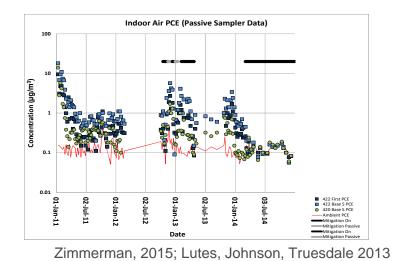
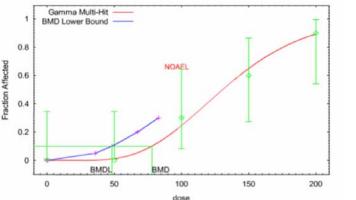
#### Passive Samplers for Vapor Intrusion Monitoring: Update on EPA's Technical Support Document and Research Results

Christopher Lutes, CH2M Inc. Robert Truesdale, RTI International Heidi Hayes, Eurofins Air Toxics Todd McAlary & Helen Dawson, Geosyntec Brian Cosky, ARCADIS Doug Grosse, US EPA NRMRL. Ret.


Brian Schumacher & John Zimmerman, US EPA NERL






DA2M

Indoor Air Temporal Variability at VI sites. A small fraction of the time contributes the most to chronic exposure. Timescales of variation; diurnal, seasonal and climatic.





### Example Challenge: "A Perfect Storm"

TCE from VI is currently regulated in various jurisdictions based on 8 hour, 24 hour, 21 day and/or 26 year exposures. (Lowe, 2014)



A perfect storm for risk management decisions Gillay, 2014

Different potential effects from short-term and long-term exposures but a similar concentrations



### Current/Historic U.S. Practice

#### Summa<sup>™</sup> Canisters

- Still the predominant tool, well known.
- Method TO-15 laboratory analysis
- Often \$200-\$400 per sample
- Suitable for 8 to 24 hour durations, can be used to 72 hours with some reliability problems.
- Research underway to demonstrate controllers capable of 14 day sampling.

# Field Portable GC or GC/MS (HAPSITE, FROG, Hartman etc.)

- Currently expensive
- Down to 15 min resolution
- Commonly used for initial investigation
- Not in routine use for long term exposure monitoring











### Passive Sampling

#### Practical Advantages

- Reliable deployment with little training of field staff required
- Unobtrusive
- Inexpensive to ship

#### **Technical Advantages**

 Range of sampling durations from days to weeks can be accommodated.

#### **Limitations**

- Some information on the target compounds and expected concentration ranges needed for selecting the sampler.
- Expertise and skill is required to select the right passive geometry and sorbent type for a given application.
- Sampler uptake rate must be known for the compound/sampler combination





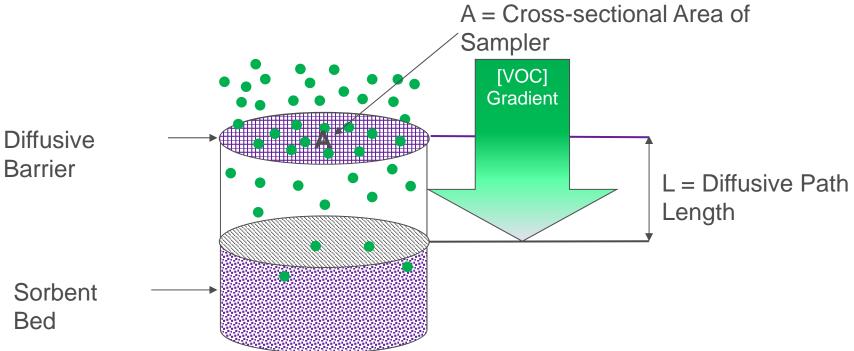
## U.S. Regulatory Acceptance ?

- EPA 2013 Draft Guidance: "Although passive diffusion samplers have been less commonly used to quantify indoor air concentrations, their use may grow as a result of recent demonstrations that they can yield results comparable to those obtained using evacuated canisters .....and a recognition that they may be less intrusive for some building owners and occupants and more convenient for field staff"
- Region IX December 2013: "EPA Region 9 supports the use of longerterm passive samplers to help assess the temporal variability of indoor air vapor intrusion-related contaminant concentrations."
- NC DENR 2014 "The use of passive samplers allows the collection of indoor air samples over a longer time, up to 30 days, thereby providing an average indoor air concentration over a longer exposure period.". Commonly used by dry cleaning fund contractors.
- Common for occupational monitoring for high concentrations, <24 hour Well developed for BTEX Environmental level monitoring in Europe, EU standard methods exist, has now been tested for CAHs indoors in US
- EPA Engineering Issue, expected in 2015



### **EPA Engineering Issue: Content Highlights**

- PASSIVE SAMPLER BASICS
  - <u>Passive Sampler Types</u>
  - Sorbent Types
  - Uptake Rates
  - Sampling Duration
  - Passive Sampler Geometry and Sorbent Combinations
  - <u>Comparison of Passive Sampling to Conventional Air Sampling Methods</u>
- <u>DESIGNING AND IMPLEMENTING A PASSIVE SAMPLING PROGRAM</u>
  - Selecting a Passive Sampler Suited to Your Investigation
  - Placing Passive Samplers Indoors
  - Placing Passive Samplers Outdoors
  - Instructions for Occupants for Passive Indoor Air Sampling Events
- DATA QUALITY OBJECTIVES
  - Media Preparation
  - Handling Protocols
  - Field Quality Control Samples
  - Intermethod Duplicates
- INTERPRETATION OF PASSIVE SAMPLING RESULTS
  - Measurement Uncertainty and Implications to Data User
  - Other Lines of Evidence
- <u>CURRENT CHALLENGES, LIMITATIONS, AND RESEARCH AND DEVELOPMENT</u>
  <u>NEEDS</u>
  - 6 Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

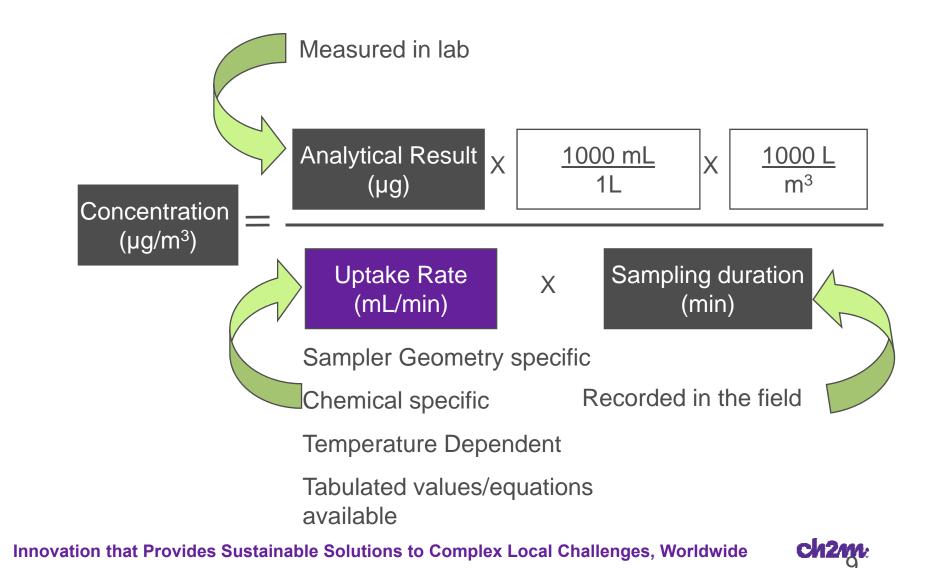



### Standard Methods Availability

- Not from EPA for VOCs (analytical portions of TO-17 apply) exception is new Method 325 for VOCs in ambient air using tube type samplers
- ISO Method ISO 16017-2: Designed for tube type samplers and TCD: VOCs including hydrocarbons, halogenated hydrocarbons, ketones and alcohols; 8 hours to four weeks exposure
- United Kingdom Method MDHS 88 method mentions badge, tube, and radial geometries. Uptake rates are tabulated for four different major manufacturer samplers covering tube, badge, and radial geometries
- European Standards EN13528 -Tube, badge, and radial samplers are mentioned with both TD and solvent extraction
- ASTM D6196-3 covers ambient and indoor VOC sampling using *either* pumped or diffusive methods. Both tube and radial geometries of passive sampling are specifically discussed.
- ASTM D6306-10 focuses on placing and using diffusive samplers in the indoor environment

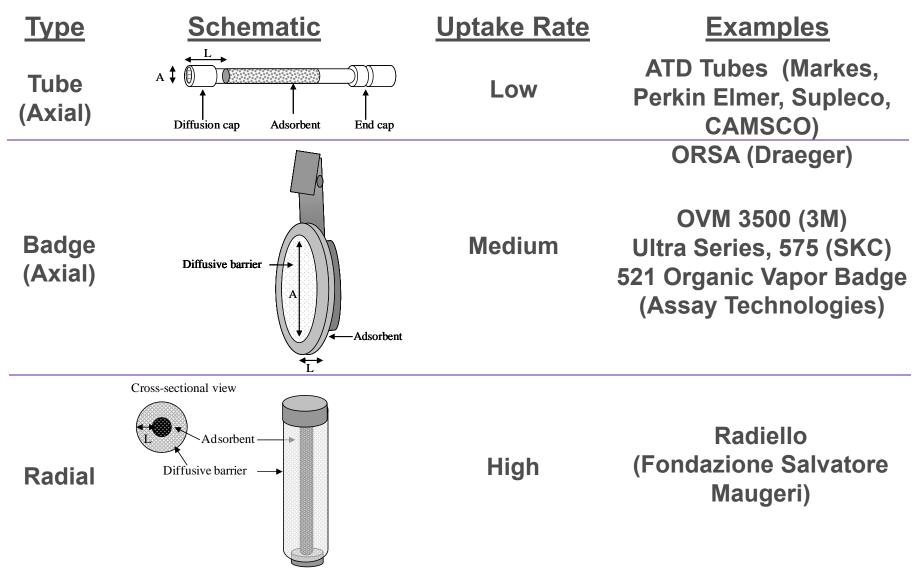


### Passive Sampling Concepts



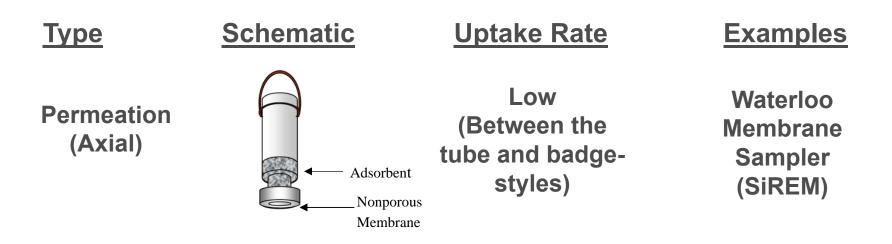

Fick's 1<sup>st</sup> Law of Diffusion

#### Uptake Rate = Rate at which VOC vapors pass through opening Uptake Rate α A/L




# Passive Sampling: What Goes into Calculating Your Concentration?




9

#### **Passive Sampler Types**



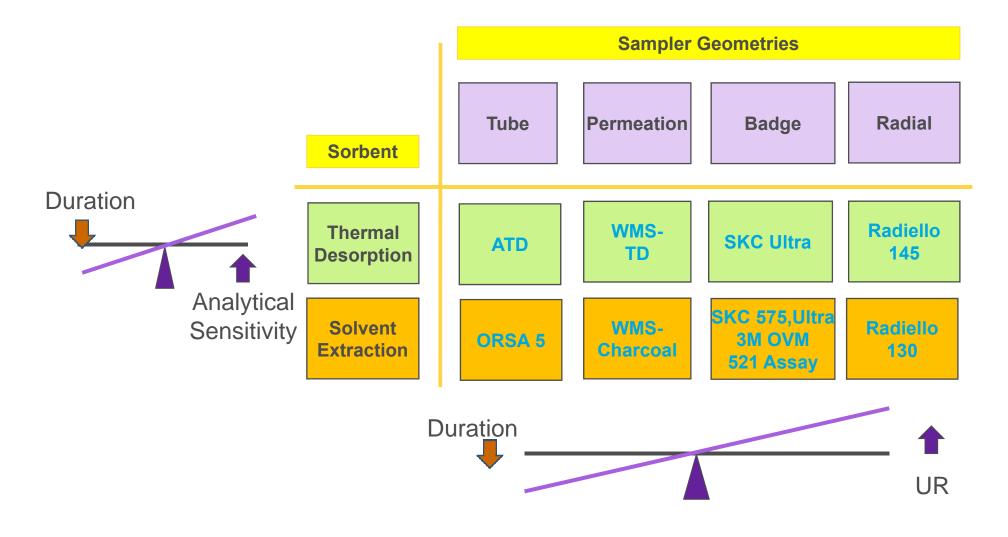


#### **Passive Sampler Types**



Permeation Design: VOCs dissolve in and diffuse through a nonporous, hydrophobic membrane.




### Sorbent Types

|                        | Charcoal-based                     | Thermally-Desorbable                         |  |  |
|------------------------|------------------------------------|----------------------------------------------|--|--|
| Examples               | Activated charcoal,<br>Anasorb 747 | Tenax TA, Carbopack,<br>Carbograph, Carboxen |  |  |
| Performance            | Strong VOC Retention               | Weaker VOC Adsorption                        |  |  |
| Capacity               | High surface area                  | Relatively less capacity                     |  |  |
| Prep Method            | Solvent Extraction (SE)            | Thermal Desorption (TD)                      |  |  |
| Analytical Sensitivity | Low: ~0.1 µg                       | High: ~0.01 to 0.001 µg                      |  |  |

Sorbent must effectively retain compounds of interest during sample collection while efficiently releasing the compound at the time of analysis.



#### **Passive Sampler Selection**





#### Passive Sampling Program Design

- 1) Target Chemicals What are your compounds of interest?
  - List of compounds most likely to contribute to inhalation risk by comparing soil gas or groundwater concentrations to risk-based screening levels (RBSLs).
  - Compounds that exceed RBSLs by greatest margin will most likely dominate risk.
  - Select passive sampler configuration based on these target chemicals.
- 2) Passive sampler selection how many of target compounds have calibrated uptake rates?
  - Published rates
  - Estimated rates
  - Field Calibrated rates



#### Passive Sampling Program Design

- 3) Reporting Limits and Sampling Duration What target reporting limits are needed and how does that influence the duration?
  - Calculated sample duration should be compared to project goals and practical constraints.
  - Product of uptake rate and duration (UR x t) should be compared to recommended safe sampling volume (SSV).
    - Ideal (UR x t) is << SSV to minimize the potential of back diffusion during period.
    - Verify that the selected sorbent exhibits good desorption efficiency.

Laboratory's analytical chemist can assist with sorbent selection based on project needs.

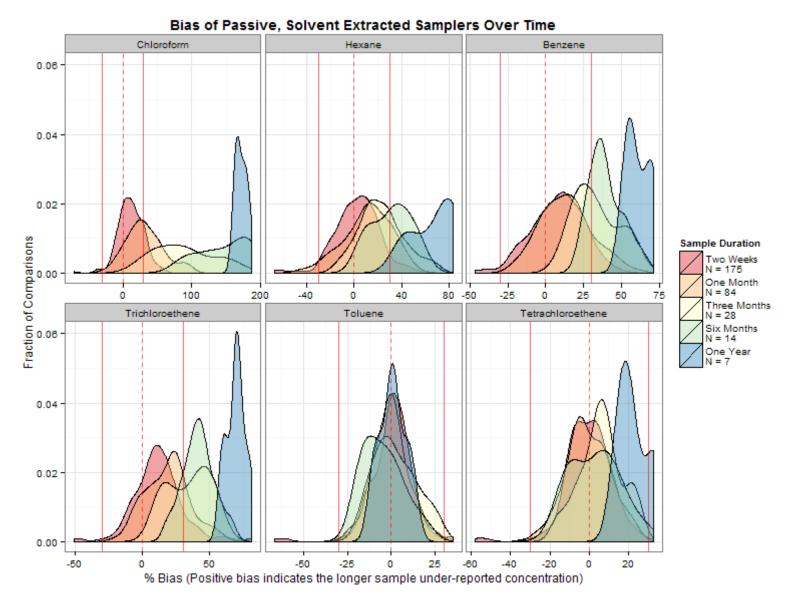


Passive Sampler Selection Example

#### Trichloroethene Indoor Air Reporting Limits\* (μg/m³) Assume C<sub>RBSL</sub> = 0.48 μg/m<sup>3</sup>

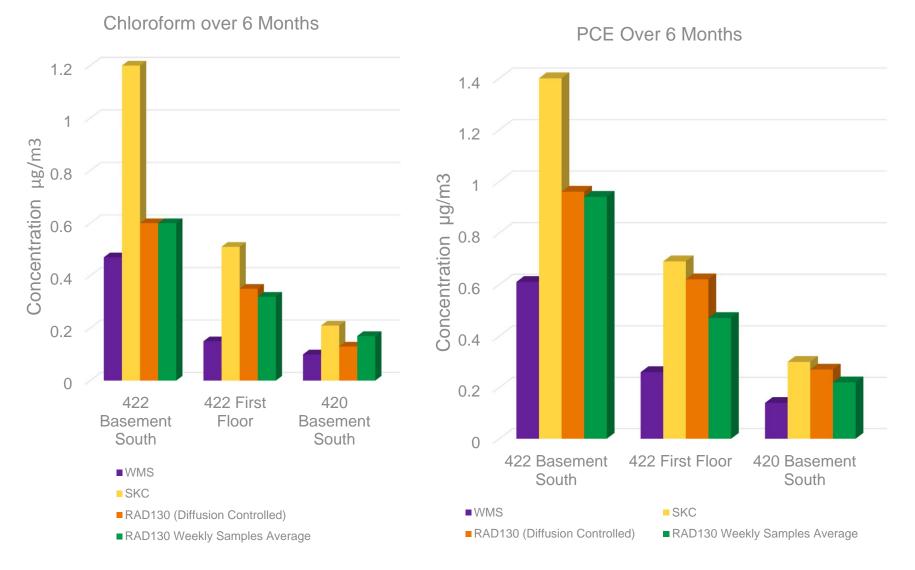
| Туре       | Sorbent | 1 day | 3 days | 7 days | 14 days | 30 days |
|------------|---------|-------|--------|--------|---------|---------|
| Radial     | TD      | 0.064 | 0.021  | 0.0092 | 0.0046  | 0.0021  |
| Badge      | TD      | 0.15  | 0.050  | 0.017  | 0.0083  | 0.0039  |
| Permeation | TD      | 0.57  | 0.19   | 0.082  | 0.040   | 0.019   |
| Radial     | SE      | 1.0   | 0.34   | 0.14   | 0.072   | 0.034   |
| Badge      | SE      | 6.1   | 2.0    | 0.86   | 0.43    | 0.20    |
| Permeation | SE      | 11    | 3.5    | 1.5    | 0.76    | 0.35    |

\*Actual RLs will vary depending on specific laboratory capabilities. Values presented are representative of methods. Duration of TD methods depends on specific sorbent selected.




### Implementation

- Indoor Air Placement
  - Avoid stagnant air spaces (starvation effect low bias)
  - Avoid turbulence such as near vents (high bias)
  - Avoid high humidity locations such as bathrooms
- Field QC samples
  - Field Blanks Critical in identifying and quantifying artifacts due to sorbent background or handling/storage issues.
  - Field Duplicates
- Inter-method Duplicates
  - % of Collocated samples (TO-15 or TO-17)
  - Provide verification of passive performance
  - Or used to generate site specific uptake rates
- Concurrent passive samplers at subintervals




#### EPA Research – Long Term Sampler Performance





#### Performance of Three Passive Samplers Over 6 Months vs. Short Duration Passive Gold Standard





### **Research and Development Needs**

#### **Additional Compounds**

 Determination of applicability of a broad list of compounds using passive sorbent methods

#### **Challenging Compounds**

- Quantitative passive solution for high vapor pressure, low molecular weight compounds such as Vinyl chloride
- Optimization and evaluation of passive sorbent samplers for compounds with very low RBSLs, requiring long exposures to meet targeted reporting limits

#### **Variable Exposure Periods**

- Identification and evaluation of a set of cost-effective sampling tools to assess short-term acute and subchronic health effects and long-term chronic effects
- How best to employ passive samplers in conjunction with conventional air methods and field sensors?

#### **Intermittent Passive Sampling**

- Can passive samplers be designed such that a "trigger" initiates sample collection?
  - **Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide**



### Thank You

Chris Lutes, Christopher.lutes@ch2m.com Robert Truesdale, rst@rti.org Ch2m: Heidi Hayes, hhayes@airtoxics.com Todd McAlary, TMcAlary@Geosyntec.com Helen Dawson, HDawson@Geosyntec.com Brian Cosky, Brian.Cosky@arcadis-us.com Doug Grosse, US EPA NRMRL. Ret. **Brian Schumarcher** Schumacher.Brian@epa.gov

John Zimmerman, Zimmerman.JohnH@epa.gov