded data for Europe for the year 2010 was 268 available. Therefore, European anthropogenic emissions for the year 2009 were used as the best 269 approximation for the year 2010. The effects of this assumption can be analyzed through the use 270 of official reported emissions data for the EU27 taken from the Centre on Emission Inventories 271 and Projections (CEIP) (Table 4); estimated total emissions changes between 2009 and 2010 272 were calculated. It can be seen that the decreasing trend in SO₂ emissions continues, CO was 273 estimated to be 6% higher in 2010 compared to 2009, while other pollutants show rather small 274 changes. The data in Table 3 cannot be directly compared to the data in Table 4 since the latter 275 does not include the further corrections for the European gridded data finally used (see also 276 Kuenen et al., 2014) – In Table 4 we directly compare reported 2009 and 2010 emissions data 277 only to derive the trend. This trend however, is indicative for the trend that would apply to

278 corrected gridded data as well. Given uncertainties in emission inventories and the importance of 279 actual meteorology we conclude that differences between 2009 and 2010 emissions will not 280 critically influence the modeling results. Table 4 also provides information on the extent to 281 which potential biases observed in the models may be due to the inventory year. For example, 282 SO₂ emissions in 2009 were slightly higher than 2010. Hence if the models (slightly) 283 overestimate SO_2 at measurement locations that might be partly related to using 2009 data, but if 284 negative model SO₂ biases were found, these are less likely to be attributable to the emissions 285 year.

286

3.1 North American Domain

288 This year 2006 was used in both phase 1 and phase 2 of the AQMEII project for North 289 America. We will highlight the most significant sector-specific differences. Different grouping 290 of a few sectors between the two phases of the project requires that some sectors be combined 291 for consistent analysis. Table 5 shows the 2006 emission totals by pollutant and sector for phase 292 1 and Table 6 shows the 2006 emission totals by pollutant for phase 2. Significant percent 293 changes (> 5%) are highlighted in Table 7. Differences that are greater than 5% will be 294 discussed in this section and divided into 3 groups. Changes that are most attributable to 295 methodological differences are highlighted in red in Table 7. Changes that primarily resulting 296 from changes in growth and/or controls between base inventory years of 2005 and 2008 are 297 colored in green. If a combination of emissions estimation method changes, growth, and 298 controls is the reason for the difference, the percent differences are highlighted in blue. One 299 important difference between phase 1 and phase 2 arose from the estimation of on-road mobile 300 source emissions. In phase 1, EPA's MOBILE6 model was used to estimate on-road emissions

301 whereas in phase 2, EPA's MOVES model was used to estimate on-road emissions. This method 302 change has a substantial impact on on-network mobile source emissions. NOx on-road emissions 303 are increased by 35% and PM_{2.5} on-road emissions increased by a factor of 1.54. Revised NO_x 304 emission factors in MOVES account for the increase in NOx whereas a newly incorporated 305 temperature dependence of PM_{2.5} emissions in MOVES resulted in the change in PM_{2.5}. In 306 MOVES, mobile source PM_{2.5} emissions are highest at low temperatures whereas in MOBILE6, 307 there is no temperature dependence. More information on the differences between MOVES and 308 MOBILE6 can be found in (CRC, 2010). More information on the temperature adjustments in 309 MOVES can be found in (EPA, 2010). The introduction of a meteorological adjustment to 310 fugitive dust emissions accounts for the reduction in PM for this sector between the two project 311 phases. As noted above, this meteorological adjustment was not applied to all North American 312 models using the inventory – while its use resulted in greater magnitude PM_{10} negative biases 313 compared to observations, the PM_{10} spatial correlations were improved (Im et al., 2014). The 314 "c3marine" or 'seca_c3" sector was simply grown using the assumption of 3% growth per year 315 from 2005 to 2008 and this accounts for the 9% increase for all the pollutants in this sector. The 316 "ptipm" sector which consists of the Electricity Generation Units (EGU) reflects changes in 317 growth and controls between the two base years. Continuous Emission Monitors (CEM) data for 318 NO_x and SO₂ were used for both phases of the project; emissions differences associated with this 319 sector are due to changes in the non-CEM sources and non-CEM pollutants. For the remaining 320 US sectors shown in blue ("nonpt", "ptnonipm", "c1c2rail", "rwc"), we note that method changes 321 in the inventory development process account for decreases in emission estimates which are 322 offset by growth assumptions for these sectors.

323 Together, these changes resulted in some moderate differences in some species as shown in the 324 last line of Table 7. US total NH₃ increased by 1%, and NO_x increased by 4%, while SO₂ 325 estimates decreased by 12%, PM_{2.5} decreased by 8%, PM₁₀ decreased by 18%, CO decreased by 326 10%, and NMHC decreased by 5%. 327

328 The changes to the Canadian and Mexican emission inventories between phase 1 and phase 2 are 329 described in Sect. 2.2.2. These changes explain the net differences seen in rows 5 to 7 of 330 Table 7. In addition, subsequent to AQMEII phase 1, Environment Canada reviewed and 331 implemented a number of updates to the spatial surrogates, temporal profiles, and related source-332 sector cross-references that are used during emissions processing for spatial and temporal 333 allocation. These updates included an expansion in the number of spatial surrogates used to 334 allocate on-road emissions from one to six and a large increase in the number of spatial 335 surrogates used to allocate agricultural ammonia emissions (e.g., Makar et al., 2009; Zhang et al., 336 2012). While they did not affect inventory totals, these additional updates changed the spatial 337 and temporal allocation of Canadian emissions.

338

339

3.1.1 U.S. Residential Wood Combustion

340 As an example, we highlight one U.S. emission sector that was revised significantly between 341 phase 1 and phase 2 of the AQMEII project, the residential wood combustion (RWC) sector. 342 The changes made to this sector are expected to have a significant impact on winter time model 343 performance for primary $PM_{2.5}$ because of changes the spatial and temporal distribution of the 344 RWC emissions. Residential wood combustion represents the use of wood in a fireplace, 345 woodstove, or hydronic heater as a fuel for residential heating. This sector is one of the more

346 difficult sectors to estimate both spatially and temporally. As indicated in Pouliot et al. (2012), 347 the base emission inventory used in phase 1 was the 2005 NEIv3 and the 2005 modeling 348 platform was used for temporal and spatial allocation. In the 2005 modeling platform, emissions 349 from residential wood combustion were annual county based estimates based on the 350 methodology carried over from the 2002 NEI (EPA, 2006, Appendix Page A-142). This 351 approach is a top-down approach based on national surveys with no adjustments for high-density 352 urban areas. Temporal allocation was based on monthly, state level factors with a default 353 diurnal profile shown in Figure 1(dashed line) In the 2008 modeling platform used here, the 354 emissions were again estimated at the county level on an annual basis (EPA, 2013). However, 355 data supplied from the Midwest and Southeast planning organizations replaced the EPA-derived 356 data because it was expected to be more accurate. A new daily temporal allocation method was 357 introduced to account for the temperature dependence (Adelman et al, 2010). A new diurnal 358 profile shown in Figure 1 (solid line) was also implemented based on a survey from the state of 359 Delaware (Roe and Lindquist, 2004). This new profile allocated the majority of the emissions in 360 the evening hours and was based on residential wood survey data rather than the old default 361 diurnal profile which has no relationship to activity profiles for this sector. Where EPA data was 362 used, there was again no adjustment for high density urban areas. The impact of the changes in 363 this sector can be summarized as follows: substantial increase in nighttime emissions in high 364 density urban areas and regional changes in emissions due to variation in data sources at the 365 regional level. Figure 2 (top) shows the spatial distribution of RWC emissions from phase 1 on 366 the top. Figure 2 (bottom) also shows the spatial distribution of the RWC emission from phase 2. 367 Figure 3 shows the absolute difference in PM_{2.5} emissions between phase 1 and phase 2. We note 368 that RWC emissions increased in the Midwest and decreased in the southeast in phase 2

369 compared to phase 1. Increases and decreases were noted in the northeast states. These changes 370 reflect the use of multiple data sources within the sector. The higher emission in urban areas coupled with the change in the diurnal profile would be expected to increase PM_{2.5} 371 372 concentrations substantially during meteorological conditions conducive to PM_{2.5} stagnation. 373 374 4. Anthropogenic Emission Differences between the two years 375 4.1 European Domain 376 For the European domain the year 2009 was used as approximation for 2010, as explained in 377 the previous section. We will therefore compare changes in emissions going from 2006 to 2009, 378 as this is what was used as input for the models in AQMEII phase 2. This does not apply to the 379 biogenic emissions which are discussed separately in section 5. To keep an overview, emissions 380 are presented by country group (Table 8). The rationale behind the country groups is that they 381 roughly combine countries with similar policy implementation levels. The emission levels for 382 individual countries in both years can be found in the supplementary material of Kuenen et al. 383 (2014). 384 385 In the EU-15+NOR+CHE, considerable emission reductions are achieved for all pollutants 386 going from 2006 to 2009 (Table 3), with the remarkable exception of NH₃. This illustrates that 387 the dominating source of NH₃ emissions (agriculture, SNAP10) is not effectively addressed with

388 controls. PM10 emission reductions of 10% are encouraging given known human health effects

of PM10 and PM10 reduction goals, provided that this trend can be continued. NO_x and CO

390 emissions were reduced at a faster rate. Similar trends are observed for the EU-NMS, probably

391 related to the implementation of similar EU policies. The non-EU countries behave different with

392 little emission reductions achieved except for NO_x and NMVOC (-5%). However, it should be 393 noted that our knowledge base for these countries is poor. Reliable data for these countries are 394 difficult to obtain, and there is little interest in supporting and funding research to improve the 395 data quality substantially. So, it is fair to say that the trends in the non-EU countries are highly 396 uncertain. Shipping emission totals by sea were taken directly from the EMEP Centre on 397 Emission Inventories and Projections (CEIP, 2012;http://www.ceip.at/). The emission estimates 398 from international shipping by EMEP increased with the exception of PM and SO₂ due to the 399 SECA (Sulfur Emission Control Areas) policies being implemented for the North Sea and the 400 Baltic Sea. The shipping emission methodology underlying the CEIP emission estimates is 401 transparent but rather simple consisting of scaling emissions from a base year to following years 402 based on growth estimates. This may lead to an overestimation of the emissions because 403 autonomous development like increasing ship size and/or slow steaming may not be fully 404 accounted for. In general these developments will lead to fuel savings and thereby emission 405 reductions. The emission data by sea were distributed using the shipping tracks as available from 406 Wang et al. (2008). An example of the spatial distribution of 2009 emissions is given for SO₂ 407 emissions in Figure 4. Total anthropogenic European domain emissions declined with about 10% 408 from 2006 to 2009, with the exception of NH₃ (Table 8). Spatial maps for both the absolute 409 difference and percent change in NO_x emissions are shown in Figure 5. It can be seen that the 410 emission from road transport decreased. The road networks are clearly recognizable as lines 411 where the emissions were reduced, especially in the EU15 but NOx emissions from shipping 412 increased. The relative change is sometimes misleading as some small diffuse sources that may 413 have changed will note effect the absolute emissions much but will show up as a relative large

414 change. Therefore it is recommended to look at both the absolute concentrations difference as415 well as the relative change.

416 The most relevant trend is the ongoing reduction in SO₂ emissions by almost 20% (Table 8); a

417 more detailed analysis of the changes in SO₂ emissions is provided in Figure 6 and Figure 7. The

418 emission reduction is achieved mainly in the EU-27 and more specifically in the energy

419 production sector (SNAP01: Combustion in energy and transformation industries). Furthermore

420 the implementation of the SECA causes SO2 emission reduction on the North Sea and the Baltic

421 Sea (Figure 6). Similar graphs of the spatial component of the emission changes for PM2.5 are

422 presented in Figure 8, showing the decrease in the North Sea and Baltic Sea due to

423 implementation of the SECA. However, PM2.5 emission decreases between 2006 and 2009 over

424 land are small in the EU15 (decreasing road transport emissions) and the EU-NMS (decreasing

425 emission in industrial combustion) or virtually zero (Non-EU countries).

426

427 **4.2 North American Domain: US emissions changes between 2006 and 2010**

428 In this section, we will examine the differences in emission between the two study years of 2006 429 and 2010. Canadian and Mexican emissions did not change between the years for the inventory 430 constructed for AQMEII-2, hence these findings relate only to the US portion of the North 431 America domain. As stated previously, year-specific updates were made for the following 432 sectors: EGU point sources (NO_x and SO₂ only), wildfires and prescribed burns, on-road mobile 433 sources, residential wood combustion, biogenic sources, and area source fugitive dust. All other 434 sectors (nonpoint sources, off-road (or nonroad) sources, non-EGU point sources, agricultural 435 ammonia sources, agriculture fires, commercial marine vessels classes 1 and 2, commercial 436 marine vessels class 3 were constant for the two study years. The reason that these sectors were

437 not changed is two-fold: 1) We do not have reliable year specific information for these sectors 2) 438 We assume that year to year changes in these sectors are small compared to the other sectors 439 which we have year specific information. However, because we have held these sectors 440 constant, the "signal" in the modeling results between the two years may be reduced because of 441 this missing information. We provide emission estimates here in terms of the more detailed 442 sectors used in phase 2 of this project. Table 9 shows the 2006 emission estimates used in phase 443 2 of this project. Table 10 shows the 2010 emission estimates. Table 11 shows the percent 444 change in emissions from 2006 to 2010 for those sectors/pollutants for which there was a change 445 of more than a half percent.

446

447 Spatial maps for both the absolute difference and percent change in NO_x emissions are shown in 448 Figure 9. We see an overall decrease of 10% to 30% for many regions with a total net domain-449 wide decrease of 17% (Table 11). We note that the changes in emissions in Table 11 are due to 450 (1) implementation of additional emission controls between 2006 and 2010 (EGU, mobile, 451 nonroad sources) and (2) natural variability (dust and fire sources). There are a few isolated 452 areas with increases. We would expect regional decreases in ozone throughout the Contiguous 453 United States as a result of this decrease in NO_x. In Canada and Mexico, on the other hand, 454 since the same base inventories were used for both 2006 and 2010 (see Sect. 2.2.2), only 455 differences due to numerical noise can be seen. Spatial maps showing both the absolute 456 difference and percent change in SO₂ are shown in Figure 10. We see a larger decrease on the 457 order of 40 to 80% for various regions and a domain-wide total decrease of 29%. Spatial maps 458 showing both the absolute difference and percent change in $PM_{2.5}$ are shown in Figure 11. 459 Differences can be seen in Canada due to the downward adjustment to fugitive dust emissions

460 from soil moisture and snow cover (Appel et al. 2013). In addition, US differences in PM_{2.5} are 461 also due to the natural variability in dust and fire sources as well as changes in emission controls 462 from on/off road sources and EGU point sources. We see a mix of increases and decreases and 463 in this case, a well-defined "signal" change in emission between the two years may be difficult to 464 interpret. Emission controls of NO_x were changed between 2006 and 2010 for the EGU sector. 465 To show the difference for the annual cycle, we show the annual domain-wide daily time series 466 of 2006 compared to 2010 for NO_x (Figure 12) and SO₂ (Figure 13). Note that NO_x changes are 467 most prominent during the winter months because summer controls were extended for the whole 468 year between 2006 and 2010. Thus we would expect a smaller decrease in summer ozone since 469 most of the NO_x reductions occur outside the ozone season. For SO_2 , the reductions occurred for 470 all months, so we expect model differences to be similar during all seasons. Stoekenius et al. 471 2014 contains a summary of the regional and seasonal differences in the anthropogenic 472 emissions between 2010 and 2006 in the NA domain.

473

474 **5. Biogenic Emission Differences between 2006 and 2010**

In this section we will examine the differences in the biogenic emission estimates that were usedin some (but not all) of the models for both the North American and European domains.

477 **5.1 European Domain**

Biogenic VOC emissions (BVOC), mainly in the form of isoprene, can have a substantial impact
on ozone production and ozone concentration variability (e.g., Curci et al., 2009). The rates of
isoprene emission are largely dependent on plant species, and increase strongly with temperature
and with photosynthetic active radiation intensity (Guenther et al., 1993; Guenther, 1995).
BVOC emissions are often calculated on-line in chemistry and transport models (CTM) using

483 meteorological fields for the climate variables in combination with detailed information on 484 spatial distribution of tree types in Europe. Here we present the calculated BVOC emissions for 485 the years 2006 and 2010 using the LOTOS-EUROS model (Schaap et al., 2008; 2009), which is 486 a three-dimensional CTM that simulates air pollution in the lower troposphere. These emissions 487 were used for model "M10", Group "NL2" for the EU domain as shown in Table 1 of Ulas et.al. 488 (2014). The implementation of biogenic VOC emissions in LOTOS-EUROS is similar to the 489 approach by Steinbrecher et al. (2009) and further documented in Schaap et al., 2009 and 490 Beltman et al., 2013. The land use dataset (Steinbrecher et al., 2009) was combined with the 491 distributions of 115 tree species over Europe (Koeble and Seufert, 2001). The role of the local 492 temperature and photo-synthetically active radiation are taken into account in the biogenic 493 emissions by following the empirically designed algorithms proposed by Guenther et al. (1993) 494 and Tingey et al. (1980). The projection used in the BVOC emission calculations is longitude-495 latitude at a grid resolution of 0.50° longitude $\times 0.25^{\circ}$ latitude (in Europe approximately 25×25 496 km). The simulated domain is a rectangular grid from 15°W to 35°E and 35°N to 70°N, which 497 roughly encompasses Europe but some models may use a larger extent. Various CTMs may have 498 slightly different solutions or parameterizations but in general the emission source strength and 499 the emission timing will be comparable with what was calculated by LOTOS-EUROS. In 500 AQMEII phase 2 these calculated emissions were used by at least one other CTM.

501

502 BVOC emissions vary considerably between years (Figure 14). Over the total European domain 503 isoprene emissions were about 20% higher in 2010 compared to 2006 and the releases were 504 slightly later in the year (Figure 14). Since the emissions are driven by climate variables, the 505 timing throughout the year is important. About 90% of the isoprene emissions occur in the period

506 May-September (Figure 14; Figure 15). Terpene emissions also occur in winter months but still 507 about 75% of the emissions occur in May-September (Figure 14). Since the absolute emissions 508 calculated by the various CTMs participating in AQMEII may vary, the fractional release per 509 month gives more insight in the important patterns (Figure 15). Figure 15 illustrates that from 510 year to year the fraction of total emission in a particular month can vary substantially due to 511 climatic variability. Also individual locations (in this example East France and Southern Italy) 512 may deviate from the average European pattern. For example, the emissions in East of France 513 clearly peak in July while emissions in southern Italy are equally important in June-July-August. 514 Moreover, while the European isoprene emission in 2010 were about 20% higher than in 2006 515 (Figure 15) for the 2 individual examples used here, the situation was exactly the opposite with 516 about 20% higher emissions in 2006 than in 2010 (Figure 16). The variability can be explained 517 by local to regional climate variability (between years and locations) over Europe.

518

519 **5.2 North American Domain**

520 The biogenic emission estimates used for the North American domain comparison in this work 521 were based on the Biogenic Emission Inventory System (BEIS) version 3.14. Since the coupled 522 WRF-CMAQ system was used to generate the emissions, these emission estimates were based 523 on the meteorological fields from the coupled simulations. Domain-wide biogenic emission 524 estimates have already been included Table 9 for 2006 and Table 10 for 2010. Although the total 525 biogenic VOC emissions in 2006 were 2% higher than in 2010, there were important spatial 526 differences in the biogenic emission estimates. Figure 17 shows the summer of 2006 and the 527 summer 2010 state-wide temperature rankings. We see that in 2006, the entire country was 528 warmer than average but more so in the west than in the east. However in 2010, in the east and

southeast the temperatures were at exceptionally warm but below normal in the west. As a result, in Figure 18, when we subtract 2006 biogenic emission estimates from 2010 we get large positive differences in the east and southeast and negative differences in the west. The summer of 2010 was characterized by exceptional warmth in the east/southwest and generally cooler temperatures in the west whereas the entire Contiguous United States was warm in 2006. This implies more biogenic VOCs in the east for 2010 (compared to 2006) and more biogenic VOCs in the west in 2006 (compared to 2010).

536

537 6. Conclusions and Recommendations

538 In this paper, we summarize the preparation of the emissions for both the EU and NA domains. 539 We have provided a summary of the differences in the emission estimates between phase 1 and 540 phase 2 of the AQMEII project. For the EU domain, there was substantial decrease in CO (-541 19%), NH₃ (-11%), and SO₂(-12%) emissions between phase 2 and phase 1 emissions for 2006. 542 For the NA domain, there were decreases in CO (-10%), non-methane hydrocarbons (-5%), 543 PM_{2.5} (-8%), PM10 (-18%), SO₂ (-12%), with an increase of 4% in NOx. We have provided the 544 example of residential wood combustion emissions as an emission change between the two 545 phases that would impact model performance of $PM_{2.5}$ during the nighttime winter in urban 546 areas. We have also provided a summary of the emission changes between 2010 (NA 547 domain)/2009 (EU domain) and 2006 for the two modeling years that were used in phase 2 of the 548 AQMEII project. Between 2006 and 2009, considerable emission reductions were achieved for 549 17 EU countries, Norway and Switzerland as well as EU-Non-Member States, for all emissions 550 classes aside from NH₃, which remained stable. Non-EU countries showed little change in 551 emissions levels, though this may be a result of poor data quality. Shipping emissions decreased

552	for PM and SO ₂ , while increasing for other species. Between 2006 and 2010, estimated US NOx
553	emissions decreased by 17%, SO ₂ by 29%, CO by 21%, PM _{2.5} by 12%, PM10 by 7%, NMHC by
554	4% and NH_3 by 2%. We have provided a useful reference for all the modeling studies and
555	analysis associated with the AQMEII project. Finally, we have provided a brief summary of the
556	differences between the two years in two of the biogenic models used for the EU and NA
557	domains. Between 2006 and 2010, biogenic emissions in North America increased in the east
558	and decreased in the west, due to regional temperature differences between the years. The
559	European emissions of isoprene peaked earlier in 2006, but achieved higher levels in 2010.
560	
561	
562	Acknowledgements and disclaimer
563	
564	This work was conducted under the auspices of the AQMEII project
565	(http://aqmeii.jrc.ec.europa.eu/aqmeii2.htm) under the leadership of C. Hogrefe (USEPA) and
566	Stefano Galmarini (Joint Research Center, European Union). Contributions to the North
567	American emission inventory were made by the Computer Sciences Corporation in Research
568	Triangle Park, North Carolina. The authors also wish to thank K. Foley in helping to create
569	plots using the R software package. Research leading to the European emission inventory was
570	partly funded by the MACC European Union's Seventh Framework Program (FP7/2007-2013)
571	under Grant Agreement no. 218793. A. Visschedijk, J. Kuenen and R. van Gijlswijk (TNO) are
572	thanked for their part in preparing the European emission inventory. We gratefully acknowledge
573	the contribution of various groups to the second Air Quality Model Evaluation international
574	Initiative (AQMEII) activity: U.S. EPA, Environment Canada, Mexican Secretariat of the

- 575 Environment and Natural Resources (Secretaría de Medio Ambiente y Recursos Naturales-
- 576 SEMARNAT) and National Institute of Ecology (Instituto Nacional de Ecología-INE) (North
- 577 American national emissions inventories); U.S. EPA (North American emissions processing);
- 578 TNO (European emissions processing); The Finish Meteorological Institute for providing
- 579 biomass burning emission data for Europe. Although this manuscript has been reviewed and
- 580 approved for publication, it does not necessarily reflect the policy or views of the U.S.
- 581 Environmental Protection Agency, TNO, or Environment Canada. Richard Kranenburg (TNO)
- is thanked for providing the biogenic VOC emission data for Europe.
- 583
- 584

585 **References**

- 586 Adelman, Z., G. Arora, A. Xiu, B. Baek, M. Houyoux, A. Eyth, and M. Strum, 2010.
- 587 Development and preliminary results for a model of temporal variability in residential wood
- 588 combustion emissions, paper presented at 19th Annual International Emission Inventory
- 589 Conference" Emissions Inventories-Informing Emerging Issues" San Antonio, Texas.
- 590
- 591 Appel, K. W., G. A. Pouliot, H. Simon, G. Sarwar, H. O. T. Pye, S. L. Napelenok, F. Akhtar, and
- 592 S. J. Roselle (2013), Evaluation of dust and trace metal estimates from the Community
- Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6(4), 883-899,
 doi:10.5194/gmd-6-883-2013.
- 595
- 596 Beltman, J.B., Hendriks, Lillyman, C., Buset, K., 2009.Tum, M., Schaap, M., 2013. The 2008
- 597 *Canadian* impact of large scale biomass production on ozone air pollution in Europe,
- 598 Atmospheric Environment, 71.
- 599
- 600 CEIP, 2012 Centre for Emission Inventories and Projections: Reported emissions by Parties
- under the Convention for Long-Range Transboundary Air Pollution, http://www.ceip.at/webdab-
- emission-database/officially-reported-emission-data/, date of download 12 March 2012, 2012.
- 603
- 604 CRC, 2010. Review of the 2009 Draft Motor Vehicle Emissions Simulator (MOVES) Model,
- 605 FinalAssessment of Agricultural Ammonia. National Agri-Environmental Standards Technical
- 606 Series Report No. 4-1, Environment Canada, Gatineau, Quebec, Canada, 295 pp.
- 607

608 Curci, G. M. Beekmann, R. Vautard, G. Smiatek, R. Steinbrecher, J. Theloke, R. Friedrich, 609 Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone 610 levels, Atmospheric Environment, 43 (2009), pp. 1444–1455 611 Environment Canada (EC), June 2008, 2006 Criteria Air Contaminants Emissions Inventory -612 613 Air Quality Modeling data, Ottawa, Ontario. Unpublished Internal Report. [see 614 http://www.ec.gc.ca/inrp-npri/] 615 616 EPA, 2006. Documentation for the final 2002 nonpoint sector national emission inventory for criteria and hazardous air pollutants. 617 618 619 EPA, 2010. MOVES Highway Vehicle, Temperature, Air Conditioning, and Inspection and 620 Maintenance Adjustments." US Environmental Protection Agency, EPA-420-R-10-027. 621 622 Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P., 2006. Global 623 estimation of burned area using MODIS active fire observations, Atmos. Chem. Phys., 6, 957-624 974. . 625 626 Guenther, A., 1995. A global model of natural volatile organic compound emissions. Journal of 627 Geophysical Research 100, 8873-8892. 628 629 Guenther, A.B., Zimmerman, P.R., Harley, P.C., Monson, R.K., Fall, R., 1993. Isoprene and 630 monoterpene emission rate variability: model evaluations and sensitivity analysis. Journal of 631 Geophysical Research 98D, 12609-12617. 632 633 IIASA (International Institute for Applied Systems Analysis), 2012: GAINS detailed emissions 634 by source and activity, http://gains.iiasa.ac.at/gains/EUN/index.login?logout=1, PRIMES 635 baseline scenario 2009, download date 19 June 2012, 2012. 636 637 Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baro, R., Bellasio, 638 R., Brunner, D., Chemel, C., Curci, G., Flemming, J., Forkel, R., Giordano, L., Jimenez-639 Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote, C., Kuenen, J.J.P., Makar, 640 P.A., Manders-Groot, A., Neal, L., Perez, J.L., Pirovano, G., Pouliot, G., San Jose, R., Savage, 641 N., Schroder, W., Sokhi, R.S., Syrakov, D., Torian, A., Tuccella, P., Werhahn, K., Wolke, R., 642 Yahya, K., Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., Galmarini, S., 2014a. Evaluation of 643 operational online-coupled regional air quality models over Europe and North America in the 644 context of AQMEII phase 2. Part I: Ozone. Atmospheric Environment (this issue). 645 JRC (Joint Research Centre), Emission Database for Global Atmospheric Research (EDGAR) 646 v4.2, http://edgar.jrc.ec.europa.eu (last access 24 May 2012), 2011. 647 648 Koeble, R., Seufert, G., 2001. Novel maps for forest tree species in Europe. In: Proceedings of 649 the Conference "A Changing Atmosphere". 650 651 Kuenen J., Denier van der Gon H.A.C., Visschedijk A., Van der Brugh H., Gijlswijk R., 2011 652 MACC European emission inventory for the years 2003-2007, TNO-report TNO-060-UT-2011-653 00588 Utrecht.

- 654
- 655 Kuenen, J. J. P., A. J. H. Visschedijk, M. Jozwicka, and H. A. C. Denier van der Gon (2014), 656 TNO-MACC_II emission inventory: a multi-year (2003–2009) consistent high-resolution 657 European emission inventory for air quality modelling, Atmos. . Discuss., 14(5), 5837-5869, 658 doi:10.5194/acpd-14-5837-2014. 659 660 Makar, P.A., Moran, M.D., Zheng, Q., Cousineau, S., Sassi, M., Duhamel, A., Besner, M., 661 Davignon, D., Crevier, L.-P., and Bouchet, V.S., 2009. Modelling the impacts of ammonia emissions reductions on North American air quality, Atmos. Chem. Phys., 9, 7183-7212. 662 663 664 Mason, R., A. Zubrow, and A. Eyth, 2012. Technical Support Document (TSD) Preparation of 665 Emissions Inventories for the Version 5.0, 2007 Emissions Modeling Platform. Available at http://epa.gov/ttn/chief/emch/2007v5/2007v5 2020base EmisMod TSD 13dec2012.pdf 666 667 668 Moran, M. D., Zheng, Q., Zhang, J., Pavlovic, R., Ménard, S., and Sassi, M., 2012. Recent 669 improvements to the representation of anthropogenic emissions in the Canadian operational air 670 quality forecast model (GEM-MACH), 4th International Workshop on Air Quality Forecasting 671 Research, 12-14 Dec., Geneva, Switzerland. 672 673 Pouliot, G., T. Pierce, H. Denier van der Gon, M. Schaap, M. Moran, and U. Nopmongcol, 2012 Comparing emission inventories and model-ready emission datasets between Europe and North 674 675 America for the AQMEII project, Atmospheric Environment, 53(0), 4-14, 676 doi:10.1016/j.atmosenv.2011.12.041. 677 678 Pulles, T. H. Kok, U. Quass, Application of the emission inventory model TEAM: Uncertainties 679 in dioxin emission estimates for central Europe, Atmospheric Environment, Volume 40, Issue 680 13, April 2006, Pages 2321-2332 681 682 Raffuse S.M., Pryden D.A., Sullivan D.C., Larkin N.K., Strand T., and Solomon R. 2009. 683 SMARTFIRE algorithm description. Paper prepared for the U.S. Environmental Protection 684 Agency, Research Triangle Park, NC, by Sonoma Technology, Inc., Petaluma, CA, and the U.S. 685 Forest Service, AirFire Team, Pacific Northwest Research Laboratory, Seattle, WA STI-905517-686 3719. 687 688 Roe, Stephen and Holly C. Lindquist, 2004. MANE-VU Residential Wood Combustion 689 Emission Inventory, E.H. Pechan & Associates, Inc, June 22, 2004. 690 691 Sassi, M., Chen, J., Samaali, M., Davignon, D., Moran, M. D., Taylor, B., Zheng, Q., 2010. 692 2006 Canadian emissions for air quality modelling. 19th International Emission Inventory 693 Conference, 27-30 Sept., San Antonio, Texas. 694 [http://www.epa.gov/ttn/chief/conference/ei19/session2/sassi.pdf] 695 696 Soares, J., Sofiev, M., Prank, M, San Jose, R., Perez, J.L. On uncertainties of wild-land fires 697 emission in AQMEII case study, Atmospheric Environment, (this issue). 698

700 P.J.H., 2008. The LOTOS-EUROS model: description, validation and latest developments, 701 International Journal of Environment and Pollution 32 (2), 270–290 702 703 Schaap, M. A.A.M. Manders, E.C.J. Hendriks, J.M. Cnossen, A.J.S. Segers, H.A.C. Denier van 704 der Gon, M. Jozwicka, F.J. Sauter, G.J.M. Velders, J. Matthijsen, P.J.H. Builtjes, Regional 705 Modelling of Particulate Matter for the Netherlands, (2009) PBL Report 500099008, Bilthoven, 706 The Netherlands. Available at: http://www.rivm.nl/bibliotheek/rapporten/500099008.pdf 707 708 Schwede, D., G. Pouliot, and T. Pierce (2005), Changes to the biogenic emissions inventory 709 system version 3 (BEIS3), in 4th Annual CMAS Models-3 Users' Conference. 710 711 Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., Koskinen, J., 712 and Kukkonen, J., 2009. An operational system for the assimilation of the satellite information 713 on wild-land fires for the needs of air quality modelling and forecasting, Atmos. Chem. Phys., 9, 714 6833-6847 715 Steinbrecher, R., G. Smiatek, R. Köble, G. Seufert, J. Theloke, K. Hauff, P. Ciccioli, R. Vautard, 716 717 G. Curci, Intra- and inter-annual variability of VOC emissions from natural and semi-natural 718 vegetation in Europe and neighbouring countries, Atmospheric Environment, 43 (2009), pp. 719 1380-1391 720 721 Stoeckenius, T., J Zagunis, T Sturtz and T Sakulyanontvittaya, 2014. A Comparison between 722 2010 and 2006 Air Quality and Meteorlogical Conditions, and Emissions and Boundary 723 Conditions used in Simulations of the AQMEII-2 North American Domain, Atmospheric 724 Environment, (this issue). 725 726 Tingey, D.T., Manning, M., Grothaus, L.C., Burns, W.F., 1980. Influence of light and 727 temperature on monoterpene emissions rates from slash pine. Plant Physiology 65, 797-801

Schaap, M., Sauter, F., Timmermans, R.M.A., Roemer, M., Velders, G., Beck, J., Builtjes,

728

699

- Visschedijk, A.H.J. and H.A.C. Denier van der Gon, 2005. Gridded European anthropogenic
 emission data for NO_x, SO₂, NMVOC, NH3, CO, PM10, PM2.5 and CH4 for the year 2000,
- TNO B&O-A Rapport 2005/106, 2nd version November 2005.
- Wang, C., J. J. Corbett, and J. Firestone, 2008. Improving spatial representation of global ship
 emissions inventories. Environ. Sci. Technol., 42:193 199.
- 735

- 736 Wolf, M.E., Paula G. Fields, P.G., Manne, G.K., López Villegas, M.T., Garibay Bravo, V.,
- 737 Iniestra Gómez, R., 2009. Developing Mexico national emissions inventory projections for the
- future years of 2008, 2012, and 2030. 18th International Emission Inventory Conference, April
- 14-17, Baltimore, Maryland, 29 pp. [<u>www.epa.gov/ttnchie1/conference/ei18/session2/wolf.pdf</u>]
 740
- 741 Zhang, J., Zheng, Q., Moran, M. D., Gordon, M., Liggio, J., Makar, P., Taylor, B., Stroud, C.,
- 742 2012. Improvements to SMOKE processing of Canadian on-road mobile emissions. 20th
- 743 International Emission Inventory Conference, 13-16 Aug., Tampa, Florida, 13 pp.
- 744 http://www.epa.gov/ttn/chief/conference/ei20/session1/jzhang.pdf

	Table 1. Source categories for the Contiguous United States emissions
Source type	Description
"afdust"	Area source fugitive dust from anthropogenic sources, PM10 & PM2.5 only
"ag"	Area source emissions from agricultural operations, NH3 only
"c1c2rail"	Area source emissions from locomotive and marine (class 1 & class 2 vessels
	only) This sector was named "alm_no_c3" in phase 1. Aircraft emissions are
	included in "ptnonipm".
"agfire"	Crop residue burning. This sector was part of the "nonpt" sector in phase 1
Beis	Biogenic VOC and soil NO emissions estimated with BEIS3.14 and
	meteorology from the WRF/CMAQ coupled system.
C1c2marine	Class 1 and class 2 commercial marine port and inter-port vessels plus
	railroads
C3marine	Commercial marine port and inter-port Class 3 (C3) vessels defined as having
	displacement greater than 30 liters per cylinder. This sector was called
	"seca_c3" in phase 1
Nonpt	Area source emissions not included in other sectors
Nonroad	Off-road mobile source emissions from EPA's NONROAD model
Onroad	On-road mobile source emissions from the SMOKE/MOVES system
Ptipm	Electric generating unit (EGU) point source emissions, includes Continuous
	Emission Monitoring (CEM) hourly data
Ptnonipm	Non-EGU point source emissions (industrial source and no power generation)
	and including aircraft emissions (takeoff, landing, support equipment)
"ptfire"	Wildland fires and prescribed burning fire emissions identified as point
	sources
"rwc"	Residential Wood Combustion. This sector was part of the "nonpt" sector in
	phase 1.

751		Table 2. Source categories for Canadian/Mexican emissions					
	Source type	Description					
	"canafdust"	Area source fugitive dust from anthropogenic sources, PM10 & PM2.5 only					
		This sector was part of "othar" in phase 1					
	"canag"	Area source emissions from agricultural operations, NH3 only. This sector was					
		part of "othar" in phase 1					
"canar"		Area source emissions from Canada not included in "canafdust" or "canag".					
		These were part of "othar" in phase 1					
	"canon"	On-road mobile source emissions from Canada. These were part of "othon" in					
		phase 1					
	"canpt"	Point Source emissions from Canada. These were part of "othpt" in phase 1					
	"mexar"	Area source emissions from Mexico. These were part of "othar" in phase 1					
	"mexon"	On-road mobile Source Emissions from Mexico. These were part of "othon" in					
		phase 1					
	"mexpt"	Point Source emissions from Mexico. These were part of "othpt" in phase 1					
752							

Table 3 European emissions excluding International shipping (Gg/yr) for the year 2006 in

Region ^a	Data set	CO	NH_3	NMVOC	NO _x	PM_{10}	SO_2
EU15+ Norway +	AQMEII-1	23,731	3,315	7,756	9,112	1,690	4,584
Switzerland	AQMEII-2	22,168	3,170	6,984	9,281	1,666	4,333
	Change	-7%	-4%	-10%	2%	-1%	-5%
EU-NMS ^b	AQMEII-1	8,198	843	2,257	2,040	724	3,688
	AQMEII-2	7,115	872	1,954	2,116	795	3,685
	Change	-13%	3%	-13%	4%	10%	0%
Non EU	AQMEII-1	20,750	2,127	5,088	5,625	2,646	7,103
	AQMEII-2	13,583	1,581	5,452	5,161	2,551	5,556
	Change	-35%	-26%	7%	-8%	-4%	-22%
Europe	AQMEII-1	52,678	6,286	15,101	16,777	5,059	15,376
_	AQMEII-2	42,865	5,624	14,389	16,558	5,011	13,575
	Change	-19%	-11%	-5%	-1%	-1%	-12%

755 AQMEII-1 and AQMEII-2.

^a For a listing of the countries in the country groups see Supplementary Table S1.

757 b NMS = New Member States of the European Union

758

759 Table 4 Comparison of total EU-27 emissions (Gg) excluding International shipping for 2009

and 2010. Data downloaded from Centre of Emission Inventories and Projections (CEIP
 http://www.ceip.at; April 2014).

Pollutant	2009	2010	Increase 2010
СО	23,534	24,985	6.2%
NH ₃	3,679	3,613	-1.8%
NMVOC	7,077	7,115	0.5%
NO _x (as NO ₂)	9,240	9,096	-1.6%
PM_{10}	1,782	1,842	3.4%
SO _x (as SO ₂)	4,841	4,559	-5.8%

^{a)} EU-27 Member States include: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia,

763 Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the

Netherlands, Poland, Portugal, Romania, Slovak Republic, Slovenia, Spain, Sweden and the UnitedKingdom.

766

	CO	NH_3	NMHC	NOx	PM _{2.5}	PM ₁₀	SO ₂
"afdust"					935	8,036	
"ag"		2942					
"alm_no_c3"+ "ptnonipm"	3,168	145	926	3,785	453	647	2,061
"seca_c3"	82		27	996	76	82	629
"othar"	3,740	720	1,146	811	403	1,361	164
"othon"	5,063	22	198	588	14	18	10
"othpt"	1,184	19	386	1 <i>,</i> 059	128	194	2,190
"nonpt"	6,685	122	5,199	1,525	976	1,223	1,134
"nonroad"	18,004	2	2,050	1,935	182	192	18:
"onroad"	43,332	266	2,988	5,812	122	173	13
"ptfire"	17,401	286	2,029	257	1,515	1,788	13
"ptipm"	551	26	31	3,418	458	557	9,40
"beis"	8,784		41,846	1,260			
Totals	107,994	4549	56,826	21,446	5,262	14,271	16,04

Table 5 Annual 2006 Emission Estimates for the North American Study Domain for phase 1

114	74
-----	----

Table 6. Annual 2006 Emission Estimates for the North American Study Domain for phase 2 (Gg/Year except NMHC which is Gg C/yr) 778

Sector	CO	NH ₃	NMHC	NOx	PM _{2.5}	PM ₁₀	SO ₂
"afdust"					823	5,846	
"ag"		3,336					
"c1c2rail"+	2 856	62	746	2 006	117	572	1 / 96
"ptnonipm"	2,830	02	740	3,090	412	575	1,400
"c3marine"	90		30	1,072	82	90	678
"canar"+							
"mexar"+	2 011	E 0 7	1 1 0 6	000	402	1 5 2 0	120
"canag"+	5,044	567	1,100	052	402	1,529	139
"canafdust"							
"canon"+	1 200	22	202	E02	10	24	7
"mexon"	4,000	25	295	592	19	24	/
"canpt"+	1 202	10	740	1 1 6 1	111	210	2 2 2 0
"mexpt"	1,202	19	742	1,101	144	210	2,270
"nonpt"+							
"rwc"+	4,140	143	4,283	1,118	648	731	367
"agfire"							
"nonroad"	16,803	2	1 <i>,</i> 990	1,873	170	180	91
"onroad"	37,440	134	2,557	7,857	309	387	164
"ptfire"	17,402	286	1,941	257	1,515	1,788	137
"ptipm"	635	23	28	3,156	298	394	8,700
"beis"	8,424		40,237	1,251			
Totals	97,636	4,615	54,033	22,265	4,823	11,757	14,040

Table 7 Percent Difference between Phase 2 and Phase 1 (2006) Emissions for North American
 study domain. See Text for explanation of text colors

Sector	СО	NH ₃	(Gg	NO _x	PM _{2.5}	\mathbf{PM}_{10}	SO_2
			C/yr)				
"afdust"					-12%	-27%	
"ag"		13%					
"c1c2rail"+							
"ptnonipm"	-10%	-57%	-19%	-18%	-9%	-11%	-28%
"c3marine"	9%		9%	8%	9%	9%	8%
"canar"+"mexar"+							
"canag"+"canafdust"	3%	-18%	3%	3%	0%	12%	-15%
"canon"+"mexon"	-5%	6%	48%	1%	34%	30%	-36%
"canpt"+"mexpt"+offshore							
points	1%	0%	92%	10%	13%	1 2%	4%
"nonpt"+"rwc"+'agfire"	-38%	18%	-18%	-27%	-34%	-40%	-68%
"nonroad"	-7%	0%	-3%	-3%	-7%	-6%	-50%
"onroad"	-14%	-50%	-14%	35%	154%	1 2 4%	27%
"ptfire"	0%	0%	-4%	0%	0%	0%	0%
"ptipm"	15%	-12%	-8%	-8%	-35%	-29%	-8%
"beis"	-4%		-4%	-1%			
Net change	-10%	1%	-5%	4%	-8%	-18%	-12%

NMHC

784

2006 and 2009 as	used in AQ	MEII phas	se 2					
Region	Year	CO	NH3	NMVOC	NO _x	PM _{2.5}	PM ₁₀	SO2
EU15+NOR+CHE	2006	22,168	3,170	6,984	9,281	1,111	1,666	4,333
	2009	17,830	3,094	5,862	7,542	998	1,499	2,559
change 2006 to 2	2009	-20%	-2%	-16%	-19%	-10%	-10%	-41%
EU-NMS	2006	7,115	872	1,954	2,116	502	795	3,685

1,767

1,886

2,553

6,609

Table 8 European emissions of CO, NH3, NMVOC, NO_x, PM10 and SO₂ in Gg for the years
2006 and 2009 as used in AQMEII phase 2

change 2006 to 20	09	-7%	-4%	-10%	-11%	-10%	-14%	-31%
NONEU	2006	13,583	1,581	5,452	5,161	1,782	2,551	5,556
	2009	13,281	1,613	5,168	4,830	1,773	2,537	5,631
change 2006 to 20	change 2006 to 2009		2%	-5%	-6%	0%	-1%	1%
SEA	2006	405	-	136	3,770	300	317	2,568
	2009	436	-	146	3,990	292	309	2,446
change 2006 to 20	09	8%		8%	6%	-3%	-3%	-5%
European	2006	43,271	5,624	14,525	20,328	3,695	5,328	16,143
Domain	2009	38,156	5,543	12,943	18,247	3,513	5,029	13,189
change from 2006		-12%	-1%	-11%	-10%	-5%	-6%	-18%

Table 9 Annual 2006 Emission Estimates for the North American Study Domain for phase 2

Sector	CO	NH ₃	NMHC	NO _x	PM _{2.5}	PM_{10}	SO_2
"afdust"	0	0	0	0	823	5,846	0
"ag"	0	3,336	0	0	0	0	0
"agfire"	346	0	18	16	45	45	3
"c1c2rail"	197	1	36	1,218	39	42	46
"c3marine"	90	0	30	1,072	82	90	678
"canafdust"	0	0	0	0	171	1,231	0
"canag"	0	462	0	0	0	0	0
"canar"	3,411	5	857	652	179	218	88
"canon"	4,202	20	222	507	12	17	2
"canpt"	1,036	19	644	781	62	106	1,598
"mexar"	433	121	329	180	52	80	51
"mexon"	598	3	71	85	7	7	5
"mexpt"	166	0	98	380	83	112	672
"nonpt"	1,810	126	4,074	1,074	319	401	356
"nonroad"	16,803	2	1,990	1,873	170	180	91
"onroad"	37,440	134	2,557	7,857	309	387	164
"ptfire"	17,402	286	1,941	257	1,515	1,788	137
"ptipm"	635	23	28	3,156	298	394	8,700
"ptnonipm"	2,659	62	710	1,879	373	531	1,440
"rwc"	1,984	17	190	28	284	285	8
"beis"	8,424	0	40,237	1,251	0	0	0
Totals	97,636	4,615	54,033	22,265	4,823	11,757	14,040

794 (Gg/Year except NMHC which is Gg C/yr)

SO ₂	\mathbf{PM}_{10}	PM _{2.5}	NO _x	NMHC	NH ₃	СО	Sector
0	5,633	793	0	0	0	0	"afdust"
0	0	0	0	0	3,337	0	"ag"
3	45	45	16	18	0	346	"agfire"
46	42	39	1,218	36	1	197	"c1c2rail"
678	90	82	1,072	30	0	90	"c3marine"
0	1,294	182	0	0	0	0	"canafdust"
0	0	0	0	0	461	0	"canag"
88	218	179	652	858	5	3,412	"canar"
2	17	12	508	222	20	4,205	"canon"
1,598	106	62	781	644	19	1,036	"canpt"
51	80	52	181	329	121	433	"mexar"
5	7	7	85	71	3	598	"mexon"
672	112	83	380	98	0	166	"mexpt"
356	401	319	1,074	4,074	126	1,810	"nonpt"
15	159	151	1,575	1,733	2	14,294	"nonroad"
32	303	229	5,702	1,914	111	24,950	"onroad"
95	1,230	1,042	179	1,333	196	11,946	"ptfire"
4,919	394	298	1,960	28	23	636	"ptipm"
1,440	531	373	1,879	710	62	2,659	"ptnonipm"
8	285	284	28	190	17	1,984	"rwc"
0	0	0	1,218	39,500	0	8,182	"beis"
10,008	10,945	4,231	18,507	51,788	4,503	76,944	Totals

Table 10: Annual 2010 Emission Estimates for the North American Study Domain for phase 2
 (Gg/Year except NMHC which is Gg C/yr)

"a "ca	afdust"							
"ca						-4%	-4%	
	nafdust"					+6%	+5%	
"no	onroad"	-15%	+7%	-13%	-16%	-11%	-12%	-84%
"0	nroad"	-33%	-17%	-25%	-27%	-26%	-22%	-81%
"	ptfire"	-31%	-31%	-31%	-30%	-31%	-31%	-31%
"I	otipm"				-38%			-43%
('beis"	-3%		-2%	-3%			
Net	t Change	-21%	-2%	-4%	-17%	-12%	-7%	-29%

Table 11 Percent Difference in Emission Estimates for the North American Study Domain from
2010 to 2006. Only those sectors and pollutants with a non-zero difference are shown.

- 811 List of Figures
- 812 Figure 1. Diurnal profile for Residential Wood Combustion emissions from 2005 EPA modeling
- 813 platform (dashed line) and from 2008 EPA modeling platform (solid line)
- Figure 2. Spatial distribution of 2006 Residential Wood Combustion PM_{2.5} from phase 1 (a) and
- 815 phase 2 (b) for continental U.S.
- 816 Figure 3. Absolute difference in 2006 Residential Wood Combustion PM_{2.5} emissions for
- 817 continental U.S.
- 818 Figure 4. Spatial distribution of European SO₂ emission in 2009.
- 819 Figure 5. Spatial map of absolute emission difference and percent difference in NO_x between
- 820 2006 and 2009 for Europe
- 821 Figure 6. Spatial map of absolute emission difference and percent difference in SO₂ between
- 822 2006 and 2009 for Europe
- Figure 7. European SO₂ emissions by country group for 2006 and 2009. "SEA" corresponds to
- 824 emissions from international shipping. The legend provides source sector contributions
- 825 Figure 8. Spatial map of absolute emission difference and percent difference in NO_x between
- 826 2006 and 2009 for Europe
- Figure 9. Spatial map of absolute emission difference and percent difference in NO_x between
- 828 2006 and 2010 for NA domain
- Figure 10. Spatial map of absolute emission difference and percent difference in SO₂ between
- 830 2006 and 2010 for NA domain

- Figure 11. Spatial Map of absolute emission difference and percent difference in PM_{2.5} between
- 832 2006 and 2010 for NA domain
- Figure 12. Annual time series of US daily EGU emissions SO₂ for NO_x 2006 vs. 2010
- Figure 13. Annual time series of US daily EGU emissions NO_x forSO₂ 2006 vs. 2010
- Figure 14. Annual time series of daily biogenic terpene emissions (left) and isoprene
- 836 emissions(right) for the European domain
- Figure 15. The percentage fraction of annual biogenic isoprene emissions emitted per month
- 838 averaged for the European domain(left) and for two specific locations (right) for the years 2006
- 839 and 2010.
- 840 Figure 16. Biogenic isoprene emissions calculated for a site in the East of France (left) and
- 841 Southern Italy (left) for the years 2006 and 2010.
- Figure 17. Statewide temperature ranks Jun-Aug. 2006 (left) and Jun-Aug. 2010 (right) for the
- 843 continental U.S. Contiguous United States from the National Climatic Data Center
- Figure 18. Spatial Map of Absolute Biogenic VOC Emission Difference (2010-2006)(top) and
- 845 percent difference from 2006 (bottom) for NA domain
- 846

AQMEII phase 1 PM2.5 Residential Wood Combustion 2006 Emissions (Mg/yr)

AQMEII phase 2 PM2.5 Residential Wood Combustion 2006 Emissions (Mg/yr)

855 Figure 3

PM2.5 Residential Wood Combustion Difference Phase 2 - Phase 1 Emissions (Mg/yr)

857	
858	
859	Figure 4

866 Figure 6

Figure 7

NOx NA 2010-2006 Emissions (Mg/yr)

NOx NA Percent Difference 2010 compared to 2006

SO2 NA 2010-2006 Emissions (Mg/yr)

SO2 NA 2010-2006 Emissions percent Difference

PM2.5 NA 2010-2006 Emissions (Mg/yr)

PM2.5 NA 2010-2006 Emissions percent Difference

888 Figure 12

892 Figure 13

898 Figure 15

40%

Difference in Biogenic VOC NA Emissions 2010-2006 (Mg Carbon/yr)

Percent Difference 2010 compared to 2006 Biogenic VOC NA Emissions

907 Supplementary Tables

Group	Country	Group	Country	Group	Country
EU15 +	Austria	EU-NMS ^a	Bulgaria	Other Non EU	Albania
CHE,NOR	Belgium		Cyprus		Armenia
	Denmark		Czech Republic		Azerbaijan
	Finland		Estonia		Belarus
	France		Hungary		Bosnia and Herzegovina
	Germany		Latvia		Georgia
	Greece		Lithuania		Iceland
	Ireland		Malta		Macedonia
	Italy		Poland		Moldova
	Luxembourg		Romania		Russian Federation
	Netherlands		Slovak Republic		Serbia
	Portugal		Slovenia		Turkey
	Spain		Croatia (HRV)		Ukraine
	Sweden				
	United Kingdom				
	Norway (NOR)				
	Switzerland (CHE)				

908 Table S1 Country groups distinguished in presenting the European emissions data.

 $09 \quad \frac{^{a} \text{ NMS} = \text{New Member States}}{^{a} \text{ NMS} = \text{New Member States}}$

911 912 Table S2 Selected Nomenclature for Air Pollution (SNAP) level 1 source categories and the link to CRF/NFR^a

SNAP (level 1)	SNAP name	CRF/NFR ^a codes
01	Combustion in energy and	1.A.1
	transformation industries	
02	Non-industrial combustion plants	1.A.4, 1.A.5
03 ^b	Combustion in manufacturing	1.A.2
	industry	
04 ^b	Production processes	2
05	Extraction and distribution of	1.B
	fossil fuels and geothermal energy	
06	Solvent and other product use	3
07	Road transport	1.A.3.b
08	Other mobile sources and	1.A.3 (excl.
	machinery	1.A.3.b)
09	Waste treatment and disposal	6
10	Agriculture	4

913 ^{a)} CRF = Common Reporting Format; NFR = Nomenclature For Reporting

category SNAP 34. This was done because the separation between industrial combustion (SNAP 915

03) and industrial process emissions (SNAP 04) is often difficult to establish, creating 916

917 considerable uncertainty when comparing reported emissions by various countries.

⁹¹⁴ ^{b)} In TNO-MACC-II and AQMEII phase 2 the SNAP sectors 3 and 4 are combined into a new