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Highlights 

• A multi-model evaluation of O3 and PM2.5 indicators is presented for North America 
• Widespread NOx-limited regimes during May – September, and localized VOC-limited 
• Overprediction in the extent of VOC-limited chemistry in southeast U.S. 
• NOy and O3/NOy are the most robust O3 indicators 
• PM2.5 indicators are less robust than O3 indicators 
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Abstract  1 
Under the Air Quality Model Evaluation International Initiative, Phase 2 (AQMEII-2), 2 

three online-coupled air quality model simulations, with six different configurations, are 3 

analyzed for their performance, inter-model agreement, and responses to emission and 4 

meteorological changes between 2006 and 2010.  In this Part I paper, we focus on evaluating O3 5 

and PM2.5 indicator-based analyses, which are important in the development of applicable 6 

control strategies of O3 and PM2.5 pollution in different regions worldwide.  The O3 indicators 7 

agree on widespread NOx-limited and localized VOC-limited conditions in the U.S.  The NOy 8 

and O3/NOy indicators overpredict the extent of the VOC-limited chemistry in southeast U.S., 9 

but are more robust than the H2O2/HNO3, HCHO/NOy, and HCHO/NO2 indicators at the surface, 10 

which exhibit relatively more inter-model variability. The column HCHO/NO2 indicator is 11 

underpredicted in the O3 and non-O3 seasons, but there is regional variability. For surface PM2.5 12 

indicators, there is good inter-model agreement for the degree of sulfate neutralization; however 13 

there are systematic underpredictions in the southeast U.S.  There is relatively poor inter-model 14 

agreement for the less robust adjusted gas ratio indicator, which is largely overpredicted in the 15 

summer and both under- and overpredicted in winter in the southeast U.S.   There is good inter-16 

model agreement for the O3 indicator sensitivities, indicating a predominant shift to more NOx-17 

limited conditions in 2010 relative to 2006.  There is less agreement for PM2.5 indicator 18 

sensitivities, which are less robust, while indicating shifts to either regime due to different 19 

responses of aerosol treatments to changes in emissions and meteorology.  20 
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1. Introduction  21 
 22 

Significant advancements over the last decade have been made in modeling the tropospheric 23 

pollutants ozone (O3) and particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5), 24 

including rapid development and application of 3-D online-coupled meteorology and air quality 25 

models (AQMs) [Y. Zhang, 2008; Baklanov et al., 2014].  Online-coupled AQMs allow for more 26 

detailed studies of the feedbacks between air quality and the climate/meteorology system [Y. 27 

Zhang et al., 2010, 2012a]. AQMs such as the Community Multiscale Air Quality (CMAQ) [Byun 28 

and Schere, 2006] model, the Weather Research and Forecasting model with Chemistry 29 

(WRF/Chem)  [Grell et al., 2005; Skamarock et al., 2008], and the Global Environmental Multi-30 

scale Modelling Air Quality and Chemistry (GEM/MACH) [Moran et al., 2010] are used to model 31 

indicators of formation regimes,  transport, and fate of O3 and PM2.5, thus providing regulatory 32 

decision-making value for the overall control of O3 and PM2.5 concentrations across the continental 33 

United States (U.S.) [Y. Zhang et al., 2009a, b; Liu et al., 2010].   34 

 AQMs need to be systematically evaluated using a common testbed/episode; however, unlike 35 

the global-scale climate modeling community, the regional-scale modeling communities in 36 

different continents, e.g. North America (NA) and Europe (EU), have begun such investigations 37 

only recently.   Whereas Phase 1 of the Air Quality Modeling Evaluation International Initiative 38 

(AQMEII) focused on evaluation of regional scale, offline-coupled AQMs [Rao et al., 2011; 39 

Galmarini et al., 2012a], AQMEII Phase 2 (AQMEII-2) placed its emphasis on evaluation of 40 

online-coupled AQMs utilizing common sets of time-dependent emissions and meteorological and 41 

chemical initial and boundary conditions, thus allowing for a diagnostic evaluation of inter-model 42 

discrepancies caused by specific model processes [Dennis et al., 2010].   Such independent 43 

evaluations of regional-scale AQMs help place AQM results in context for the modeling 44 
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community [e.g., Huijnen et al., 2010], while aiding their interpretation for future policy, 45 

regulation, and control decisions, with an overarching goal to improve our understanding of the 46 

connections between air quality and climate change [Alapaty et al., 2012].       47 

Motivation to develop methods to diagnose the NOx-VOC sensitivity, has led to significant 48 

development of “indicator-based” analyses, which are theoretically formulated from chemical 49 

reaction mechanisms and measurements of key gaseous species that lead to O3 concentration 50 

changes in certain regions, and then applied to other regions where similar measurements are 51 

available by calculating the observation-based indicators, or to the regions where measurements 52 

are sparse through AQM simulations.  These analysis methods use specific indicator quantities to 53 

determine  the NOx-VOC sensitivity of O3 concentrations to precursor emission reductions [e.g., 54 

Milford et al., 1994; Sillman, 1995, 1999; Sillman et al., 1997, 1998; Lu and Chang, 1998; 55 

Tonnesen and Dennis, 2000; Hammer et al., 2002; Sillman and He, 2002; Martin et al., 2004; 56 

Liang et al., 2006].   Previous modeling studies indicate that the ratio of production rates of 57 

hydrogen peroxide to nitric acid (PH2O2/PHNO3), the concentration ratios of formaldehyde to total 58 

reactive nitrogen (HCHO/NOy), and the ratios of the column abundances of HCHO to nitrogen 59 

dioxide (HCHO/NO2) [Martin et al., 2004], are currently the most robust indicators [Y. Zhang et 60 

al., 2009b; Liu et al., 2010].  Here we adopt 5 indicators from a compilation of studies along with 61 

their associated NOx-VOC transition values summarized in Table 2 of Y. Zhang et al. [2009b].  62 

Specifically, the indicators (NOx-limited transition values recommended by Y. Zhang et al. 63 

[2009b]) include H2O2/HNO3 (≥ 2.4), HCHO/NOy (≥ 0.28), HCHO/NO2 (≥ 1), NOy (≤ 5), and 64 

O3/NOy (≥ 15). The simulations analyzed here did not include process analysis that calculates 65 

hourly values of PH2O2 and PHNO3, and those productions rates are not included in the model 66 
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output. The concentration ratio of H2O2/HNO3 is thus used as a proxy for PH2O2/PHNO3, although 67 

H2O2/HNO3 is not as robust as PH2O2/PHNO3. 68 

A large fraction of secondary inorganic PM2.5 in the troposphere is composed of sulfate (SO4
2-69 

), nitrate (NO3
-), and ammonium (NH4

+).  Indicators for the complex interactions between the 70 

sensitivity of PM2.5 concentrations to relations among total nitrate (TN≡ HNO3 + NO3
-), total 71 

sulfate (TS ≡ SO4
2-), and total ammonia (TA ≡ NH3 + NH4

+) have also been derived, tested, and 72 

implemented.  From the work of Ansari and Pandis [1998], Pinder et al. [2008] derived a molar 73 

ratio known as the degree of sulfate neutralization (DSN ≡ ([NH4
+] – [NO3

-])/[SO4
2-]), and used 74 

the DSN to express a refined gaseous free ammonia, NH3
F (NH3

F ≡ TA - DSN×TS) and adjusted 75 

gas ratio, GR (AdjGR ≡ NH3
F/TN), which are used as indicators of ammonia- and nitrate-limited 76 

regimes.  Generally, in regions where the AdjGR is relatively large, sufficient gaseous NH3 exists 77 

to neutralize SO4
2-, and PM2.5 NO3

- concentrations are most sensitive to changes in TN.  In regions 78 

of relatively smaller AdjGR, PM2.5 NO3
- concentrations are most sensitive to changes in NH3.  Here 79 

we adopt recommended transition values of DSN and AdjGR from Y. Zhang et al. [2009b], 80 

indicating the degree in which SO4
2- has been neutralized by ammonium (DSN ≥ 1.5; fully 81 

neutralized or DSN < 1.5; insufficiently neutralized), while determining NH3 rich (AdjGR > 1) 82 

from NH3 neutral/poor (AdjGR ≤ 1) conditions.  We also adopt two other molar ratios, TN/TS and 83 

TA/TS, which provide insight into NO3
- poor (TN/TS < 1), medium (TN/TS = 1 – 2), or rich 84 

conditions (TN/TS > 2), and SO4
2- rich (TA/TS < 2), neutral (TA/TS = 2), or poor (TA/TS > 2) 85 

conditions respectively [Y. Zhang et al., 2000; 2009b].   86 

Extending the operational evaluation of O3 and PM predictions against observations from 87 

surface monitoring stations for individual [e.g., Yahya et al., 2014a, b] and multiple models [e.g., 88 

Im et al., 2014a, b; Makar et al., 2014a, b] included in the AQMEII-2, this work further evaluates 89 
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the models’ performance in reproducing the selected indicators for O3 and PM formation regimes 90 

and column predictions of gaseous mass abundance and aerosol and cloud properties for six 91 

AQMEII-2 participating groups.  Such model evaluations complement traditional model 92 

evaluation that primarily focuses on surface O3 and PM predictions, provide insights into the 93 

models’ capability of probing into the underlying O3 and PM formation mechanisms for emission 94 

control policy-making, and examine the interplay among chemistry, aerosol, and cloud through 95 

several feedback mechanisms, as well as the importance of upper boundary conditions in accurate 96 

predictions of column variables.   These results are presented as a sequence of two parts.  Part I 97 

describes the evaluation and inter-comparison of indicators of the sensitivity of O3 and PM2.5 98 

formation regimes predicted by multiple model simulations against available surface and satellite 99 

observations, and the resulting policy implications.  Part II describes the evaluation and inter-100 

comparison of column mass abundance of gases and aerosol/cloud properties against satellite 101 

observations as well as potential model improvement in simulating chemistry-aerosol-cloud-102 

climate feedbacks [Wang et al., 2014a].  Main objectives of this Part I paper are to perform an 103 

operational evaluation, investigatory/diagnostic, and dynamic analysis [Y. Zhang et al., 2006; 104 

Dennis et al., 2010] of four 2006 and five 2010 simulations with three online-coupled AQMs 105 

(WRF/Chem, WRF/CMAQ and GEM/MACH) for a NA domain, with a focus on the selected 106 

indicators that probe into the sensitivity of O3 and PM2.5 formation regimes in NA, specifically for 107 

U.S. sub-regions. Specifically, we will 1) assess the models’ accuracy against surface and satellite 108 

observations, 2) compare seasonal inter-model differences in spatial and temporal (2006 – 2010) 109 

variability, 3) discuss potential reasoning for any model biases and differences, and 4) use the 110 

results from 1) – 3) to assess the robustness of the different indicators used in policy-making 111 
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decisions, while demonstrating a need for increasing measurements and modeling of O3 and PM2.5 112 

indicators, which would further serve to impact future policy-making.      113 

2. AQMEII-2 Model Configurations, Observations, and Evaluation Protocols  114 
 115 

2.1 AQMEII-2 Configurations and Input 116 
 117 

Table 1 summarizes the six AQMEII-2 participating models over NA in this study (four from 118 

NA and two from EU), and their model configurations. Those models include US8, US7, ES3, 119 

CA2f, and US6. US8, US7, ES1, and ES3 are based on WRF/Chem version 3.4.1 or its variant 120 

[Wang et al., 2014b], CA2f is the GEM/MACH version 1.51 [Moran et al., 2010], and US6 is the 121 

two-way coupled WRF/CMAQ version 5.0.1 with aerosol direct effect only [Wong et al., 2012]. 122 

Each model uses the same time-resolved emissions and chemical initial and boundary 123 

conditions (ICs and BCs respectively).   Emissions are comprised of data from the U.S., Canada, 124 

and Mexico. For the U.S. emissions, the 2008 National Emission Inventory (NEI) (version 2, 125 

released April 10, 2012) was used as the basis for both the 2006 and 2010 model ready emission 126 

datasets (http://www.epa.gov/ttn/chief/net/2008inventory.html) [Pouliot et al., 2014].  The 2008-127 

based modeling platform (2007v5 in final form dated 12/14/2012; 128 

http://www.epa.gov/ttn/chief/emch/index.html#2008) provided all necessary inputs and datasets 129 

for emission processing [Pouliot et al., 2014].   These files contain the chemical speciation files, 130 

the temporal allocation, and spatial allocation data.  A technical support document (2007v5 131 

Emissions Platform Technical Support Document-12/14/2012) is available for this modeling 132 

platform, and contains the full details of the inventory preparation and processing. Year specific 133 

(2006 and 2010) updates for these sectors were used for on/off road transport, wildfires and 134 

prescribed fires, and Continuous Emission Monitoring (CEM)-equipped point sources.  There are 135 

widespread decreases in SO2, NOx, and NH3 emissions between 2006 and 2010 across the NA 136 

http://www.epa.gov/ttn/chief/net/2008inventory.html
http://www.epa.gov/ttn/chief/emch/index.html%232008
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domain, with the exception of some large NH3 emission increases in the Midwestern U.S. and 137 

California in winter [Pouliot et al., 2014; Yahya et al., 2014b].  Dependent on the region of the 138 

NA domain and season considered, there were both increases (summer and fall in southeast U.S.) 139 

and decreases (winter and spring across most of U.S.) in VOC emissions between 2006 and 2010 140 

[Pouliot et al., 2014; Yahya et al., 2014b].  The chemical 2006 and 2010 ICs and BCs are from 141 

global 3-hr Monitoring Atmospheric Composition and Climate – Interim Implementation (MACC-142 

II; http://www.gmes-atmosphere.eu/) fields [Inness et al., 2013].  Further details regarding both 143 

the 2006 - 2010 emission and IC and BC changes for the AQMEII-2 NA domain are found in this 144 

issue [Pouliot et al., 2014; Stoeckenius et al., 2014; Yahya et al., 2014b].       145 

There are many similarities and differences in model configurations across the participating 146 

groups (Table 1). US8, US7, ES1, and ES3 share the most similar configurations available in 147 

WRF/Chem, and employ the same horizontal resolution of 36×36 km; although there is at least 148 

one configuration difference between each model.  There are more differences than similarities 149 

among those WRF/Chem-based models, compared to the CA2f and US6 configurations. CA2f and 150 

US6 also utilize finer horizontal resolutions of 15×15 km and 12×12 km, respectively.  Important 151 

for diagnosing model differences in O3 and inorganic PM2.5 indicators, all groups employ different 152 

gas-phase mechanisms, as well as different combinations of gas-phase and aerosol mechanisms. 153 

Inter-model comparisons in Section 4 use such similarities and differences as a basis for 154 

investigatory/diagnostic analyses.   155 

 156 

 157 

  158 

2.2 Observations from Surface Networks and Satellites 159 
 160 
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Observations from both surface and satellite platforms are used for the evaluation.  For a 161 

detailed site-specific comparison, surface observations from the SouthEastern Aerosol Research 162 

and Characterization (SEARCH) network [Hansen et al., 2003] are used.  This is an ideal 163 

network for comparison, as it readily provides coincident measurements of trace gas and 164 

particulate species necessary to calculate the surface O3/NOy indicator, and PM2.5 indicators such 165 

as DSN, AdjGR, and NH3
F.  With the exception of specific field campaigns, such routine 166 

measurement combinations are sparse for other regions of the U.S., especially for gas-phase NH3 167 

and HNO3, which is needed for calculating PM2.5 indicators AdjGR and NH3
F.  From the 168 

SEARCH network, four sites are selected from urban/suburban locations, Birmingham, Alabama 169 

(BHM), Jefferson Street, Atlanta (JST), Gulfport, Mississippi (GFP), and the Outlying Landing 170 

Field #8, Florida (OLF).  Three sites are also selected from rural areas, Centreville, Alabama 171 

(CTR), Yorkville, Georgia (YRK), and Oak Grove, Mississippi (OAK).  Full descriptive 172 

information regarding the SEARCH network, including each site’s location, descriptive 173 

information, and relevant measurements necessary for calculations of O3 and PM2.5 indicators in 174 

2006 and 2010, may be found at http://www.atmospheric-research.com/. Tropospheric column 175 

observations of level-3 monthly averaged NO2 and HCHO data  are also obtained from the 176 

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) 177 

[Boersma et al., 2004; De Smedt et al., 2008], and are used for a domain-wide evaluation of the 178 

column HCHO/NO2 indicator [Martin et al., 2004].  SCIAMACHY column NO2 and HCHO 179 

data have been validated and applied in previous investigations [e.g., van der A et al., 2006, 180 

2008; Barkley et al., 2013]. 181 

 182 

2.3 Evaluation Protocols    183 
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Following Y. Zhang et al. [2009a], our protocol includes an evaluation between model and 184 

observations using different statistical measures, and a diagnostic/dynamic evaluation of model 185 

inter-comparisons for the investigation of process-based differences and systematic biases on a 186 

seasonal and regional basis.  Simulated O3 and PM2.5 indicators are compared against 187 

observations from the SEARCH locations in southeast U.S., using the closest horizontal grid 188 

values, at the vertical layer closest to the surface for each model (Table 1).    We note that this is 189 

similar to a case study based evaluation limited to southeast U.S.  In light of this, Section 5 of 190 

this paper provides additional discussion on the benefits, limitations, and recommendations 191 

regarding this evaluation.  Statistical measures typically used to evaluate AQMs are implemented 192 

here.  These include the normalized mean bias (NMB), normalized mean error (NME), and 193 

Pearson’s correlation coefficient, R [Y. Zhang et al., 2006].   Statistical measures R, NMB, and 194 

NME provide measures of the associativity (i.e., correlation), bias, and accuracy, respectively, of 195 

specific modeled surface O3 and PM2.5 indicators.   A model spatial and statistical (NME vs. 196 

NMB) comparison of the tropospheric column HCHO/NO2 [Martin et al., 2004] indicator is also 197 

made against SCIAMACHY satellite observations for the O3 (May – September) and non-O3 198 

(January – April and October – December) seasons.  The hour during the orbit crossing-time of 199 

SCIAMACHY is ~ 10:00 a.m. local time. The model results from 1500 to 2000 UTC are 200 

averaged to approximately match the 10:00 local time of the SCIAMACHY observations [Wang 201 

et al., 2014a]. Modeled HCHO and NO2 column abundances are determined by vertically 202 

integrating up to the tropopause, which is assumed to be 100 hPa following Y. Zhang et al. 203 

[2009a], while also cloud screening the model output using a 40% cloud fraction threshold that is 204 

consistent with the SCIAMACHY retrieval [De Smedt et al., 2008]. Considering that an 205 

averaging kernel is not available for the level-3 SCIAMACHY data used in this comparison, an 206 
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averaging kernel is not applied to the model data.  Our calculation of the model column HCHO 207 

and NO2 abundances represents an approximate comparison of the tropospheric amounts to 208 

match the satellite data.  Thus the model-satellite matching, as well as the model and 209 

SCIAMACHY column data, is subject to uncertainties.  More details in regards to the 210 

uncertainties and limitations associated with SCIAMACHY column HCHO and NO2 ratios data 211 

are found in Wang et al. [2014a].  212 

Diagnostic/dynamic inter-model comparisons are performed by analyzing the seasonal 213 

variation of the spatial distribution of indicators and investigating process-based reasoning due to 214 

model configuration differences (Table 1), as well as different model responses to changes in 215 

emissions and meteorology between the 2006 and 2010 simulations. Analyses and comparisons 216 

are based on a geographical separation into 4 sub-regions across NA, which have been defined in 217 

Solazzo et al. [2012a, b].  Adapting a similar definition, henceforth we refer to NA1, NA2, NA3, 218 

and NA4 as the west (120 - 105°W/30 - 50°N), Midwest (105 - 90°W/30°N -  50°N), southeast 219 

(90 – 75 °W/25 - 40°N), and northeast (90 – 65 °W/40 - 50°N) regions of the NA domain 220 

respectively.  The entire continental U.S. region of the NA domain, i.e., NA/U.S. is 221 

approximated using the areas encompassed by sub-regions NA1-NA4.        222 

3.  Evaluation of Simulated Indicators Against Observations 223 
 224 

3.1 O3/NOy Statistical Comparison 225 
 226 
 Figure 1 provides statistical plots (NMB vs. NME) for simulated O3/NOy indicator ratios 227 

against those calculated based on the averaged SEARCH observations of O3 and NOy in 2006 228 

(ES3), 2010 (US7 and ES1), or the average of 2006 and 2010 (US8, CA2f, and US6), for 229 

afternoon hours (1 p.m. – 6 p.m. LST) during the O3 and non-O3 seasons in the southeast U.S., 230 

NA3. There is predominantly a negative O3/NOy bias for the models, especially at the rural sites 231 
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(Figure 1b).   The negative O3/NOy bias for the models is dominated by an overprediction in 232 

NOy, except for CA2f which has an underprediction in NOy (Figure S1), and a positive O3/NOy 233 

bias at the urban sites during both seasons (Figure 1a).  More details regarding the model 234 

predictions of O3 and NOy individually, and their underlying causes, are found in comparisons 235 

against four SEARCH sites in Supplementary Section 1 and Figure S1.  US6 and US8 have the 236 

highest correlation coefficient, R (not shown), while ES3 and US7 have the smallest bias and 237 

error in NOx-VOC sensitivity for the urban sites (Figure 1a), i.e., they have the most similar 238 

distance to the linear transition line compared to observations in Figure S1.   At the rural sites, 239 

there is generally less error (Figure 1b), while US7 and CA2f have the smallest bias and error 240 

during the O3 and non-O3 seasons respectively. On average across both seasons, the most finely 241 

resolved US6 model (12×12km) has the highest correlation (not shown), and best represents 242 

local changes in the O3/NOy ratio in NA3.   243 

For the models at the urban sites, the NMB for O3/NOy ranges from -62% to +6.9% in the 244 

O3 season, and from -58% to +36% in the non-O3 season.  At the rural sites, the models’ NMB 245 

range is -62% to +5.7%, and -46% to +8% in the O3 and non-O3 season, respectively.  246 

Future improvement in the models’ predominant overprediction of NOy is needed to reduce the 247 

predominant negative O3/NOy bias, and the overprediction in VOC-limited extent of O3 248 

chemistry in NA3.        249 

3.2 DSN, AdjGR, and NH3
F Statistical Comparison 250 

 251 
Figure 2 provides NMB vs. NME plots for DSN, AdjGR, and NH3

F indicators against 252 

SEARCH observations in NA3 for the 2010 (US8, US7, CA2f, and US6) winter and summer 253 

seasons. Supplementary Section 2 and Figure S2 provide additional details for each model’s 254 

average PM2.5 regime indicators TA/TS, TN/TS, DSN, AdjGR, and NH3
F, compared to four 255 
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SEARCH sites during all seasons in 2010. Although ES1’s simulation is included in the analyses 256 

in Section 3.1 (see additional discussion in Supplementary Section 1), exclusion of SO2 and NOx 257 

point sources for ES1 led to unrealistic concentrations of inorganic PM2.5 species. Thus ES1’s 258 

results are not included in Figure 2 and subsequent figures comparing PM2.5 indicators.  For all 259 

models, seasons, and sites the correlation coefficient, R (not shown), is very low for all 260 

indicators, and at times negative.  This illustrates the difficulty for models to capture observed 261 

trends in PM2.5 regime indicators at individual sites; although higher statistical scores may be 262 

found for individual particle species when larger numbers of stations are included in the analysis 263 

[Table 4 in Makar et al., 2014a].   All models predict a negatively biased DSN at both urban and 264 

rural sites, thus underestimating SO4
2- neutralization by ammonium in both seasons (Figures 2a 265 

and 2b).  The US8 model has the smallest DSN bias and error, on average, during the winter and 266 

summer at the urban sites.  At the rural sites, US6 and US8 have the smallest bias and error in the 267 

winter and summer, respectively.    Given model overpredictions of NH3 and TA (not shown), a 268 

negatively biased DSN, and impacts from uncertainties in NOx emissions leading to 269 

underpredictions in TN,  the result is a majority of very large positive biases and error for AdjGR 270 

and NH3
F at both urban and rural sites, especially in the summer (Figures 2c – 2f).   There is also 271 

significantly more spread across the models for the positive biases in the summer.  CA2f has 272 

consistently the lowest bias and error for AdjGR and NH3
F during the summer at both urban and 273 

rural sites, which is due to partial compensation from large underpredictions in NO2 274 

concentrations [Table S1 in Makar et al., 2014a].  For the winter, US6 and US8 have the 275 

smallest magnitudes in bias and error. 276 

For the models at the urban sites, the NMB for DSN, AdjGR, and NH3
F  have ranges of -58% 277 

to -32%, -86% to +48%, and -60% to +95% in the winter season,  and -28% to -2.5%, +112% to 278 



15 
 

+970%, and -8% to +782%, during the summer season, respectively.  There is a large NMB 279 

range for AdjGR and NH3
F, and largely positive NMB during the summer season.  In both the 280 

winter and summer seasons at urban sites, there is an overprediction in the extent of NH3 rich 281 

conditions, and associated PM2.5 sensitivity to TN changes. There are similar large ranges at the 282 

rural sites, where the model range NMB for DSN, AdjGR, and NH3
F are -61% to -27%, -56% to 283 

+300%, and -37% to +112% during the winter season, and -46% to -26%, +226% to +978%, and 284 

-37% to +471% during the summer season respectively. There is clearly more error and bias 285 

when simulating PM2.5 indicators, relative to the O3 indicators in Section 3.1.  Much of the 286 

additional model uncertainty for PM2.5 indicators, especially for AdjGR, stems from additional 287 

complexities of accurately predicting thermodynamic partitioning for different species, 288 

uncertainties in gas emissions and meteorological conditions, as well as approximations 289 

contained within each model’s gas-phase and aerosol module combinations.    290 

3.3 Satellite HCHO/NO2 Statistical Comparison  291 
 292 

Figure 3 provides NMB vs. NME plots for tropospheric HCHO/NO2 column abundance ratio 293 

[Martin et al., 2004] against SCIAMACHY observations, averaged across the approximated 294 

continental U.S. (NA/U.S.), and over sub-regions in northwest (NA1), Midwest (NA2), southeast 295 

(NA3), and northeast U.S. (NA4), in 2006 (ES3), 2010 (US7 and ES1), or the average of 2006 296 

and 2010 (US8, CA2f, and US6) O3 and non-O3 seasons.  More details regarding the spatial 297 

agreement for each model against SCIAMACHY observations can be found in Supplementary 298 

Section 3 and Figure S3.   For NA/U.S. (Figure 3a), there is a negative HCHO/NO2 bias for both 299 

seasons, with the exception of positive biases for ES1 and CA2f during the O3 season.  The 300 

underprediction in the NOx-limited chemistry is mainly due to lower HCHO in rural regions, and 301 

larger NO2 in urban regions.  The NOx-limited underprediction is apparent for all models and 302 
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seasons in sub-region NA1 (Figure 3b), except ES1 and CA2f in the O3 season, covering the 303 

western U.S domain. In fact, during the non-O3 season, there is a clear NOx-limited 304 

underprediction in all NA/U.S. sub-regions (Figures 3b – 3e) for the models, with the exception 305 

of ES1 and CA2f in NA2 and NA3.  In NA2 (Figure 3c) and NA3 (Figure 3d) during the O3 306 

season, however, most models actually have a relatively slight overprediction of the NOx-limited 307 

chemistry, due to overpredictions in HCHO concentration.  There are significant contributions 308 

from underpredictions in NO2, and hence NOx concentrations for CA2f [Makar et al., 2014a], as 309 

well as known impacts from exclusion of NOx point sources for ES1 during the O3 season.  Such 310 

NOx underpredictions for ES1 and CA2f cause these models to be outliers for NA/U.S. and all 311 

sub-regions. When ES1 and CA2f are not considered, the models’ NMBs for the O3 season in 312 

NA1, NA2, NA3, NA4, and NA/U.S. range from  -49% to -34%, +12% to +21%, -20% to +36%, 313 

-36% to -26%, and -32% to -15%, respectively.  In the non-O3 season, NMBs range from -93% 314 

to -90%, -82% to -31%, -55% to -7%, -99% to -92%, and -96% to -78% respectively.   With 315 

exception of ES1 and CA2f, the models predominantly underpredict the extent of NOx-limited 316 

chemistry for the column HCHO/NO2 indicator, except in parts of NA2 and NA3, Canada, 317 

Mexico and the Atlantic Ocean (Figure S3), where there is a tendency to overpredict NOx-318 

limited chemistry in the O3 season.        319 

4 Spatial Distribution of Seasonally Averaged Indicators 320 
 321 

This section performs an inter-model comparison using ensemble model averages, standard 322 

deviations (SD), and normalized standard deviations (NSD = standard deviation/average) of the 323 

different NOx-VOC-limited indicators during the O3 season (Section 4.1), regime indicators for 324 

the formation of PM2.5 in the winter (Section 4.2), and the inter-model changes between 2006 325 

and 2010 (Section 4.3). Supplementary Section 4 provides additional details of the inter-model 326 
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spatial comparisons, and further supplements the analyses in the following sections. The CA2f 327 

model did not contain H2O2 in its output, and thus the H2O2/HNO3 indicator for CA2f is not 328 

included in these analyses.  329 

4.1  NOx-VOC Sensitivity in the O3 Season 330 
 331 

Figure 4 shows the ensemble model average and NSD of the five surface photochemical 332 

indicators (H2O2/HNO3, NOy, O3/NOy, HCHO/NOy, and HCHO/NO2), averaged over afternoon 333 

hours (1 p.m. – 6 p.m. LST) during the O3 season.  For the H2O2/HNO3 indicator (Figure 4a), on 334 

average the models predict NOx-limited chemistry in NA1, NA2, and NA4, with local areas of 335 

VOC-limited chemistry near urban centers.  Models best agree in the relatively low biogenic 336 

emission region of NA2, which has the lowest NSD for H2O2/HNO3; however, there are larger 337 

NSDs in the relatively high biogenic emission region of NA3 (Figure 4f). Table 2 indicates 338 

average SDs of 1.18 and 3.13 and NSDs of 0.29 and 0.62 for H2O2/HNO3 in NA2 and NA3, 339 

respectively.    The higher inter-model variability in NA3 are due to differences in regional 340 

background H2O2 mixing ratios (~ factor of 2; not shown), stemming from application of 341 

different gas-phase chemistry mechanisms between the models (Table 1). ES3 incorporates a 342 

different version of the Carbon Bond Mechanism (CBM), CBM-Z, compared to both US8 and 343 

US6 that use an updated CBM, i.e., CB05, while US7 uses a non-CBM (Table 1).  Compared to 344 

CBM-Z, CB05 includes additional species such as higher aldehyde and internal olefin species, 345 

which increase radical production; it also explicitly defines methylperoxy radicals [Yarwood et 346 

al., 2005]. Thus larger H2O2 may be attributed to gas-phase chemistry updates in CB05, and also 347 

differences between CBM and non-CBM (US7 and ES1) treatments (Table 1).   Knote et al. 348 

[2014] conducted a diagnostic evaluation of the different chemical mechanisms used here in a 349 

box modeling approach, and their results support this suggestion.   350 
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For NOy (Figure 4b) and O3/NOy (Figure 4c), there is also dominant NOx-limited chemistry 351 

across NA/U.S., and local areas of VOC-limited chemistry near major urban centers.  There are 352 

lower NSDs and better agreement across the models for the NOy (Figure 4g) and O3/NOy (Figure 353 

4h) indicators compared to H2O2/HNO3.  In NA3 the average SDs are 0.88 ppb and 4.33 and 354 

NSDs are 0.23 and 0.31 for NOy and O3/NOy, respectively. These NSDs are about a factor of two 355 

lower than those for H2O2/HNO3 in this region (Table 2).  There is disparity across different 356 

model resolutions, however, when comparing the magnitude of NOy for the different models at 357 

local areas (supplementary Figure S4g - S4l), consistent with the comparison at local SEARCH 358 

sites, and the apparent spread in NOy mixing ratios among models (Figure S1).  ES1 agrees well 359 

for NOy, but is biased low compared to other models for O3/NOy (Figure S4o).  This is due to the 360 

impacts from exclusion of NOx point sources important to O3 formation. A negative O3 bias for 361 

ES1 is apparent in other AQMEII-2 evaluations as well [Im et al., 2014a].        362 

For HCHO/NOy (Figure 4d) and HCHO/NO2 (Figure 4e) indicators, the model average also 363 

indicates strongly NOx- limited conditions in NA/U.S. (dominated by the non-CBM model 364 

values; Figure S4).  There is significant inter-model variability for these indicators, and relatively 365 

larger average NSDs across NA/U.S. (Figures 4i – 4j), especially for HCHO/NO2. The NSDs are 366 

the largest, 0.58, for HCHO/NOy in NA3, and 0.66, for HCHO/NO2  in NA4 (Table 2).  This is 367 

attributed to different biogenic emission models and versions employed for different models 368 

(Table 1; MEGAN2 vs. BEIS3.09 vs. BEIS3.14), combined with different gas-phase chemistry 369 

mechanisms, especially for the CBM versus non-CBM treatments.  Better inter-model and 370 

observational agreement for US6 compared to CA2f (Figures 3 and S4y-S4dd), may also be 371 

impacted by updated biogenic emission factors and treatment of light correction factors for 372 

isoprene [Schwede et al., 2005] used in conjunction with recent organic chemistry updates in 373 
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CB05-TU for US6. Both CA2f and ES1, however, are also impacted by low NOx concentrations 374 

(discussed above), and this contributes to their inter-model differences in HCHO/NOy and 375 

HCHO/NO2. Significant differences near urban centers may also similarly be attributed to 376 

differences in organic chemistry treatment in the non-CBM gas-phase chemistry for US7, ES1, 377 

and CA2f (Table 1). Box model simulations for Detroit metro emissions indicate that the non-378 

CBM mechanism for CA2f (ADOMII; Table 1) is ~ 100 % larger than the CBM for US8 and 379 

US6 (CB05; Table 1) for HCHO, and ~ 50 % lower for NOx [Knote et al., 2014].  This agrees 380 

with the HCHO/NOy differences near urban centers shown here. Comparison of the tropospheric 381 

column HCHO/NO2 (Figures S3a – S3g) to surface HCHO/NO2 (Figures S4y – S4dd) in the O3 382 

season indicates a similar spatial distribution in formation regimes; however, there are less VOC-383 

limited regions near the urban centers for the column HCHO/NO2 indicator, as well as more 384 

widespread NOx-limited regimes.  The impact of local NOx sources is dampened when using the 385 

column HCHO/NO2 indicator, as the NO2 concentration is dominated by surface emissions, 386 

while the HCHO in the free troposphere is controlled by methane oxidation [Lowe and Schmidt, 387 

1983; Wuebbles and Hayhoe, 2002; Palmer et al., 2003].  Given the long lifetime of methane, 388 

the HCHO column is relatively well mixed [Figure 1 in Li et al., 2012] compared to the NO2 389 

column. This impact is especially apparent where there is already known deficiencies in NOx 390 

concentrations for ES1 and CA2f.   Thus the predicted NOx-VOC limited regimes are dependent 391 

upon either using a modeled surface or column HCHO/NO2 indicator to predict NOx- versus 392 

VOC-limited regimes in NA/U.S. The NSDs for NA/U.S. in Table 2 indicate relatively small 393 

inter-model variability for NOy (0.28) and O3/NOy (0.33) indicators, but larger inter-model 394 

variability for HCHO/NOy (0.50) and HCHO/NO2 (0.62). The lowest inter-model variability is 395 
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for NOy in NA3 (0.23), while the largest is for HCHO/NO2 in NA4 (0.66).   Based on these 396 

results, the NOy and O3/NOy indicators are the most robust.          397 

4.2 PM2.5 Sensitivity in Winter   398 
 399 

Figure 5 shows the ensemble model average and NSD of TN/TS, DSN, AdjGR, NH3
F, and 400 

NO3
- in winter (DJF), as this season is when PM2.5 NO3

- formation is thermodynamically 401 

favored.  On average, models predict NO3
-  medium (TN/TS = 1 – 2) to rich (TN/TS > 2) 402 

conditions across the U.S (Figure 5a).  Individual models agree that where SO4
2- is fully 403 

neutralized, there is excess NH3
F for PM2.5 NO3

- formation under cold temperatures (Figure S5) 404 

[Ansari and Pandis, 1998; Pinder et al., 2008]. Average model results indicate that there is  405 

mainly sufficiently neutralized conditions, NH3 rich conditions, and PM2.5 sensitivity to TN 406 

changes in NA2 and NA3, while more NH3 poor conditions (embedded with localized NH3 rich), 407 

and PM2.5 sensitivity to NH3 changes in NA1 and NA4 (Figure 5b – 5d).  There is good inter-408 

model agreement in DSN, with the lowest NSDs across NA/U.S. (Figure 5g, Table 2); however, 409 

there is larger inter-model variability for the other indicators, especially for TN/TS in parts of 410 

NA1 and NA4, and AdjGR in NA2 – NA4 (Figures 5f and 5h). The NA/U.S. average NSD is 411 

over twice as large as that for DSN.  The relatively larger inter-model variability in TN/TS in 412 

NA1 stems from inter-model differences in predicted SO4
2- concentrations, as there is relatively 413 

smaller variability in NO3
- concentrations in this region (Figure 5j).  In NA2 – NA4, the TN/TS 414 

and AdjGR variability stems from relatively different amounts of NO3
- formation for some 415 

models under cold winter temperatures (Figures 5e, 5j, and S5u - S5y). The models employ four 416 

different combinations for their inorganic aerosol, gas-, and aqueous-phase chemistry 417 

mechanisms (Table 1). Kim et al. [2011] and Y. Zhang et al. [2012b] indicated less than a 1 % 418 

PM2.5 concentration difference, but up to a 26 % PM2.5 composition difference from a 419 
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comparison of models that used the same aerosol mechanism, but different gas-phase 420 

mechanisms.  Furthermore, the reaction rate constant of SO2 + OH is the same across all models, 421 

such that the larger inter-model variability in TN/TS in NA1,  and TN/TS and AdjGR in NA2 - 422 

NA4, are also likely impacted by  different SO2 (e.g., different plume rise calculations) or OH 423 

concentrations.  Other impacts may also derive from different spatial resolutions.  These lead to 424 

significant impacts on PM2.5 sensitivity, e.g., the calculated average values of AdjGR over NA2-425 

NA4 range from about 0.3 (NH3 poor) - 1.4 (NH3 rich) for the different models (Figure S5k – 426 

S5t).  Overall, NA/U.S.-wide NSD averages in Table 2 indicate that there is relatively low inter-427 

model variability for DSN (0.30), but larger variability for AdjGR (0.80).  The lowest inter-428 

model variability is for DSN in NA3 (0.23), while the largest is for AdjGR in NA4 (1.04).  The 429 

larger inter-model variability for the surface PM2.5 indicators, especially AdjGR, indicates that 430 

they are less robust than the surface O3 indicators.  431 

4.3 Changes in O3 and PM2.5  Sensitivity from 2006 to 2010 432 
 433 
Figure 6 presents difference (2010 – 2006) plots for the five O3 indicators to provide 434 

additional insight into changes in NOx-VOC-O3 sensitivity to emission and meteorological 435 

changes between the 2006 and 2010 O3 season. The models indicate increases in all indicator 436 

ratios (Figures 6a – 6c, 6g – 6i, and 6j – 6o) for southern NA1-NA2, and nearly all of NA3 – 437 

NA4, along with NA/U.S.-wide decreases in NOy (Figures 6d – 6f).  Analyses of the emissions 438 

support this finding, indicating NA/U.S.-wide decreases in summertime average NOx daily 439 

emissions between 2006 and 2010, especially near point sources and urban centers [Pouliot et 440 

al., 2014; Stoeckenius et al., 2014; Yahya et al., 2014b].    There is however a dipole in the sign 441 

of NOx- and VOC-limited changes between northern NA1- NA2 and NA3. For NA1-NA2, 442 

further analysis of the meteorological IC-BCs show a decrease in mean summer surface 443 
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temperatures, coincident with decreases in emissions of NOx and anthropogenic VOCs of about -444 

1000 and -4500 Mg day-1 respectively [Stoeckenius et al., 2014].   Decreased temperature and 445 

resultant biogenic VOC emissions, occurring in tandem with relatively large anthropogenic VOC 446 

emission reductions compared to NOx between 2006 and 2010, is conducive for increased VOC-447 

limited conditions in NA1-NA2.  Increased temperature, biogenic VOC emissions, and relatively 448 

large NOx emission reductions of about -2000 Mg day-1  compared to VOC emissions of about -449 

500 Mg day-1, further increased the NOx-limited conditions in NA3. Figure 1 in Yahya et al. 450 

[2014b] supports our hypothesis, while indicating a similar dipole in 2006 – 2010 summertime 451 

VOC emission (anthropogenic + biogenic) changes, which was largely driven by temperature 452 

changes in NA1-NA2 and NA3. All three models shown in Figure 6 indicate similar spatial 453 

patterns in the change in O3 sensitivity in 2010 relative to 2006; however, there are differences in 454 

magnitude, especially for HCHO/NOy and HCHO/NO2 in NA1 and NA3.  The larger in 455 

magnitude shift towards more NOx-limited conditions for CA2f and US6 in NA3, compared to 456 

US8, is due to a combination of different responses from different biogenic emission models and 457 

versions (MEGAN vs. BEIS; Table 1) impacting isoprene emissions and resulting HCHO 458 

concentrations, different gas-phase chemistry mechanisms (CB05 vs. ADOMII; Table 1) that 459 

implement different VOC chemistry, and lower NOx concentrations for the CA2f model 460 

specifically [Table S1 in Makar et al., 2014a].  The policy implications from results in Figure 6 461 

are that  1) inter-model variability demonstrates a need for continued multi-model dynamic 462 

assessments of indicator sensitivities, which should be based on the most detailed current 463 

emission inventories as they become available every three years from NEI, while 2) enactment of 464 

individual state implementation plans following multi-model dynamic assessments  are important 465 

to deriving state-specific NOx-VOC policy for the appropriate control strategies of O3 pollution. 466 
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Figure 7 shows the changes in sensitivity for the PM2.5 indicators TN/TS, DSN, AdjGR, and  467 

NH3
F, as well as for NO3

- concentration between 2006 and 2010. Supplementary Section 4.3 and 468 

Figure S6, provide additional details on the changes in sensitivity for the PM2.5 indicator TA/TS, 469 

and for PM2.5 species NH4
+, SO4

2-, and NO3
- between 2006 and 2010. There is considerable 470 

spatial and inter-model variability in the changes in PM2.5 sensitivity, such as in NA1, where 471 

there are large differences in the spatial distribution of increasing NO3
- rich versus poor 472 

conditions (Figures 7a - 7c), with less variability for changes in NO3
- concentrations (Figures 7m 473 

-7o).  The impact of TS is larger than TN on changes on TN/TS in NA1, where the regions of 474 

SO4
2- decreases in NA1 correlate well with the TN/TS increases for winter 2006 - 2010 (Figure 475 

S6g – S6i). There are widespread increases in DSN across NA/U.S. for US6, due to more 476 

predominant increases in NH4
+, in conjunction with less SO4

2- increases compared to the other 477 

models, in spite of larger NO3
- increases for US6.  In NA1 – NA3, there are differences in 478 

response of AdjGR and NH3
F for US8 (Figures 7g and 7j), while indicating widespread 479 

decreases, as compared to increases for CA2f (Figures 7h and 7k) and US6 (Figures 7i and 7l).  480 

An interesting response is in central California, where all models have increased AdjGR under 481 

decreased NH3
F, indicating that the increases in AdjGR are driven by local NO3

- decreases, likely 482 

due to relatively large local wintertime NOx emission decreases of about -1000 Mg day-1, 483 

compared to minimal surface temperature changes and NH3 and SO2 emission decreases of about  484 

-100 Mg day-1 [Stoeckenius et al., 2014].    485 

In NA2, the models agree for decreases in AdjGR due to increases in PM2.5 NO3
- 486 

concentrations, with CA2f and US6 indicating the largest PM2.5 NO3
- increase.  In spite of 487 

decreases in NOx emissions in NA2 of about -3000 Mg/day, significant surface temperature 488 

decreases in the region (exhibited in both the initial and modeled conditions) lead to increased 489 
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PM2.5 NO3
- formation in the models, in agreement with analysis of PM2.5 composition 490 

observations at the surface  [Stoeckenius et al., 2014].  In NA3, average surface temperature and 491 

NOx emissions decrease in 2010 relative to their values in 2006. US6 predicts large increases in 492 

PM2.5 NO3
-, but CA2f and US8 predict smaller PM2.5 NO3

- increases or even decreases.   Other 493 

instances of opposite PM2.5 sensitivity changes include US8 predicting decreases in AdjGR and 494 

NH3
F (shift towards more PM2.5 sensitivity to NH3) across many areas of NA/U.S., while CA2f 495 

and US6 oppositely predicting increases (shift towards more PM2.5 sensitivity to TN) for these 496 

indicators. This is a result of the use of the gas-phase mechanism/aerosol module combination 497 

(CB05/MADE) used in US8, which is different than both CA2f (ADOMII/CAM) and US6 498 

(CB05-TU/AERO6) responding differently to the predominant gas (SO2, NOx, and NH3) 499 

emission decreases and temperature changes across NA/U.S. between winter 2006 and 2010 500 

[Yahya et al., 2014a]. In contrast to the other models, US8 predicts overall less increase (or more 501 

decrease) in NH4
+ for all regions, however, with similar SO4

2- increases, thus leading to 502 

predominantly decreasing TA/TS (Figure S6a – S6i), and corresponding decreases in NH3
F and 503 

AdjGR.  US8, CA2f, and US6 indicate progressively increased AdjGR in northeast NA4, due to 504 

progressively increasing TA/TS, and enhanced TA and NH3
F in this region.  There are clearly 505 

large ranges for different model responses of TN/TS, DSN, and AdjGR, which depend on 506 

specific gas-phase mechanism, aerosol module, spatial resolution, and region of NA/U.S. 507 

considered.  Considering the large inter-model variability in PM2.5 indicator sensitivity, caution 508 

must be used when using a single model prediction of changes in AdjGR to address the 509 

appropriate policy and control strategies for PM2.5 pollution, i.e., the choice in implementing 510 

future measures to reduce either NH3 or TN for different regions of the U.S in the winter.      511 

5 Summary and Conclusions 512 
 513 
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In the O3 season, the six simulations that participated in this model inter-comparison predict 514 

similar values for H2O2/HNO3, NOy, and O3/NOy, while indicating dominant NOx-limited 515 

chemistry for NA/U.S., except near urban centers that are predicted to be VOC-limited, 516 

especially by the higher resolution models. NOy and O3/NOy overpredict the extent of VOC-517 

limited chemistry in the southeast U.S. (Figures 1and S1), but are more robust (smaller standard 518 

deviations and inter-model variability) compared to the H2O2/HNO3, HCHO/NOy, and 519 

HCHO/NO2 (larger standard deviations and inter-model variability) indicators (Figure 4). Larger 520 

differences arise for HCHO/NOy and HCHO/NO2  due to dependencies on the model gas-phase 521 

mechanism (CBM vs. non-CBM), spatial resolution, and other differences such as the biogenic 522 

emissions model (Table 1). Additional work, however, comparing model response of these (and 523 

other) indicators to focused NOx and VOC emission reductions, are needed before definite 524 

recommendations on can be made.  Additional measurements compared to further short-term 525 

diagnostic modeling, would provide even more vigorous evaluations outside of the southeast 526 

U.S. region, as well as lead to significant O3 and PM2.5 policy implications across the NA 527 

domain. 528 

The SCIAMACHY comparison indicates that models tend to underpredict the HCHO/NO2 529 

column indicator in both the O3 and non-O3 season, with the exception of those models that had 530 

large underpredictions in NOx concentrations (Figure 3). Inter-model and SCIAMACHY 531 

observation comparisons also help put these models in context when they are used to develop 532 

effective O3 control strategies across NA domain, while unveiling differences in using either a 533 

tropospheric column or surface HCHO/NO2 indicator to diagnose the O3 formation regime. Our 534 

results show that use of a column HCHO/NO2 indicator leads to less VOC-limited regions near 535 

the urban centers, as well as more widespread NOx-limited regimes compared to the surface 536 
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HCHO/NO2 indicator (Figures 4 and S3).  Furthermore, when models employ a combined 537 

Carbon Bond Mechanism, with the latest biogenic emission model, there are more consistent 538 

NOx-limited predictions in surface HCHO/NOy and HCHO/NO2 in the southeast U.S., but less 539 

consistent than other models in northwestern U.S., surrounding urban centers in northeast U.S., 540 

and in parts of Canada and Mexico, where emissions data are sparser (Figure S4).  541 

In addition, we analyzed modeled PM2.5 indicators over NA/U.S. in winter.  Although there is 542 

a systematic underprediction in the degree of sulfate neutralization (DSN) (Figure 2), it is 543 

currently a more robust (smaller standard deviations and inter-model variability) PM2.5 indicator 544 

than the adjusted gas ratio (AdjGR) (larger standard deviations and inter-model variability), 545 

which exhibits a large range in predicted NH3 poor (AdjGR ≤ 1) versus NH3 rich (AdjGR > 1) in 546 

the Midwest to northeast U.S.  Such a model disparity in AdjGR, leads to a prediction of 547 

different NH3 or TN sensitivities for the control of PM2.5 concentrations in the winter.  548 

Furthermore in summer, all models perform poorly for AdjGR, indicating very large 549 

overpredictions in AdjGR and the extent of the NH3 rich conditions here.  This suggests that 550 

there is low confidence in modeled AdjGR for application to PM2.5 control and policy strategies, 551 

and that more detailed diagnostic work is needed to determine the underlying mechanistic causes 552 

of these differences in model sensitivity.         553 

Analyzing the inter-model comparison changes in O3 and PM2.5 sensitivity from 2006 to 2010 554 

allows us to diagnose the responses of different models to changes in chemical emissions and 555 

meteorology. Increases in NOx-limited conditions dominated across the U.S., especially near 556 

point sources, and are predicted by all models.  The change is attributed to NOx emission 557 

decreases in 2010 relative to the level in 2006. The three models also agree on the spatial 558 

distribution of change for O3 indicator sensitivity, due to the relative surface temperature and 559 
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emission changes between 2006 and 2010, while differences in the magnitude are attributed to 560 

different biogenic emission models and gas-phase chemistry impacts.  This leads to policy 561 

implications regarding the need for continued multi-model assessments at the highest possible 562 

resolution, while using the most detailed emission inventories currently available.  There is 563 

larger variability in the modeled change in PM2.5 indicators, DSN and AdjGR, between 2006 and 564 

2010, in part due to inter-model variability in the biogenic emissions, oxidation chemistry, and 565 

secondary organic aerosol abundance predicted by different model treatments (Table 1), which 566 

can in turn impact the response for the inorganic species.  Thus compared to the O3 indicators, 567 

the PM2.5 indicators are currently less robust, while suggesting that further model development is 568 

needed in this area.     569 
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Table 1. AQMEII-2 participating models and configurations for the North American domain simulations.  
The full citations for their italicized short-names are provided in the footnote (alphabetically) below the table.   

 US8 US7 ES1 ES3 CA2f US6 

AQ-Meteo. 
Model/ 
Version 

Modified WRF-
Chem/3.4.1 

G05, Sk08, W14 

WRF-Chem/3.4.1 
G05, Sk08 

WRF-Chem/3.4.1 
G05, Sk08 

WRF-Chem/3.4.1 
G05, Sk08 

GEM-
MACH/1.5.1  

M10 

WRF-CMAQ/5.0.1 
BS06, Fo10, W12  

Years 2006 & 2010 2010 2010 2006 2006 & 2010 2006 & 2010 
Dx-Dy 36 km 36 km 36 km 36 km 15 km 12 km 

Vertical 
Resolution 

35 eta levels 33 eta levels 33 eta levels 33 eta levels 58 eta levels 35 eta levels 

1st Layer 
Height   

38 m 60 m 29 m 18 m 21 m 19 m 

Model Top 
Pressure 

100 hPa 10 hPa 50 hPa 100 hPa 10 mb (2006), 0.1 
hPa (2010) 

100 hPa 

Projection Lambert  Lambert Lambert Lambert Rotated Lat-Lon Lambert 
Domain 
Center 

39.3°N;97.6°W 39.0°N;97.5°W 39.0°N;97.5°W 40.0°N;97.0°W n/a 40.0°N;97.0°W 

Meteo. 
ICs/BCs 

NCEP FNL (1.0°) 
 

NCEP FNL (1.0°) 
 

NCEP GFS (1.0°) 
 

NCEP GFS (1.0°) GEM (15km) - 
CMC M06,Fi10 

NCEP NAM (12-km) 
 

Chemical 
ICs/BCs 

MACC-II 
H08, S12 

MACC-II 
H08, S12 

MACC-II 
H08, S12 

MACC-II 
H08, S12 

MACC-II 
H08, S12 

MACC-II 
H08, S12 

Land 
Surface 
Model 

NOAH 
CD01, Ek03 

NOAH 
CD01, Ek03 

 

NOAH 
CD01, Ek03 

 

NOAH 
CD01, Ek03 

 

ISBA2  
B03 

Pleim-Xiu 
XP01 

Surface Layer Monin-Obukhov 
MO54, J02 

Monin-Obukhov 
MO54, J02 

Monin-Obukhov 
MO54, J02 

Monin-Obukhov 
MO54, J02 

ISBA2 
B03 

Monin-Obukhov 
MO54, J02 

PBL 
Scheme 

YSU 
H06 

MYNN 
NN04 

YSU 
H06 

YSU 
H06 

MOISTKE4  
 MB82, B05  

ACM2 
P07 

 
Radiative 
Transfer 

Mech. 

RRTMG 
C05 

RRTM 
M97 

RRTMG 
C05 

RRTMG 
C05 

LB05 RRTMG 
C05 

Photolysis FTUV 
T03 

FTUV 
T03 

Fast-J 
W00 

Fast-J 
W00 

ADOM-II  
D72, P76, D88 

In-Line 
B07 

Microphysics Morrison 
M09 

Morrison 
M09 

Lin (Purdue) 
L83 

Morrison 
M09 

Milbrandt-Yao  
MY05 

Morrison 
M09 

Cloud 
Paramet. 

Grell 3D 
GF13 

Grell 3D 
GF13 

Grell 3D 
GF13 

Grell 3D 
GF13 

KF 
KF90 

KF2 
K04 

Biogenic 
Emissions 

MEGAN 
Gu06 

MEGAN 
Gu06 

MEGAN 
Gu06 

MEGAN 
Gu06 

BEIS3.0.9 
P98 

BEIS3.14 
V02, S05 

Gas Phase 
Mech. 

Modified CB05-Clx 
Y05, S06, SB07 

MOZART-4 
Em10, K13 

RADM2 
S90 

CBMZ 
Z99 

ADOMII  
SL89 

 

CB05-TU 
W10 

Aerosol 
Mechanism/ 

Size 

MADE/3 modes 
A98, G05 

MOSAIC/ 4 bins 
Z08 

MADE/3 modes 
A98, G05 

 

MOSAIC/ 4 bins 
Z08 

 

CAM/12 bins  
G03 

AERO6/3 modes 
A13 

SOA 
Mechanism 

VBS 
A12 

Hodzic and Jimenez 
HJ11 

SORGAM 
S01 

None O96 CMAQ SOA 
C10, S12 

Aqueous 
Chemistry 

CMAQ AQCHem   
S11 

Grid and Sub-Grid  
WT86, FP01 

Grid/Sub Grid   
WT86, FP01 

Grid/Sub Grid  
WT86, FP01 

ADOM 
 V88, F91 

Grid/Sub Grid   

Dust & Sea- 
Salt Scheme 

Dust: AER/AFWA  JC11 
Sea-salt: G97 

Dust: MOSIAC  
Sh08  Sea-salt: G97  

Dust:  MOSIAC Sh08    
Sea-salt: G97   

Dust: MOSIAC Sh08 
 Sea-salt: G97  

Dust: None 
Sea-salt:  G03 

Dust : In-Line  A13  
Sea-salt : In-Line   K10 

Aerosol 
Direct 
Effect 

Fast-Chapman 
F06,C09 

Fast-Chapman 
F06,C09 

Fast-Chapman 
F06,C09 

Fast-Chapman 
F06,C09 

GEM-MACH 
Feedback BH83 

CMAQ Feedback 
BH98, W12 

Aerosol 
Indirect 
Effect 

AR-G00 
ARG00 

AR-G00 
ARG00 

AR-G00 
ARG00 

AR-G00 
ARG00 

AR-G00 
ARG00 

None 

Urban 
Canopy 

UCM 
K01 

UCM 
K01 

None None None None 

Wet  
Deposition 

Grid/Sub-Grid  
E04 

Grid/Sub-Grid 
E04 

Grid/Sub-Grid 
E04 

Grid/Sub-Grid 
E04 

AURAMS  
Go06 

CMAQ  
WT86, BS06 

Dry  
Deposition  

 

Gases:  Wesely    
W89, WH00, Z02 

Particles: CMAQ – BS95 

Gases:  Wesely  
W89, WH00, Z02 

Particles: MOSAIC 
Driven  

Gases:  Wesely  
W89, WH00, Z02 

Particles: MADE Driven 

Gases:  Wesely  
W89, WH00, Z02 

Particles: MOSAIC Driven  

Gases:  Wesley 
Particles:  G03[a], 

Z01 

Gases & Particles: 
CMAQ In-Line 

P01, PR11 

References:   ARG00 – Abdul-Razzak and Ghan [2000]; A98 - Ackerman et al. [1998];  A12 - Ahmadov et al. [2012]; A13 - Appel et al. [2013]; B03 - Belair et al. [2003a,b];  B05 - Bélair et al. 
[2005]; BS95 – Binkowski and Shankar [1995];  B07 - Binkowski et al. [2007]; BH83 - Bohren and Huffmann [1983]; BH98 - Bohren and Huffman [1998]; BS06 - Byun and Schere [2006]; C10 - 
Carlton et al. [2010]; C09 - Chapman et al. [2009]; CD01 - Chen and Dudhia [2001]; C05 - Clough et al. [2005]; D72 - Dave [1972]; D88 - DeMore et al. [1988]; E04 - Easter et al. [2004];  
Ek03 -  Ek et al. [2003]; Em10 - Emmons et al. [2010]; FP01 - Fahey and Pandis [2001]; F06 - Fast et al. [2006]; Fi10 - Filion et al. [2010];  Fo10 - Foley et al [2010]; F91 -  Fung et al. [1991];  
G97 - Gong et al. [1997]; G03 - Gong et al. [2003a,b]; Go06 - Gong et al. [2006];  G05-Grell et al. [2005];  GF13 - Grell and Freitas [2013]; Gu06 - Guenther et al. [2006]; HJ11 - Hodzic and 
Jimenez [2011];  H08 -  Hollingsworth et al. [2008]; H06 - Hong et al. [2006];   J02 - Janjic [2002];  JC11 – Jones and Creighton [2011]; KF90 - Kain and Fritsch [1990]; K04 - Kain [2004]; 
K10 - Kelly et al. [2010]; K13 - Knote et al. [2013]; K01 - Kusaka et al. [2001];  LB05 - Li and Barker [2005];  L83 - Lin et al. [1983];  MB82 - Mailhot and Benoit [1982]; M06 - Mailhot et al. 
[2006]; MY05 - Milbrandt and Yao [2005a,b]; M97 - Mlawer et al. [1997]; MO54 - Monin and Obukhov [1954]; M10 -  Moran et al. [2010]; M09 - Morrison et al. [2009];  NN04 - Nakanishi and 
Niino [2004]; O96 - Odum et al. [1996]; P76 - Peterson [1976];  P98 - Pierce et al. [1998]; P01 - Pleim et al. [2001]; P07 - Pleim [2007a,b]; PR11 - Pleim and Ran [2011]; S06 – Sarwar et al. 
[2006];  SB07 – Sarwar and Bhave [2007]; S11 – Sarwar et al. [2011];  S01 - Schell et al. [2001]; S12 - Schere et al. [2012];  S05 - Schwede et al. [2005];  Sh08 - Shaw et al. [2008]; SB12 - 
Simon and Bhave [2012]; Sk08 - Skamarock et al. [2008]; SL89 - Stockwell and Lurmann, [1989]; S90 - Stockwell et al. [1990];  T03 - Tie et al. [2003]; V88 -  Venkatram et al. [1988];  V02 - 
Vukovich et al. [2002]; WT86 - Walcek and Taylor [1986]; W14 – Wang et al. [2014b]; W89 - Wesely [1989]; WH00 - Wesely and Hicks [2000]; W10 - Whitten et al. [2010]; W00 - Wild et al. 
[2000]; W12 - Wong et al. [2012]; XP01 - Xiu and Pleim [2001]; Y05 - Yarwood et al. [2005]; Z99 - Zaveri et al. [1999]; Z08 - Zaveri et al. [2008]; Z01 - L. Zhang et al. [2001]; Z02 - L. Zhang et 
al. [2002]. 
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Table2.  Statistical summary of the NA1, NA2, NA3, NA4, and NA/U.S.-wide ensemble model average, standard deviation, and normalized standard 
deviation (standard deviation/average) for each O3 and PM2.5 indicator in the O3 and winter (DJF) seasons respectively.  

  Average 

Indicator H2O2/HNO3 NOy O3/NOy HCHO/NOy HCHO/NO2 TN/TS DSN AdjGR NH3F NO3- 

Region ratio  ppb ratio ratio ratio ratio ratio ratio ppb µg m-3 
NA1 4.15  1.36 39.22 0.93 5.33 2.27 1.33 1.12 0.45 0.29 
NA2 4.10 2.06 24.32 0.97 3.24 2.61 1.53 1.92 1.04 1.02 
NA3 5.09 3.83 13.94 1.01 2.85 2.35 1.38 1.05 0.83 1.16 
NA4 4.91 3.04 23.78 0.81 3.19 2.29 1.05 1.10 0.53 0.93 
NA/U.S. 4.57 2.57 25.31 0.93 3.66 2.38 1.32 1.30 0.71 0.85 
  Standard Deviation (SD) 

NA1 1.49 0.42 12.99 0.41 3.34 1.29 0.38 0.69 0.18 0.14 
NA2 1.18 0.64 8.13 0.47 1.88 1.21 0.37 1.39 0.40 0.61 
NA3 3.13 0.88 4.33 0.58 1.79 1.22 0.31 0.85 0.37 0.65 
NA4 2.14 0.84 8.19 0.41 2.11 1.42 0.45 1.14 0.31 0.66 
NA/U.S. 1.94 0.72 8.36 0.47 2.28 1.29 0.39 1.03 0.33 0.50 
  Normalized Standard Deviation (NSD)  

NA1 0.36 0.31 0.33 0.44 0.63 0.57 0.28 0.62 0.40 0.48 
NA2 0.29 0.31 0.33 0.48 0.58 0.46 0.24 0.72 0.38 0.60 
NA3 0.62 0.23 0.31 0.57 0.63 0.52 0.23 0.81 0.45 0.56 
NA4 0.44 0.28 0.34 0.51 0.66 0.62 0.43 1.04 0.59 0.70 
NA/U.S. 0.42 0.28 0.33 0.50 0.62 0.54 0.30 0.80 0.46 0.59 
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Figure 1.  Averaged NMB and NME for modeled O3/NOy against SEARCH observations averaged over the 
urban (a) and a rural sites (b) in NA3. Colored circles and triangles pertain to the model’s average values 
over O3 and non-O3 seasons, respectively.  
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Figure 2. Averaged NMB and NME for the comparison of the modeled DSN (a, b), AdjGR (c, d), and NH3F (e, f) against SEARCH observations avearaged 
over the urban (top) and a rural sites (bottom) in NA3. Colored circles and triangles pertain to the model’s average values over O3 and non-O3 seasons, 
respectively. 
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Figure 3.  Averaged NMB and NME for  the comparison of modeled HCHO/NO2 against SCIAMACHY 
observations averaged over the (a) NA/U.S., and sub-regions  (b) NA1, (c) NA2, (d) NA3, and (e) NA4. 
Colored circles and triangles pertain to the model’s average values over O3 and non-O3 seasons, respectively. 
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Figure 4.  Ensemble model average and normalized standard deviation of surface H2O2/HNO3, NOy, O3/NOy, 
HCHO/NOy, and HCHO/NO2, for average afternoon hours, during the O3 season (May – September).  
Average NOx-VOC-limited chemistry indicator value (a – e) is color shaded according to the legends on the 
left, while the normalized standard deviation’s (f – j) color shading corresponds to the legend on the right . 
The panel in the top right shows the geographical sub-regions of NA used for discussion in the text. 
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Figure 5.  Same as in Figure 4, but for TN/TS, DSN, AdjGR, NH3F, and NO3- for the winter (DJF) season. 
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Figure 6.  Difference (2010 – 2006)  plots representing changes in H2O2/HNO3  (a – c), NOy (d – f), O3/NOy 

(g – i), HCHO/NOy (j – l), and HCHO/NO2 (m – o) for averaged afternoon hours during the O3 season. 
NOx-VOC-limited chemistry indicator changes are color shaded according to the legends on the left.  
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Figure 7.  Same as in Figure 6, but for TN/TS  (a – d), DSN (e – h), AdjGR (i – l), NH3F (m – p), and NO3-(q 
– t) changes for the winter (DJF) season. 
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1. Surface O3/NOy Indicator Comparison 

Figure S1 shows a scatter plot comparison of the observed SEARCH (BHM, CTR, JST, and 

YRK) hourly maximum O3 mixing ratio in the afternoon (1 p.m. – 6 p.m. LST), versus 

concurrent NOy mixing ratio, for the 2006 and 2010 O3 and non-O3 seasons in the southeast U.S., 

NA3 (see description in main text), and a comparison between the SEARCH observed and 

simulated seasonally-averaged values.   The dividing line in Figure S1 pertains to the transition 

between the NOx- and VOC-limited regimes (O3/NOy = 15), based on Sillman et al. [1997], and 

updated in Zhang et al. [2009]. There was problem in ES1’s point source emissions processing 

for their simulations, which led to inadvertent exclusion of point sources such as SO2 and NOx.  

mailto:pccampb2@ncsu.edu
mailto:yang_zhang@ncsu.edu
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This impacts O3 and its associated indicators in parts of the domain where point sources are 

major contributors to their concentrations, while having less impact over regions where area and 

biogenic sources are dominant.  Despite this limitation, analysis of the ES1 simulation is still 

valuable, as its differences provide an outlook on the influence of point sources on ES1’s O3 

concentrations and indicators.    At the urban BHM and JST sites in 2006 and 2010 (Figures S1a, 

S1c, S1e, S1g), both observations and the models indicate VOC-limited conditions, with a less or 

more pronounced VOC-limited regime during the O3 or non-O3 seasons, respectively.  VOC-

limited chemistry and high O3 levels are frequently observed and modeled near high NOx 

emissions emanating from metropolitan areas in NA/U.S. [Milford et al., 1989; Sillman et al., 

1998; Kleinman et al., 2005; Zhang et al., 2009].  A high rate of biogenic VOC emissions, 

typical of the NA3 O3 season, will result in shift towards NOx-limited chemistry [Chameides et 

al., 1988; 1992; Pierce et al., 1998; Kang et al., 2004].    ES1 and US6 in 2010, however, do not 

exhibit such a shift towards NOx-limited conditions during the O3 season at BHM (Figure S1e).  

The larger range in model predicted NOy mixing ratios, compared to that of O3, has the largest 

impact on model predicted O3/NOy in 2006  (Figures S1a and S1c). The majority of models also 

agree more favorably for O3 mixing ratios in 2010 (Figures S1e and S1g).  US7 and ES1 predict 

the largest over- and underpredictions for O3 mixing ratios in the O3 season, and US8 and ES1 

have the largest underpredictions in the non-O3 season. There is also considerable spread for 

predicted NOy in 2010. An average of both years and seasons, and over all four SEARCH 

locations, indicates that US8, US7, ES1, and US6 overpredict NOy by 30, 40, 50, and 140 %, and 

that ES3 and CA2f underpredict NOy by 11 and 30 %. Thus AQMs may predict accurate O3 

coincident with inaccurate NOy mixing ratios, thus leading to moderately under- to largely 

overpredicting the extent of urban VOC-limited chemistry.  We note that US6 has a positive NOy 
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bias (~ 140 %) that is much larger than other models at BHM and JST, and is the only model to 

utilize a gas-phase chemistry mechanism (CB05-TU; Table 1) that includes nitro-cresols and 

particulate NO3
- in calculation of NOy.  Sawar et al. [2013] indicated that particulate NO3

- is the 

most dominant chemical species in calculation of mean NOz (NOz = NOy – NOx), accounting for 

34 % of NOz in CB05-TU, and that the CB05-TU mechanism over-predicts NOz compared to 

observations.  Thus assuming similar NOx across all models, the inclusion of particulate NO3
- by 

US6 may contribute to its large positive bias. Interestingly, however, is that all other models 

have better agreement with the observed NOy, which leads to a proposal of two different 

situations:   1) particulate NO3
- is present in quantities that have a large impact on NOy mixing 

ratios, but are not accounted for by SEARCH NOy instrumentation at BHM or JST, or, 2) 

particulate NO3
- is not present in measurable quantities to have a large impact on NOy mixing 

ratios, and its inclusion in the NOy calculation by US6 is largely overpredicted.  

Observations indicate a clear shift towards NOx-limited chemistry at the rural CTR and 

YRK sites in 2006 and 2010 (Figures S1b, S1d, S1f, S1h), most pronounced in the O3 season. A 

shift in VOC- to NOx-limited O3 chemistry away from emission sources has been readily 

observed and modeled [Kleinman, 1994; Buhr et al., 1995; Zhang et al., 2009], with more 

pronounced  NOx-limited chemistry in the O3 season partly impacted by the increased biogenic 

VOC emissions associated with warmer temperatures. Indeed the more remote forest location of 

CTR is more NOx-limited than YRK, which has closer proximity to large urban plumes.  The 

majority of models agree well for O3 concentrations, and there is less spread in NOy at the rural 

locations; however, there is also less room for model error given that conditions are closer to the 

NOx-VOC transition line, such that underpredictions in O3 by ES1 in 2010 lead to erroneous 

predictions of the NOx-VOC-limited chemical regimes (Figures S1f and S1h).   Furthermore, 
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slight overpredictions in NOy by US8, CA2f, and US6 occurring in both seasons, also lead to a 

small deviation of the simulated (slightly VOC-limited) from the observed O3 chemical regime 

(slightly NOx-limited) (Figure S1b, S1d, S1h).  Overall for the two rural locations, CTR and 

YRK, there is a relatively closer agreement in NOy mixing ratios, and less systematic bias for the 

different models compared to the urban locations, BHM and JST.  This may be caused by 

increased distance from local emission sources for the rural locations, lower NOy mixing ratios, 

and the additional influences of transport relative to the urban locations.  There may also be 

relatively less pronounced impacts from differences in model NOy calculations (discussed above) 

at the rural sites. 

2. Detailed PM2.5 Regime Indicator Comparison 

Figure S2 presents a 2010 bar chart comparison between SEARCH observations (BHM, 

CTR, JST, and YRK) and models, for seasonal (winter – DJF, spring – MAM, summer – JJA, 

fall – SON) average PM2.5 regime indicators TA/TS, TN/TS, DSN, AdjGR, and NH3
F.  As 

discussed in the main text, ES1 was removed from analyses due to emission processing errors for 

their simulation.  For TA/TS (Figure S2a – S2d), the observations indicate approximately SO4
2- 

neutral (TA/TS ~ 2) or poor (TA/TS > 2) conditions for all seasons and locations. The ratio of 

TA/TS is smaller, i.e. less SO4
2- poor at BHM (urban) and CTR (rural) compared to JST (urban) 

and YRK (rural). BHM and CTR are similarly located  closer to significant SO2 emission sources 

in Alabama (resulting in larger TS), but are relatively farther from significant NH3 emissions 

(resulting in smaller TA) compared to similarly located JST and YRK in Georgia.  All models 

generally agree with this pattern of observations, except CA2f, which has a relatively larger 

values of TS and smaller values of TA compared to other models (not shown), has the smallest 

TA/TS, and predicts SO4
2- rich conditions at BHM and CTR for all seasons.  US7 and US6 
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models have the largest TA/TS ratios in winter at all sites, especially at JST where they are more 

than a factor of 2 larger than other models.  Compared to the other models and observations, for 

a wintertime average the dominant factor controlling the bias in TA/TS for US7 and US6 is a 

lower TS and larger TA respectively.  Thus differences for US7 are attributed to different gas- 

and aqueous-phase chemistry, thus impacting TS, while differences for US6 are more impacted 

by its different aerosol module’s thermodynamic partitioning of TA (Table 1).  Further insights 

into these differences are provided in the main text, Sections 4 and 5.    

TN/TS observations indicate NO3
- poor conditions in the summer, and NO3

- medium 

conditions in the winter, spring, and fall, except at BHM in spring - fall, which is NO3
- poor 

(Figures S2e – S2h).  The CA2f model has the lowest TN/TS and predicts NO3
- poor conditions 

throughout, likely due to relatively large underpredictions in NOx concentrations [Table S1 in 

Makar et al., 2014].  In winter, US8 and US7 agree with observations and predict NO3
- medium, 

while US6 has the largest TN/TS indicating NO3
- rich conditions, due to overprediction in NO3

- 

in the winter.  Other AQMEII-2 analyses for NA show that the US6 overpredicts PM2.5 mass 

concentration for urban areas in the winter [Hogrefe et al., 2014; Im et al., 2014]. In summer all 

models accordingly predict NO3
- poor conditions at the rural sites, while US8 and US7 indicate 

slightly higher TN/TS and NO3
- medium conditions at the urban sites.  There is good agreement 

in spring except for CA2f, which is consistently lower.  In the fall, US8 consistently overpredicts 

TN/TS and NO3
- rich conditions at JST and YRK.  This is a result of a larger TN and smaller TS 

for US8, due to a combination of impacts from different thermodynamic partitioning of TN and 

gas-phase chemistry impacts on TS.    

DSN observations indicate sufficiently SO4
2- neutralized conditions (DSN ≥ 1.5) for all sites 

and seasons (Figures S2i – S2l).    This is somewhat consistent with the SO4
2- poor/neutral 
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conditions based on the observed TA/TS indicator (i.e., there was sufficient ammonium to fully 

neutralize the relatively low SO4
2- conditions).   The models tend to underpredict the DSN, and at 

times predict insufficiently neutralized conditions.  In fact, Figure 2 in the main text indicates a 

systematic underprediction in DSN across all models, seasons, and sites.  This is due to an 

overprediction in NO3
- and TN for the models, stemming from inaccuracies in thermodynamic 

partitioning within their aerosol modules, and inaccurate NOx emission estimates here.   An 

underprediction of DSN by the models contributes to an overprediction in the amount of NH3
F 

available to form PM2.5 NO3
-, as well as an associated overprediction in AdjGR.   The models 

exhibit better agreement in warmer seasons (JJA and SON), e.g., US8 has DSN values 

consistently in the same regime, with < 10 % mean difference across all sites. Other models, 

however, have consistently low DSN during the warmer seasons.   

AdjGR and NH3
F observations indicate mainly NH3 poor conditions at BHM and CTR 

(PM2.5 more sensitive to NH3 changes), except at BHM in DJF, and NH3 rich conditions at JST 

and YRK (PM2.5 more sensitive to TN changes) (Figures S2m – S2t).   There is a different PM2.5 

sensitivity for these sites in part impacted by the relatively farther distance of BHM and CTR, 

and closer distance of JST and YRK to specific NH3 emission sources.  The models indicate 

increasingly more NH3 rich conditions for JST and YRK, but at times inaccurately predict the 

AdjGR regime.  The seasonal pattern and agreement between observed and modeled NH3
F are 

similar to AdjGR for lower NH3
F at BHM and CTR, and generally larger NH3

F at JST and YRK 

(Figures S2s – S2t).  There are large overpredictions in AdjGR and NH3
F at many sites and 

seasons for the models, e.g., US7 and US6 in the summer season. Such overpredictions are a 

result of impacts from previously described gas-phase chemistry impacts on underpredictions in 

TS and thermodynamic partitioning of TA and TN, as well as underpredictions on dry deposition 
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of NH3 across the models.  There may also be impacts stemming from common over- or 

underpredictions in NH3 or NOx gas emissions, respectively. 

3. Spatial Plots for the Satellite HCHO/NO2 Comparison  

Figure S3 shows a comparison of the modeled tropospheric column HCHO/NO2  ratio 

[Martin et al., 2004] against SCIAMACHY observations, for O3 and non-O3 seasonal averages 

in subdomains NA1 – NA4 (see description in main text), while extending to parts of Canada 

and Mexico. In the O3 season, SCIAMACHY indicates generally NOx-limited conditions 

(HCHO/NO2 ≥ 1) across NA/U.S., except for local VOC-limited conditions (HCHO/NO2 < 1) 

near large urban (i.e., highest population density) centers (Figure S3a).  Transitional-weak NOx-

limited areas (HCHO/NO2 = 1 - 2) correlate with smaller urban centers. There are moderate 

(HCHO/NO2 = 2 - 6) NOx-limited areas in NA4 and NA1, and strong (HCHO/NO2 > 6 - 10) 

NOx-limited areas in NA3.  US8, US7, ES3, and US6 accurately predict VOC-limited chemistry 

in the large urban centers; however, these models underpredict the NOx-limited conditions in 

some northern NA1 regions. In Canada, with the exception of ES1 and CA2f, the models 

underpredict the NOx-limited chemistry.  These differences are due to a factor of 2 lower HCHO 

in rural background regions, and up to an order of magnitude higher NO2 predicted near urban 

centers (not shown). ES1 and CA2f are clear outliers in Figure S3, as they both largely 

overpredict the NOx-limited conditions in NA1-NA4, and near major urban centers (Figures S3e 

and S3f); in part due to enhanced HCHO, but with larger impacts from underprediction of NO2.  

This is an impact of the exclusion of NOx point sources by ES1, and CA2f underpredictions in 

NOx  concentrations contributing to its overpredictions of the NOx-limited extent. US7 and US6 

overpredict NOx-limited chemistry in parts of NA3, associated with approximately a factor of 10 

larger HCHO column concentrations.    In parts of Mexico, all models overpredict NOx-limited 
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chemistry, with the exception of CA2f (outside of its domain).  This is due to an over- and 

underprediction of about a factor of 2 and 10 in column HCHO and NO2 mixing ratio 

respectively, likely attributed to the sparse emission data available in Mexico.    

         In the non-O3 season, SCIAMACHY indicates a general transition from NOx-to-VOC-

limited conditions, especially in NA2 – NA4 (Figure S3h).  All models (Figures S3i – 3n) 

qualitatively agree with such a transition; however, with the exception of ES1 and CA2f, the area 

of VOC-limited conditions is overpredicted.  These models indicate larger areas of moderately 

(HCHO/NO2 = 0.8 – 0.4) to strongly VOC-limited (HCHO/NO2 < 0.4) chemistry in NA2-NA4.  

US7 has the largest overprediction in VOC-limited chemistry across NA/U.S. (Figure S3j).  

Observations indicate a larger area of transitional to weak VOC-limited (HCHO/NO2 = 1 – 0.8), 

or even a NOx-limited (HCHO/NO2 > 1) environment. Much larger HCHO/NO2 values for ES1 

and CA2f, due to underprediction of NO2, again lead to overpredictions in NOx-limited 

conditions across NA/U.S.   

4.  Inter-Model Comparison Plots of Seasonally Averaged Indicators  

This section provides additional inter-model comparison plots of different NOx-VOC-limited 

indicators during the O3 season (Section 4.1), regime indicators for the formation of PM2.5 in 

winter (Section 4.2), and changes in PM2.5  sensitivity for winter 2010 relative to 2006 (Section 

4.3).  The additional diagnostic/dynamic comparison details are meant to supplement Section 4 

of the main text.    

5.1 Spatial Comparison Plots of NOx-VOC Sensitivity in the O3 Season 
 

Figure S4 shows an inter-model comparison of five surface photochemical indicators 

(H2O2/HNO3, NOy, O3/NOy, HCHO/NOy, and HCHO/NO2) averaged over afternoon hours 

during the 2006, 2010, or average 2006 and 2010 O3 season.  For the H2O2/HNO3 indicator 
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(Figures S4a – S4f), there is good agreement in spatial variability across NA1-NA4 for the 

different models. All models predict NOx-limited chemistry in northern NA1, with the largest 

values of H2O2/HNO3 for US6 that has a higher spatial resolution of 12 km compared to the 

other models, while predicting NOx-limited to transitional VOC-limited O3 chemistry over NA2 

and NA4.  There are also locations with VOC-limited chemistry near urban centers.  There is a 

discrepancy in NA3, where the majority of the models predict higher regional background H2O2 

mixing ratios (~ factor of 2; not shown), which leads to more enhanced NOx-limited chemistry 

compared to ES3.   For gas-phase chemistry, ES3 incorporates a different version of the Carbon 

Bond Mechanism (CBM), CBM-Z, compared to both US8 and US6 that use an updated CBM, 

CB05 (Table 1).  US7 indicates the most enhanced NOx-limited chemistry for NA/U.S., 

especially in NA3, and less apparent VOC-limited conditions near the major urban centers.   This 

is due to larger H2O2 mixing ratios for US7 (not shown).  US7 and ES1 use non-CBM gas phase 

mechanisms MOZART-4 and RADM2 respectively (Table 1).  MOZART-4 is more updated 

than mechanisms in RADM2. 

There is generally good agreement for modeled NOy (Figures S4g – S4l) and O3/NOy 

(Figures S4m – S4r), with dominant NOx-limited chemistry, and local areas of VOC-limited 

chemistry near major urban centers.  There is disparity, however, when comparing the magnitude 

of NOy for the different models at local areas.  This is consistent with the previous comparison at 

local SEARCH sites, and the apparent spread in NOy mixing ratios between models (Figure S1).   

US8 and US6 have a larger number and area of VOC-limited “hotspots”, defined as enhanced 

VOC-limited chemistry, with even larger NOy mixing ratios for the higher resolution US6.  This 

is in contrast to the H2O2/HNO3 indicator, which indicates broader regions of weakly VOC-

limited chemistry, and less VOC-limited hotspots.  Out of the models implementing a CBM, ES3 
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has a lower NOy, e.g., in NA3-NA4, but also had some of the least model bias and error for 

O3/NOy in NA3 (Figure 1).   US6 overpredicts NOy and underpredicts O3/NOy compared to 

SEARCH observations at the urban sites in NA3 (Figures 1 and S1). ES1 has the lowest O3/NOy 

(Figure S4o), with regions of significantly less NOx-limited conditions or more VOC-limited 

conditions, due to lower O3 mixing ratios (also predicted for NA3 in Figures S1e – S1h).   

For HCHO/NOy (Figures S4s – S4x) and HCHO/NO2 (Figures S4y – S4dd) indicators, all 

models predict dominant NOx- limited conditions in NA1, NA2, and NA3; however, by 

comparison US7, ES1, and CA2f, all of which implement non-CBM gas-phase chemistry, have 

the most enhanced NOx-limited chemistry; thus dominating the ensemble model average in 

Figure 4. US6 agrees with US8 and ES3 more favorably, but also exhibits more enhanced NOx-

limited conditions in NA3.  The increased HCHO in NA3 may in part be attributed to different 

biogenic emission models employed for US8 and ES3 compared to CA2f and US6, MEGAN2 

vs. BEIS respectively, where CA2f also uses an older version of BEIS than US6 (Table 1). Out 

of these 4 simulations for 2006 (US8, ES3, CA2f, and US6), CA2f is also the only model that 

does not employ a CBM for the gas-phase chemistry (Table 1). ES3 also uses an older version of 

CBM, CBM-Z, which helps explain in part some discrepancies compared to US8 and US6.   

Comparison against observations and other models (Figures 3 and S3), indicate that US8, US7, 

and ES3 predict less enhanced NOx-limited chemistry in northwestern NA1.  

5.2 Spatial Comparison Plots of PM2.5 Sensitivity in Winter   
 

Figure S5 shows an evaluation of indicators for PM2.5 sensitivity (TN/TS, DSN, AdjGR, 

NH3
F) and NO3

- concentrations in winter (DJF).  Individual models predict similar association of 

regions of NO3
-  rich conditions (TN/TS > 2; Figures S5a – Se) and full SO4

2-neutralization (DSN 

≥ 1.5; Figures S5f – S5j), with NH3 rich (AdjGR > 1; Figures S5k – S5o), excess NH3
F (NH3

F > 1 
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ppb; Figures S5p – S5t) and enhanced PM2.5NO3
- formation (Figures S5u – S5y).   There are, 

however, inter-model differences.  US8 and ES3 predict rather uniform NO3
- medium-to-rich 

conditions across NA1 (Figures S5a – S5c), while the higher resolution CA2f (15×15 km) and 

US6 (12×12 km) models predict a progressively larger NO3
-  poor area, embedded with more 

localized NO3
-  medium-to-rich regions (Figures S5d – S5e), NH3 rich (Figures S5n– S5o), 

excess NH3
F (Figures S5s– S5t), and enhanced NO3

- concentrations in NA1 (Figures S5x – S5y).   

US6 also indicates local areas of insufficiently neutralized SO4
2- in NA1, e.g., near the Front 

Range in Colorado for US6 (Figure 9j), while remaining NH3 rich (Figure 9o), with excess NH3
F 

(NH3
F > 1 ppb) and enhanced PM2.5 NO3

- concentrations. This is largely opposite the other 

models.  Thus US6 may more finely represent the interactions between high NOx emissions near 

Denver, topographical effects, and local meteorology, thus enhancing PM2.5 NO3
- under 

insufficiently neutralized SO4
2-.       

In NA2-NA4 there is a notable bias for the ES3 and US6, which predict relatively larger 

NO3
- rich and sufficiently neutralized SO4

2- conditions, in conjunction with more enhanced PM2.5 

NO3
- concentrations compared to the other models.  The differences in TN/TS and DSN are due 

to relatively larger TN for ES3 and US6.    

US7 is rather different from other models and indicates larger regions of NO3
- medium-to-

poor conditions (TN/TS ≤ 2; Figure S5b) and insufficiently neutralized SO4
2- (DSN < 1.5; Figure 

S5g) in the winter.  This occurs in conjunction with the most enhanced NH3
F

   and NH3 rich 

conditions (AdjGR >> 1; Figure S5l), however, counterintuitively with the lowest associated 

NO3
- concentrations.  Compared against SEARCH observations in NA3, the US7 model has the 

largest DSN and AdjGR bias and error at both urban and rural sites in the winter (Figure S2).  On 

average, US7 also predicts a total PM2.5 concentration about 2 – 3 times larger (~ 8.4 µg m-3) 
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than other models (~ 2.9 – 4.2 µg m-3) in NA2-NA4, while concurrently predicting lower 

concentrations for all inorganic species (not shown), likely a result of different combinations of 

gas-phase (non-CBM), aqueous chemistry, and aerosol mechanisms (Table 1), thus impacting 

their individual treatments of gas-aerosol partitioning.  This indicates that a larger fraction of 

other species such as organics contributing to the PM2.5 mass speciation, may lead to an impact 

on predicted AdjGR and inorganic PM2.5 sensitivity.  In fact, US7 predicts a factor of 3 larger 

primary organic PM2.5 concentration compared to US8 in NA2-NA4 for winter 2010 (not 

shown).     

 

5.3 Changes in PM2.5  Sensitivity from 2006 to 2010 
 

Figure S6 shows the changes in sensitivity for the PM2.5 indicator TA/TS, and for PM2.5 

species NH4
+, SO4

2-, and NO3
- between 2006 and 2010.  For TA/TS (Figure S6a – S6c), US8 

indicates predominantly decreases in TA/TS, while the higher resolution models of CA2f and 

US6 show progressively more increases in TA/TS for 2010 relative to 2006.  Thus US8 indicates 

a shift towards more SO4
2- poor conditions across NA/U.S., while US6 indicates a shift to more 

SO4
2- rich conditions.  These differences are a result of differences in the relative change in 

PM2.5 species, such as smaller increases in NH4
+ for US8 (Figure S6d – S6f), in conjunction with 

relatively larger increases in SO4
2- (Figure 6g – 6i).  In contrast, US6 has larger increases in NH4

+ 

compared to SO4
2-.  Although there were NA/U.S.-wide decreases in gas emissions (SO2, NOx, 

and NH3), there are increases in all particulate species in NA2 due to large temperature decreases 

in this region. The differences in the relative amounts for each inorganic PM2.5 species is due to 

mechanistic  differences within the different model combinations of gas-phase chemistry and 
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aerosol module’s  (Table 1) thermodynamic partitioning response to meteorological and 

emission changes (see discussions in the main text, Section 4).  
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Figure S2.  2010 Bar chart comparisons of seasonally (winter-DJF, spring-MAM, summer-JJA, fall-SON) averaged PM2.5 

regime indicators, TA/TS (a-d), TN/TS (e - h), DSN (f – l), AdjGR (m – p), and NH3F (q – t), for each model, and ensemble 
model average against SEARCH observations according to the color bar at the top, for the four SEARCH sites in NA3 (left-
to-right). The horizontal black lines mark the transitions of relevant indicator species that impact PM2.5 formation sensitivity 
regimes, as discussed in the text. 
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Figure S3.  Column HCHO/NO2 spatial comparison of  SCIAMACHY (ave of 2006 and 2010) 
observations to the US8 (ave. of 2006 and 2010), US7 (2010), ES3 (2006), ES1 (2010), CA2f (ave. of 
2006 and 2010), and US6 (ave. of 2006 and 2010) models (top-to-bottom), for the O3 (left)  and non-
O3 season (right).  NOx-VOC-limited chemistry indicator value is color shaded according to the 
legend on the right. The panel in the top right shows the geographical sub-regions of NA used for 
discussion in the text. 
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Figure S4.  Inter-model comparison of surface H2O2/HNO3  (a – f), NOy (g – l), O3/NOy (q – r), HCHO/NOy (s – x), and HCHO/NO2 (y – dd), for average 
afternoon hours, during the 2006, 2010, or average 2006 and 2010 O3 season (May – September).  NOx-VOC-limited chemistry indicator value is color 
shaded according to the legends on the left. The panel in the top right shows the geographical sub-regions of NA used for discussion in the text.
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Figure S5.  Same as in Figure S4, but for TN/TS (a – e), DSN(f – j), AdjGR (k – o), NH3F (p– t), and NO3- (u – y).
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Figure S6.  Difference (2010 – 2006) plots representing changes in surface TA/TS  (a – c), NH4+  (d – f),  SO42- 

(g – i), and NO3- (j – l) for the winter season. PM2.5 indicator sensitivity and concentration changes are color 
shaded according to the legends on the left.  
 


