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Abstract

We present an application of the online coupled Weather Research and Forecasting — Community
Multiscale Air Quality (WRF-CMAQ) modeling system to two annual simulations over North America
performed under Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII).
Operational evaluation shows that model performance is comparable to earlier annual applications of
the uncoupled WRF/CMAQ modeling system Results also indicate that factors such as changes in the
underlying emissions inventory and chemical boundary conditions likely exerted a larger influence on
overall model performance than feedback effects. A comparison of the simulated Aerosol Optical Depth
(AOD) against observations reveals a tendency toward underprediction in all seasons despite a general
overprediction of PM,s during wintertime. Summertime sensitivity simulations without feedback effects
are used to quantify the average impact of the simulated direct feedback effect on temperature, PBL
heights, ozone and PM; s concentrations. Model results for 2006 and 2010 are analyzed to compare
modeled changes between these years to those seen in observations. The results for summertime
average daily maximum 8-hr ozone showed that the model tends to underestimate the observed
decrease in concentrations. The results for total and speciated PM, s vary between seasons, networks
and species, but the WRF-CMAQ simulations do capture the substantial decreases in observed PM; s
concentrations in summer and fall. These 2010-2006 PM, 5 decreases result in simulated increases of
summer mean clear-sky shortwave radiation between 5 and 10 W/m?. The WRF-CMAQ configuration
without direct feedback effects simulates smaller changes in summertime PM,s concentrations,
indicating that the direct feedback effect enhances the air quality benefits arising from emission controls

and that coupled modeling systems are necessary to quantify such feedback effects.
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Highlights

e Coupled WRF-CMAQ modeling system applied and evaluated for two annual simulations under
AQMEII Phase 2

e Model performance comparable to earlier applications of the uncoupled modeling system

e The coupled modeling system captures the substantial reductions in summer and fall PM;s
concentrations between 2006 and 2010 and allows the quantification of the radiative impacts of

these changes
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1.Introduction

Regional-scale air quality modeling systems are frequently used for air quality forecasting and planning
purposes and typically consist of a meteorological component and a chemical transport component.
Traditionally, the meteorological component is applied first and the resulting output fields are used as
input to the chemical transport modeling component. Such an approach is often referred to as “offline”
or “uncoupled” air quality modeling. In contrast, “online” or “coupled” modeling systems imply that the
meteorological and chemical transport components of the modeling system are applied simultaneously
and optionally include mechanisms through which the chemical transport component can provide
feedbacks to the meteorological component (Grell et al., 2005; Zhang, 2008; Baklanov et al., 2014). The
Community Multiscale Air Quality (CMAQ) modeling system developed by the U.S. Environmental
Protection Agency (U.S. EPA) has historically been an “uncoupled” model (Byun and Schere, 2006) but
has recently been enhanced to offer users the option of “coupled” applications (Wong et al., 2012) with
the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008). In this study, we present
the first annual application and evaluation of this coupled WRF-CMAQ modeling system. These
simulations were performed for 2006 and 2010 in the context of the second phase of the Air Quality
Model Evaluation International Initiative (AQMEII) and covered the entire United States. The current
study has several objectives. First, we provide an operational evaluation of the coupled WRF-CMAQ
simulation for ozone, particulate matter with diameters less than 2.5 um (PMs) and particulate matter
with diameters less than 10 um (PM1o) and compare results to the annual application of the uncoupled
system performed during AQMEII Phase 1. Next, we evaluate simulated Aerosol Optical Depth (AOD)
and AOD/PM; s relationships. We then present sensitivity simulations that allow us to quantify the
impact of direct feedbacks on key meteorological and air quality variables, and to determine whether
the modeling design employed in this study may have underestimated these effects. Finally, we
compare observed and modeled changes in air quality and radiation between 2006 and 2010, a process

referred to as dynamic evaluation by Dennis et al. (2010).

2.Model Setup and Observational Databases

2.1.Model setup

The WRF-CMAQ coupled modeling system was described in Wong et al. (2012). In this application, it was
configured using WRFv3.4 and CMAQv5.0.1 (Appel et al., 2013; see also Foley et al., 2010 and Byun and

Schere, 2006). Options in WRF include the Morrison microphysics scheme (Morrison et al., 2008),
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version 2 of the Kain-Fritsch (KF2) cumulus cloud parameterization (Kain, 2004), the Asymmetric
Convective Model version 2 (ACM2) for the planetary boundary layer (Pleim, 20073, b), the Pleim-Xiu
land-surface model (Xiu and Pleim, 2001), and the Rapid Radiative Transfer Model for GCMs (RRTMG)
(Clough et al., 2005). Options in CMAQ include the CBO5-TU chemical mechanism (Whitten et al., 2010;
Sarwar et al., 2011a), the AERO6 three mode aerosol module (Appel et al., 2013; also see Simon and
Bhave, 2012; Carlton et al., 2010; Foley et al., 2010; Byun and Schere, 2006; and Binkowski and Roselle
2003), wet deposition as described in Byun and Schere (2006) and dry deposition as described in Pleim
and Ran (2011).

Biogenic emissions were calculated inline with WRF meteorology using BEIS3.14 (Vukovich at al., 2002;
Schwede et al., 2005). Windblown dust emissions were also calculated inline using WRF meteorology
(Appel et al., 2013). The direct feedback effects of CMAQ simulated aerosols on RRTMG radiation
calculated within WRF were simulated using the approach described in Wong et al. (2012) but updated
to use the core-shell method described in Bohren and Huffman (1998). While aerosol indirect effects are
included in a research version of WRF-CMAQ (Yu et al., 2014), this version was not available in time for
the current application under AQMEII Phase 2; thus, indirect effects are not considered in this study.
Photolysis rates were calculated inline in CMAQ and accounted for the radiative effects of simulated
aerosols (Binkowski et al., 2007). The modeling system was configured with a 12-km horizontal grid
spacing covering the continental U.S. In the vertical, 35 layers were used with a first layer top of
approximately 19-m and a top layer pressure of 100 mb. Annual WRF-CMAQ simulations for 2006 and
2010 were performed in a continuous fashion using two or three separate run streams each, with each
run stream preceded by a ten day spin up period for model initialization. Throughout the simulations,
nudging of temperature, wind speed, and water vapor mixing ratio was applied above the PBL following
the approach described in Gilliam et al. (2012). In addition, soil temperature and moisture nudging as
described in Pleim and Xiu (2003) and Pleim and Gilliam (2009) was applied as well. However, to avoid
squelching the model simulated direct feedback effects, the temperature, wind speed, and water vapor
mixing ratio nudging coefficients were reduced by a factor of six compared to Gilliam et al. (2012). The
effect of nudging on model performance and the strength of simulated feedback effects is investigated

in Section 3.4 using some of the sensitivity simulations listed below.

The preparation of anthropogenic emission inputs for both 2006 and 2010 as well as a comparison
against the 2006 emission inventories used in AQMEII Phase 1 is described in Pouliot et al. (2014).

Chemical boundary conditions for a number of gas phase species as well as dust, elemental carbon,
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organic carbon, and sulfate were derived from 3-hrly global fields generated under the Monitoring
Atmospheric Composition and Climate (MACC) project (Inness et al., 2013). The MACC fields were
horizontally and vertically interpolated to the WRF-CMAQ domain and mapped to the gas phase and
aerosol species used in WRF-CMAQ. It should be noted that during the vertical interpolation process, an
erroneous assumption was made that the WRF-CMQ model top was at 50 mb rather than 100 mb. As a
result of this error which was discovered only after the simulations were completed, upper tropospheric
and lower stratospheric ozone simulated by WRF-CMAQ is expected to have a positive bias, a result
indeed seen in the analysis of vertical ozone profiles presented in Im et al. (2014) and the evaluation of
the tropospheric ozone column against tropospheric ozone residuals from Ozone Monitoring
Instrument- Microwave Limb Sounder (OMI-MLS) on Aura (Wang et al., 2014a). However, this error is

unlikely to affect any of the results presented in this study.

2.2.Sensitivity Simulations

In addition to the annual 2006 and 2010 WRF-CMAQ simulations described above, several sensitivity
simulations were performed to investigate specific aspects of the modeling system. For June — August
2006 and May — September 2010, the coupled WRF-CMAQ system was applied with direct feedback
effects turned off to allow a comparison of the feedback and no feedback versions of this modeling
system. In this study, the analysis of feedback effects is restricted to June — August since this period was
covered in both years. It should be noted that in the no feedback simulation, no default or climatological
aerosol profiles were provided to the RRTMG model employed in WRF, thus, there are no aerosol effects
on the radiation calculations. To investigate the impact of boundary conditions on changed ozone
performance between the AQMEII Phase 1 and AQMEIIl Phase 2 simulations, January and July 2006 no
feedback WRF-CMAQ simulations were performed using chemical boundary conditions derived from
global fields from the MACC predecessor project Global and Regional Earth-System Monitoring Using
Satellite and In-Situ Data (GEMS) that had been used in AQMEII Phase 1 (Innes et al., 2009; Benedetti et
al., 2009; Schere et al., 2012). Finally, to investigate the effects of nudging on model performance and
the strength of the simulated feedback effect, sensitivity simulations without nudging were performed

for July 2006 for both the direct feedback and no feedback versions of WRF-CMAQ.

2.3.0bservations

For model evaluation purposes, observed hourly ozone, PM;s, CO, NO,, NOy, NOy, and SO,

concentrations as well as observed daily average PM,.s and PM1o concentrations were obtained from the
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U.S. EPA’s Air Quality System (AQS). Depending on the monitor, daily measurements are available every
day, every third day, or every sixth day. Daily average observations of PM;.s mass and species were also
obtained from the Chemical Speciation Network (CSN) and the Interagency Monitoring of Protected
Visual Environments (IMPROVE) network. For some of the analyses, daily maximum 8-hr average ozone
(DM803) concentrations were estimated from the hourly data. For the evaluation of AOD, we used level
2 data from all AErosol RObotic NETwork (AERONET) sites in the modeling domain. For the evaluation of
model predicted clear sky shortwave radiation at the surface, we used the CERES satellite derived
Energy Balanced And Filled (EBAF) product edition 2.7 that provides monthly average data (Kato et al.,
2013).

3.Results and Discussion

3.1.0perational Model Evaluation And Comparison to AQMEII Phase 1 Results

In this section we provide a comparison of simulated air quality against observations. Table 1a provides
seasonal model performance statistics for 2006 for DM803 and daily average PM,.s and PMyg, while
results for 2010 are summarized in Table 1b. Along with the performance metrics for the simulations
performed in this study, Table 1a also provides results for the 2006 offline WRF CMAQ4.7.1 simulations
performed for AQMEII Phasel and described in Appel et al. (2012). The results show that except for
winter 2010, the online coupled WRF-CMAQS5.0.1 simulations overestimated observed domain mean
ozone concentrations for all seasons in both years. While the bias was almost constant throughout the
year in 2006, in 2010 it was lower during the winter and higher during the summer. For PM;s, the WRF-
CMAQS5.0.1 simulations overestimate concentrations during winter and are almost unbiased during
summer for both years. For PMy, concentrations are underestimated in all seasons in 2006 while in
2010, the bias is negative only during spring and fall. For both years and all seasons, correlations are

higher for DM803 than for PMy, s, and correlations for PM; 5 are higher than those for PMyo.

A comparison of the AQMEII Phase 1 simulations (hereafter referred to as “Phase 1”) and those
performed in the current study show that the Phase 1 simulations had a lower DM803 bias during
winter, spring and fall while the summer DM803 bias was comparable between both simulations. For
PM; s, the positive winter, spring and fall biases present in Phase 1 became more pronounced in the
current simulations while during summer time, the current simulations are almost unbiased while the
Phase 1 simulations showed a negative bias of 2.4 pg/m?3. For PMio, the negative biases in the current

simulations discussed above are less severe than those in Phase 1. Correlations between model



170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199

predictions and observations were generally similar between Phase 1 and the current simulations except

for PM,s for which correlations decreased compared to Phase 1.

While it is beyond the scope of the current study to diagnose the reasons behind the differences in
model performance for Phase 1 and these simulations, several factors likely played a role. First, relevant
model updates in WRF-CMAQ5.0.1 compared to the offline WRF-CMAQ4.7.1 were the inclusion of a
wind-blown dust module (Appel et al., 2013), updates to aqueous phase SO, oxidation (Sarwar et al.,
2011b), and updates to the stable boundary layer treatment (Pleim et al., 2010). These updates tend to
increase both PM, s and PMyo concentrations. In addition, the two simulations also utilized different
emission estimates and chemical boundary conditions. As discussed in Pouliot et al. (2014), 2006 mobile
source NOx emissions increased by more than 25% from Phase 1 to Phase 2 due to a revised
methodology to estimate U.S. mobile source emissions, though emission estimates decreased for
several other sectors so that the overall increase in anthropogenic NO, emissions was roughly 4%. These
increased NO emissions would be expected to increase region-wide ozone concentrations. Pouliot et al.
(2014) also show that methodological updates increased the estimates of primary PM emissions from
residential wood combustion and allocated more of these emissions into nighttime hours during which

vertical mixing is more limited, likely contributing to the increased positive PM, s bias in winter and fall.

Besides the updates to the anthropogenic emissions, chemical boundary conditions have also been
updated relative to those used in Phase 1 of AQMEII as noted in Section 2.2. To investigate the impacts
of the changed lateral boundary conditions on the Phase 2 results, we performed sensitivity simulations
for January and July 2006 in which the Phase 2 MACC boundary conditions were replaced by Phase 1
GEMS boundary conditions. Figure 1 shows maps of January and July average ozone differences
between these two simulations. In both months, all ozone differences are positive, indicating higher
ozone mixing ratios in MACC than GEMS. For January, the differences over large portions of the
modeling domain are 7 ppb or greater, while for July, the differences are less than 3 ppb for most of the
modeling domain though differences as large as 10 ppb are simulated over the Northwestern U.S. These
results suggest that the change in wintertime ozone bias between Phase 1 and Phase 2 simulations
depicted in Table 1a is largely driven by the choice of chemical boundary conditions. It is envisioned that
the importance of large-scale background concentration simulated by global models on concentrations
and source-receptor relationship simulated by regional models will be a key focus of the next Phase of

AQMEII.
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Overall, the model performance results discussed in this section for the WRF-CMAQ5.0.1 online coupled
modeling system are within the range of previous offline regional-scale simulations as summarized in

Simon et al. (2012).

3.2.Evaluation of AOD and AOD/PM s Relationships

Figures 2a-b show time series of observed and modeled daily AOD at 500 nm for 2006 and 2010,
respectively. The time series represent spatial averages over all 29 AERONET sites in the modeling
domain that had data coverage in both years. At any given site, model values were only considered for
time periods when observations were not missing. These figures reveal a distinct seasonal cycle in both
observations and model predictions with a maximum during summer and a minimum during winter.
However, model predictions tend to be lower than observations throughout the year, with the
underestimation more pronounced during the summer. Such an underprediction is consistent with the
evaluation of AOD against observations from the Moderate Resolution Imaging Spectroradiometer

(MODIS) satellite presented in Wang et al. (2014a), who reported a normalized mean bias of -34.9%.

One interesting aspect of the results shown in Figure 2 is that the underestimation of AOD occurs
throughout all seasons despite the fact that the analysis of 24-hr average surface PM, s predictions
shown in Table 1 revealed overestimations during winter and largely unbiased PM, s predictions during
summer. There are several possible contributors to this phenomenon. First, while the results shown in
Table 1 were based on the analysis of filter-based 24-hr average PM,s measurements and model
predictions, no AOD observations and model predictions are available during night time. Thus, any
diurnal variation in PM; s bias would complicate the interpretation of AOD biases in terms of PMy s
biases. Second, while the comparisons shown in Table 1 reflect ground-level concentrations, AOD
represents an integration of aerosol extinction over a vertical column. Since model predicted extinctions
at any one layer depend not only on aerosol concentrations and properties but also relative humidity,
differences in the vertical distribution of modeled aerosol concentrations and relative humidity would
yield different calculated AOD even if PM,s column mass was constant. In other words, overestimated
ground level PM; s concentrations do not necessarily contradict underestimated AOD depending on the
vertical distribution of aerosol mass, speciation, number concentration, and relative humidity. Third, the
differences between ground-level PM; s and column total AOD performance might point to the need for
further diagnostic testing of the aerosol optics calculations currently implemented in WRF-CMAQ. These
calculations are based on the core-shell method described by Bohren and Huffman (1998) (Binkowski

and Wong, 2012).
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The contribution of the first potential effect is investigated in the following section. It is beyond the
scope of this study to further investigate the second and third potential reasons for the apparent
disconnect between ground level PM;.s concentration and AOD model performance. However, Curci et
al. (2014) provide an analysis of the effects of vertical distribution of PM, s and relative humidity on
calculated AOD. Moreover, Gan et al. (2014) use detailed observations obtained during the
Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaign to diagnostically evaluate the
WRF-CMAQ aerosol calculations and conclude that the primary reason for discrepancies between
observed and simulated optical properties appears to be discrepancies between observed and modeled

profiles of aerosol concentrations and composition rather than the optics calculations.

To address whether diurnal variations in PM3s model performance may play a role in the difference
between model performance for 24-hr average PM,.s and hourly AOD, for each of the 29 AERONET sites
reporting AOD we determined the closest AQS site reporting hourly PM,s. Next, we considered only
those hourly observed and modeled PM,.s concentrations at these sites for which contemporaneous
observed and modeled AOD was available at the 29 AERONET sites. Finally, we used these data to
compute quarterly average observed and modeled PM, s concentrations and AOD at each
AQS/AERONET station pair for both 2006 and 2010. An analysis of this dataset shows that the resulting
PM, s bias is 1.4, -0.8, -3.9, and 0.3 pg/m? for winter, spring, summer and fall, respectively, when
averaged over both 2006 and 2010. Therefore, while winter and fall PM, s concentrations still tend to be
overestimated even when excluding hours with no AOD measurements (predominantly night time), the
amount of overestimation is less pronounced than those for the 24-hr average measurements shown in
Table 1a-b. Moreover, spring PM; s concentrations now tend to be slightly underestimated instead of
overestimated, and summertime PM; s concentrations show a substantial underestimation. Figure 3
depicts the observed and simulated relationships between PM,s and AOD constructed from this dataset.
Correlations between observed (modeled) PM,s and AOD are 0.31 (0.46) for winter, 0.54 (0.47) for
spring, 0.50 (0.56) for summer, and 0.58 (0.46) for fall, showing that the model simulations capture the
strengthening of the observed PM,s/AOD relationship during spring and summer. Linear regressions
through the origin show observed (simulated) AOD vs. PM, s slopes of 0.008 (0.004) for winter, 0.012
(0.009) for spring, 0.012 (0.011) for summer, and 0.009 (0.006) for fall. These slopes, along with a visual
comparison of the observed and modeled AOD vs. PM; s scatter plots in Figure 3 suggest that, despite
the change in PM.s model performance when considering hourly observations during daytime rather

than 24-hr average concentrations, the observed relationship between AOD and PM;s is not fully
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captured by the model. Future research, as discussed in the previous paragraph, is needed to further

investigate these discrepancies.
3.3.Strength of Simulated Direct Feedback Effects

In this section, we quantify the aerosol direct radiative effects on several simulated meteorological and
air quality fields by contrasting these fields against those from a simulation that did not consider aerosol
direct feedback effects. The twelve panels in Figure 4 show maps of June — August average AOD as well
as differences in June — August average clear-sky shortwave radiation at the ground, temperature,
planetary boundary layer (PBL) height, ozone, and PM s between the feedback and no feedback
simulations, for both 2006 and 2010. All fields were calculated over all daytime hours. The AOD maps
show higher values over the eastern U.S. compared to the western U.S., consistent with higher aerosol
concentrations in these regions. As expected, the differences in clear-sky shortwave radiation at the
ground between the feedback and no feedback simulations are consistently negative, reflecting the
extinction by aerosols in the feedback simulations that was not considered in the no-feedback
simulations. The spatial pattern of the differences in clear-sky shortwave radiation aligns closely with
the patterns in AOD, with areas of higher AOD corresponding to areas with higher reduction in radiation.
Reductions in daytime summer average clear-sky shortwave radiation range from about 5 W/m? in the
western U.S. to about 20 W/m? in the eastern U.S. These reductions in radiation cause decreases in 2-m
temperature and PBL heights, with the spatial patterns of the temperature showing more similarities
with those of the AOD and radiation compared to those of PBL heights. The largest simulated daytime
average temperature decreases are on the order of 0.1 K, while the typical reductions in PBL height
range from 10m to 30m. The effects on daytime average ozone mixing ratios vary in space: ozone
concentrations tend to increase in the central and southern portion of the modeling domain while they
decrease over the northeastern and western portion as well as Canada. Negative differences are also
simulated for many urban areas, indicating that decreased ventilation may lead to increased titration.
The majority of the ozone differences is less than +/- 0.25 ppb. For PM,s, 2006 concentrations increase
by up to 0.6 pg/m? over the eastern U.S. due to feedback effects, though most of the increases are on
the order of 0.2 pug/m?3. For 2006, both positive and negative changes can be seen over parts of the
northwest, an area of active wildfires during the analysis period. The effect of wildfires on simulated

feedbacks is discussed in Makar et al. (2014a, b).

In general, it can also be seen that the feedback effects were stronger in 2006 and 2010, consistent with

the higher AOD estimated for the earlier year. The change of the strength of the feedback effect over
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time will be further discussed in Section 3.5. It also should be noted that the analysis in this section
focused on average changes over a three-month period. Makar et al. (2014a, b) present a multi-model
comparison of feedback vs. no feedback simulations and highlight case studies during which feedback
effects are stronger. Moreover, using two different online-coupled models, Makar et al. (20144, b) and
Wang et al. (2014b) also show that aerosol indirect effects (not included in this WRF-CMAQ simulation)
tend to have a stronger impact on both meteorological and air quality variables than aerosol direct
effects. Finally, it should be mentioned that the effects of the direct feedback effects shown here are
smaller than other factors affecting model performance such as emissions or the changes in chemical

boundary conditions discussed in Section 3.1.

3.4.Effect of Nudging on Model Performance and Simulated Direct Feedback Effect

As stated in Section 2.1, the WRF-CMAQ simulations analyzed in this study applied nudging to
temperature, winds, and water vapor mixing ratio above the PBL as well as soil temperature and
moisture throughout the simulation. While such nudging has been shown to improve the
characterization of meteorological conditions for retrospective air quality simulations (Otte, 2008;
Gilliam and Pleim, 2010; Gilliam et al., 2012), these studies were performed with offline modeling
system in which there was no feedback from the air quality to the meteorology. When designing the
AQMEII Phase 2 modeling protocols, most modeling groups felt that no nudging should be applied to
coupled modeling systems since the forcing exerted by the nudging term may be stronger than the
feedback effects to be studied. Thus, by including nudging in our WRF-CMAQ simulations, our setup
differs from that of all other AQMEII Phase 2 simulations which used overlapping 72-hr simulation
periods consisting of a 24-hr spin-up period after meteorological initialization during which nudging can
be used followed by a 48-hr “forecast” period that was then used for subsequent analyses. To assess
the impact of nudging on both model performance and the strength of the simulated direct feedback
effect, we performed sensitivity simulations for July 2006 in which WRF-CMAQ was applied both with

and without direct feedback effects following the 72-hr block modeling approach used by other groups.

Figure 5a shows a time series of 2-m temperature bias for the direct feedback and no feedback
simulations utilizing nudging as discussed above as well as the sensitivity simulations using no nudging.
The time series reflect averages over all sites in the modeling domain from June 30 — July 31, 2006 and
are depicted as a function of hours since the beginning of each 48-hr forecast period. In other words,
“hour 0” represents the average over 00:00 GMT on June 30, July 2, ... July 30, “hour 1” represents the

average over 01:00 GMT on June 30, July 2, ... July 30, and so on. The results show that the model biases
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for the no nudging simulations are always positive while the biases for the nudging simulations oscillate
around zero. The positive biases for all simulations peak during the early morning hours (hour 0
represents 00:00 GMT and the analysis is conducted over North America). The biases are larger for the
no-nudging simulations than for the nudging simulations and also increase over time (0.8 C on day 1 and
0.9 C on day 2), reflecting a gradual departure from the observed state of the atmosphere. Thus,
nudging does appear to have the intended effect on simulated temperature fields. This is also confirmed
by a comparison of 2-m temperature performance from the 2010 annual WRF-CMAQ simulations using
nudging against the performance of the other AQMEII Phase 2 simulations over North America that did
not use nudging. As shown in Brunner et al. (2014), WRF-CMAQ temperature errors typically are lower

than those from other modeling systems.

While Figure 5a establishes that nudging had the intended effect on temperature performance during
July 2006, it is difficult to discern to what extent nudging may have dampened the strength of the
simulated feedback effect, since the difference in model bias between the nudging and no nudging
simulations is larger than the differences between the feedback and no feedback simulations for either
set of simulations. To better illustrate the effect, Figure 5b shows time series of the difference between
the feedback and no feedback cases for both the nudging and no nudging model configurations. These
results illustrate that the changes in the simulated direct feedback effects due to employing a nudging
approach are generally small compared to the no nudging approach employed by other AQMEII Phase 2
groups. Thus, these sensitivity simulations suggest that even in feedback simulations, weak nudging can
be beneficial in improving the representation of atmospheric conditions relevant to retrospective air
quality applications without overwhelming the strength of the simulated feedback effects. However,
future research is needed to determine the optimal balance between these two competing objectives

for a wider range of atmospheric conditions than the single month considered in this sensitivity analysis.

3.5.Dynamic Evaluation: 2006 — 2010

In this section, we focus on the ability of the coupled modeling system to simulate observed changes in
air quality and radiation between 2006 and 2010. As shown in Table 3 of Pouliot et al. (2014), the 2006
and 2010 emissions inventories developed for AQMEII Phase 2 show decreases in annual total
anthropogenic SO;, NOy, non-methane volatile organic compounds (NMVOC), and PM,.s emissions over
the U.S. of 29%, 17%, 4% and 12%, respectively, due to the implementation of control programs as well
as vehicle fleet turnover. While most of the SO, reductions occurred year-round, NOy reductions in most

states were mainly effective during wintertime because a number of states had already reduced
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summertime NOy emissions from power plants in 2004 due to an earlier control program. In addition to
these changes in emissions, the year-to-year changes in meteorology shown in Stoeckenius et al. (2014)

are also expected to influence observed and simulated air quality concentrations.

Figures 6a-h show bar charts of absolute and relative changes in quarterly gas-phase concentrations
(averaged across all sites) for both observations and model predictions, while Figures 7a-h show
corresponding results for PM, s concentrations. The results for summertime DM803 show that the
model underestimates the observed decreases, similar to earlier results for other years (Gilliland et al.,
2008). Absolute changes in summertime daily average NOy are overestimated, but relative changes are
captured, pointing to a systematic overestimation of absolute concentrations. Changes in summertime
daily average SO, concentrations are similar between observations and model simulations both in an
absolute and relative sense. During winter and spring, the model predicted decreases for both DM803
and hourly ozone while there was little change or even a small increase in the observations. The
discrepancy likely arises from a combination of ozone lateral boundary conditions and the inability to
adequately represent ozone titration at urban monitors with the 12km grid resolution used here. During
fall, neither observations nor WRF-CMAQ showed appreciable changes for these two variables. The
results for total and speciated PM; s vary between quarters, networks and species. During summer,
absolute and relative modeled changes frequently are close to observed changes. The comparison to
other quarters also shows that the PM,s changes are largest in summer and fall for both observations
and model simulations. Separate analysis (not shown here) indicates that the spatial patterns of
observed and modeled changes generally align, indicating that the spatial patterns of emission changes
as well as the modifying effects of interannual meteorological variability are generally captured. For
example, both observations and model predictions show only small changes in summertime DM803 in
the Northeastern U.S. while larger decreases are seen for the west coast and the southern portion of the
modeling domain. This is consistent with both the differences in meteorology (2010 temperatures were
warmer in the Northeast and cooler in the West) and summertime NO, emission reductions (power
plants emission reductions were larger in the South than the Northeast).The directionality of the change

im summertime DM8HO3 was captured at 90% of all sites.

Figure 8a shows a map of 2010 — 2006 differences in simulated June - August average PM,s
concentrations. Decreases of 2-3 pug/m? are visible over large portion of the Eastern U.S. as well as over
the Northwestern U.S. Figure 8b shows that the areas of the largest PM, s decreases experienced an

increase in average clear-sky shortwave radiation between 5 and 10 W/m?2. These changes in simulated
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clear-sky shortwave radiation can be compared to corresponding data from the CERES satellite products,
shown in Figure 8c. This comparison shows that the WRF-CMAQ system captured the broad spatial
changes in shortwave radiation between 2006 and 2010 but underestimated the magnitude of the
CERES-derived change. Part of this underestimation may be caused by the tendency of WRF-CMAQ to

underestimate AOD as shown in Section 3.2.

While the results shown above illustrated the coupled modeling system’s ability to respond to changed
forcings from emissions, meteorology, and background concentrations, it is also of interest to determine
how different the simulated change would be if a traditional offline modeling system had been applied.
To this end, we calculated the changes in June — August daytime average PM,s concentrations between
2006 and 2010 using both the base model configuration including direct feedback effects and the
sensitivity simulations discussed in Section 3.3 that did not include feedback effects. Figures 9a-b show
the differences in the simulated change between the feedback and no feedback simulations, both in an
absolute sense as well as normalized by the change simulated in the no-feedback configuration. These
figures illustrate that the decrease in daytime average PM, s simulated by the feedback case is 0.2 — 0.4
ug/m?3 larger over portions of the eastern U.S. than the decrease simulated by the no feedback case. In
other words, the direct feedback effects in the coupled modeling system cause an “emission control
dividend” associated with reducing SO, emissions (reduced SO, emissions reduce sulfate concentrations
which in turn increase solar radiation and PBL height which then causes a further reduction in PM,s
concentrations due to enhanced ventilation), and this dividend is on the order of 5-10% of the change

simulated by the no feedback modeling system.
4.Summary

In this study, we presented an application of the online coupled WRF-CMAQ modeling system (Wong et
al., 2012) to two annual simulations over North America performed under AQMEII Phase 2. Through
operational model evaluation, it was shown that model performance of the coupled modeling system is
comparable to earlier annual applications of the uncoupled WRF/CMAQ modeling system such as the
2006 simulations performed under AQMEII Phase 1. A comparison of the AOD simulated by the coupled
modeling system against observations from AERONET revealed a tendency toward underprediction in all
seasons despite a tendency to overpredict PM,s during wintertime. Future research is needed to further
investigate the reasons behind this model behavior, such as potential differences in observed and

modeled vertical profiles of speciated PM,s mass and size distributions as well as relative humidity.



416
417
418
419
420
421
422
423
424

425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445

By comparing results from the coupled WRF-CMAQ simulation against sensitivity simulations without
direct effects performed for June — August 2006 and 2010, it was possible to determine the average
impact of the simulated direct feedback effect on temperature, PBL heights, ozone and PM,s
concentrations. The largest simulated seasonal mean daytime average temperature decreases were
found to be on the order of 0.1 K while the typical reductions in PBL height ranged from 10-m to 30-m.
The effects on daytime average ozone concentrations varied in space and the majority of the ozone
differences were less than +/- 0.25 ppb. For PM, s, 2006 concentrations increased by up to 0.6 ug/m?
over the eastern U.S. due to direct feedback effects, though most of the increases were on the order of

0.2 pg/m3.

As opposed to other modeling groups participating in AQMEII Phase 2, the WRF-CMQ simulations
analyzed in this study used nudging of select meteorological variables to improve the characterization of
the meteorological fields relevant to air quality. It was shown through a one-month sensitivity
simulation that the nudging approach improved performance for 2-m temperature while it had only a
small dampening effect on the strength of the simulated direct feedbacks. Future research is needed to
develop a nudging approach that optimizes the trade-off between improved model performance and

allowing the model to respond to forcings from feedback effects.

Model results for 2006 and 2010 were also analyzed to compare modeled changes between these years
to those seen in observations. The WRF-CMAQ simulations captured the substantial decreases in
observed PM, s concentrations in summer and fall. For summertime PM, s, decreases of 2-3 pg/m?* were
visible over a large portion of the Eastern U.S. as well as over the Northwestern U.S. In the WRF-CMAQ
simulations, these areas saw a resulting increase in daytime average clear-sky shortwave radiation
between 5 and 10 W/m?2. When these changes in simulated clear-sky shortwave radiation were
compared to corresponding data from the CERES satellite, results showed that the WRF-CMAQ system
captured the broad spatial changes in shortwave radiation between 2006 and 2010 but underestimated
the magnitude of the CERES-derived change. Furthermore, analysis of sensitivity simulations performed
with the no-feedback version of WRF-CMAQ showed that the 2006-2010 decrease in daytime average
PM,s simulated by the feedback configuration is 0.2 — 0.4 ug/m?3 larger over portions of the eastern U.S.
than the decrease simulated by the no feedback configuration. In other words, the feedback simulations
suggest that there is an “emission control dividend” from reducing PM, s precursor emissions such as

SO, that is not captured in traditional no feedback model applications, and this dividend is on the order
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of 5-10% of the change simulated by the no feedback modeling system. Future work is needed to

quantify this dividend over longer time periods and regions with different emission trends.

In summary, this application of the coupled WRF-CMAQ modeling system as part of AQMEII Phase 2
presents a first step in using this system to study aerosol/radiation interactions under changing
emissions and meteorological forcings. Future work will focus on applying and evaluating this system
over longer time periods, different regions, and different spatial scales (Xing et al., 2014). Work will also
be performed to apply and evaluate a model version incorporating indirect effects (Yu et al., 2014) to
more fully account for interactions between aerosols, radiations and clouds. In closing, it should be
noted that while the coupled WRF-CMAQ system allows the analysis of phenomena that could not be
studied with the traditional no feedback approach, many factors known to affect offline regional scale
model performance (emissions, boundary conditions) still tend to be more important to overall model

performance compared to transitioning from a no feedback to a feedback modeling approach.
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Table 1a: Model performance statistics for the 2006 WRF-CMAQ AQMEII Phase 2 simulations of daily
maximum 8-hr ozone, daily average PM, s and daily average PMjo across all AQS sites in the modeling
domain. Results for the AQMEII Phase 1 simulations described in Appel et al. (2012) are shown for

comparison.

Table 1b: As in Table 1a but for 2010. No AQMEII Phase 1 results are available for this year.

Figure 1: Differences in WRF-CMAQ simulated monthly mean ozone mixing ratios between the base
simulation using the MACC boundary conditions provided for AQMEII Phase 2 and the sensitivity
simulations using the GEMS boundary conditions provided for AQMEII Phasel. a) January 2006 and b)
July 2006.

Figure 2: Time series of observed and modeled daily 500nm AQOD spatially averaged across all AERONET
sites in the modeling domain. a) 2006 and b) 2010.

Figure 3: Scatterplot of quarterly average 500nm AOD and PM, s concentrations derived from hourly
observations and model values as described in the text. a) observations, b) model values. Both 2006 and
2010 values were used in this analysis. Each dot represents a pair of AOD/PM,.s monitoring sites or

corresponding model grid cells.

Figure 4: Top row: Average June — August daytime model simulated AOD for 2006 (left) and 2010 (right).
Rows 2 — 6: differences in model simulated clear-sky shortwave radiation at the surface, 2m
temperature, PBL height, ozone concentrations, and PM, s concentrations between the WRF-CMAQ
simulations with and without direct feedback effects. Results on the left are for 2006 and results on the

right are for 2010. The differences were calculated over all June — August daytime hours

Figure 5: a) Time series of 2m temperature bias for the feedback and no feedback simulations
performed with and without nudging as explained in the text. b) time series of differences between the

feedback and no feedback simulations for both the nudging and no nudging model configurations.



Figure 6: Observed and simulated differences in quarterly average concentrations of several gas phase
species observed at AQS monitors between 2010 and 2006. Absolute changes are shown on the left
while relative changes are shown on the right. Absolute changes for CO have been divided by 100 to be

accommodated on the same vertical scale.

Figure 7: As in Figure 6 but for PM, s total mass, select PM; s species, and PMyg total mass. Absolute
changes for PMjo have been divided by 10 to be accommodated on the same vertical scale. Letters in

parenthesis indicate the monitoring network: A —AQS, | - IMPROVE, C - CSN.

Figure 8: a) Differences in model simulated PM, s concentrations between 2010 and 2006 averaged over
all June — August daytime hours. b) as in a) but for clear-sky shortwave radiation at the surface. c¢) as in

b) but for CERES satellite observations rather than WRF-CMAQ model simulations.

Figure 9: a) Differences in 2010-2006 changes of June — August daytime average PM,s concentrations
between the feedback and no feedback configurations of the WRF-CMAQ modeling system. Cool colors
indicate areas where the feedback configuration simulated greater reductions (or smaller increases)
between 2010 and 2006 than the no feedback configuration, while the opposite holds true for the areas
indicated in warm colors. b) as in a) but normalized by the 2010-2006 change simulated by the no

feedback configuration and converted to a percentage scale.



Table 1a. Model performance statistics for the 2006 WRF-CMAQ AQMEII Phase 2 simulations of daily
maximum 8-hr ozone, daily average PM, s and daily average PMig across all AQS sites in the modeling

domain. Results for the AQMEII Phase 1 simulations described in Appel et al. (2012) are shown for

comparison. MB stands for Mean Bias, ME stand for Mean Error, RMSE stands for Root Mean Square

Error, NMB stands for Normalized Mean Bias, NME stands for Normalize Mean Error, and R stands for

the correlation coefficient.

Pollutant Season Mean AQMEIl | MB ME RMSE NMB NME R
Observed | Study (ppb (ppb (ppb (%) (%)
(ppb or or or or
Hg/m?) Hg/m®) | pg/m’®) | pg/m’)
. Phase 2 | 6.6 8.6 106 | 205 |266 |0.71
Winter 323 Mpase1 |01 5.6 7.4 0.4 172 |0.72
aily Spring 475 | Phase2 [ 6.3 8.9 112 | 132 |187 |0.69
; Phasel | 09 |66 8.6 1.9 138 | 0.72
Maximum
ohror | summer | 511 | Phase2 |5.8 104 |13.8 |11.3 |204 |o071
Phase 1 | 6.5 109 | 144 |127 |213 |07
ol o5 | Phase2 [ 5.9 9 112 |15 228 |0.75
Phase 1 | 2.2 6.9 93 56 174 | 078
, Phase 2 | 6.8 9.3 157 |598 |814 |o051
Winter 114 phase1 34 6.1 107 |30 54 0.51
Soring o |Phase2 |28 5.8 9.1 263 | 545 | 0.45
oML« Phase 1 | 0.6 42 6 5.2 394 | 063
: Phase 2 | 0.2 5.8 8.7 1.4 40.7 | 051
Summer 14.3
Phasel | 2.4 |49 6.6 167 |341 |069
o " Phase 2 | 6.1 7.9 132 |553 |721 |o055
Phase 1 | 3.4 55 8.8 312 | 498 |065
. Phase2 |-8.7 |245 |139.7 |-27.4 |776 |o0.01
Winter 316 phase1 | -21 236 | 1274 | 662 |744 |-0.02
Soring o, | Phase2 |56 [201 [442 |-22 783 | 003
Phasel |-18.2 |194 |441 |-688 |735 |0.01
PMuo Phase2 | -6 222 |431 |-20 74 0.07
Summer 30 Phase 1 | -22 226 |417 |-715 |735 |0.06
il g4 |Phase2 [-13 [236 [534 [-44 833 | 0.05
Phasel | -183| 203 | 484| -632| 703 0.03




Table 1b: As in Table 1a but for 2010. No AQMEII Phase 1 results are available for this year.

Pollutant Season Mean AQMEIl | MB ME RMSE NMB | NME | R
Observed Study (ppbor | (ppbor | (ppbor | (%) (%)
(ppb or ug/m®) | pg/m?) | pg/m?)
ug/m?)
. Winter | 33.6 Phase2 | -1.9 6.8 8.8 -5.6 | 20.2 | 0.58
Ma'i?r'\'qyum Spring | 47.5 Phase 2 | 2.3 6.6 8.7 48 |13.9 | 068
8 hr Os Summer | 44.4 Phase2 | 6.6 9.7 12.2 149 | 21.8 | 0.75
Fall 41.1 Phase2 | 3.2 6.9 9.1 7.8 16.7 | 0.78
Winter 114 Phase2 | 6.5 8.8 14 56.6 | 76.9 | 0.53
PMye Spring 9.2 Phase2 | 3.7 5.8 9.3 39.7 | 63.6 | 0.54
' Summer | 11.1 Phase2 | -0.1 4.5 6.6 -1.1 40.3 | 0.51
Fall 9.1 Phase2 |5 6.3 10.1 55.1 |69.5 | 0.59
Winter | 20.7 Phase2 | 1.5 16.2 34.6 7.4 78 0.11
Spring 24.7 Phase2 | -3.6 20.9 69.5 -14.8 | 84.8 | 0.04
PMio  Fsummer | 23.9 Phase 2 | -1.8 197 |37 75 | 826 | 007
Fall 22.7 Phase2 | 2.2 19.9 39.6 9.6 87.5 | 0.12




a) January

Figure 1: Differences in WRF-CMAQ simulated monthly mean ozone mixing ratios between the base
simulation using the MACC boundary conditions provided for AQMEII Phase 2 and the sensitivity
simulations using the GEMS boundary conditions provided for AQMEII Phasel. a) January 2006 and b)

July 2006.
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Figure 2: Time series of observed and modeled daily 500nm AQOD spatially averaged across all AERONET
sites in the modeling domain. a) 2006 and b) 2010.
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Figure 3: Scatterplot of quarterly average 500nm AOD and PM, s concentrations derived from hourly
observations and model values as described in the text. a) observations, b) model values. Both 2006 and
2010 values were used in this analysis. Each dot represents a pair of AOD/PM,.s monitoring sites or
corresponding model grid cells.
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Figure 4: Top row: Average June — August daytime model simulated AOD for 2006 (left) and 2010 (right).
Rows 2 — 6: differences in model simulated clear-sky short-wave radiation at the surface, 2m
temperature, PBL height, ozone concentrations, and PM,.s concentrations between the WRF-CMAQ
simulations with and without direct feedback effects. Results on the left are for 2006 and results on the
right are for 2010. The differences were calculated over all June — August daytime hours
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Figure 5: a) Time series of 2m temperature bias for the feedback and no feedback simulations
performed with and without nudging as explained in the text. b) time series of differences between the

feedback and no feedback simulations for both the nudging and no nudging model configurations.
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Figure 6: Observed (black) and simulated (grey) differences in quarterly average concentrations of
several gas phase species observed at AQS monitors between 2010 and 2006. Absolute changes are
shown on the left while relative changes are shown on the right. Absolute changes for CO have been
divided by 100 to be accommodated on the same vertical scale.
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Figure 7: As in Figure 6 but for PM, s total mass, select PM; s species, and PMo total mass. Absolute
changes for PMjo have been divided by 10 to be accommodated on the same vertical scale. Letters in
parenthesis indicate the monitoring network: A —AQS, | - IMPROVE, C - CSN.
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Figure 8: a) Differences in model simulated PM,.s concentrations between 2010 and 2006 averaged over
all June — August daytime hours. b) as in a) but for clear-sky short-wave radiation at the surface. c) as in
b) but for CERES satellite observations rather than WRF-CMAQ model simulations.



Figure 9: a) Differences in 2010-2006 changes of June — August daytime average PM,s concentrations
between the feedback and no feedback configurations of the WRF-CMAQ modeling system. Blue colors
indicate areas where the feedback configuration simulated greater reductions (or smaller increases)
between 2010 and 2006 than the no feedback configuration, while the opposite holds true for the areas
indicated in red. b) as in a) but normalized by the 2010-2006 change simulated by the no feedback
configuration and converted to a percentage scale.



