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Abstract 

 
We have developed DockScreen, a database of in silico biomolecular interactions designed to enable 
rational molecular toxicological insight within a computational toxicology framework. This database is 
composed of chemical/target (receptor and enzyme) binding scores calculated by molecular docking of 
>1000 chemicals into 150 protein targets and contains nearly 135 thousand unique ligand/target 
binding scores.  Obtaining this dataset was achieved using eHiTS (Simbiosys Inc.), a fragment-based 
molecular docking approach with an exhaustive search algorithm, on a heterogeneous distributed high-
performance computing framework.   
 
The chemical landscape covered in DockScreen comprises selected environmental and therapeutic 
chemicals. The target landscape covered in DockScreen was selected based on the availability of high-
quality crystal structures that covered the assay space of phase I ToxCastTM in vitro assays. This in silico 
data provides continuous information that establishes a means for quantitatively comparing, on a 
structural biophysical basis, a chemical’s profile of biomolecular interactions. The combined minimum-
score chemical/target matrix is provided. 
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1. Introduction 
 
A major challenge within the social chemical industries, including but not limited to both 
pharmaceutical and environmental chemicals, is the ability to fully discover, characterize, and anticipate 
adverse effects that may result as a consequence of exposure to these chemicals. Classical safety 
assessment and animal studies are not only cost-prohibitive and lengthy [1,2], they often do not include 
the data required for extrapolations that are inherent in human risk assessment [3]. Developing and 
evaluating predictive strategies to elucidate the mode of biological activity of environmental chemicals 
is a major undertaking of the US Environmental Protection Agency’s Computational Toxicology program 
(http://www.epa.gov/comptox/). Aligning these strategies with the Agency’s ongoing chemical-specific 
risk assessment needs provides additional incentive to develop new means of elucidating key 
determinants of toxicity in the chemical source-to-outcome continuum at a molecular level of 
accountability.  This has provided the motivation for the development of tools such as the Aggregated 
Computational Toxicology Resource (http://www.epa.gov/actor) [1], the DSSTox Toxico-
Chemoinformatics initiative (http://www.epa.gov/ncct/dsstox/) [4] and the ToxRefDB 
(http://www.epa.gov/ncct/toxrefdb/) [5] in vivo animal effects database.  
 
In an attempt to both fill the inherently large data gaps required for modern risk assessment [6] and to 
develop both time and cost-effective approaches for prioritizing the toxicity testing of large numbers of 
chemicals, the ToxCast™ program  was initiated (http://www.epa.gov/ncct/toxcast/) [7].  In Phase 1 of 
ToxCast™, the profiling of > 300 well-characterized chemicals (primarily pesticides) in over 400 HTS 
endpoints was performed.  However, even such large scale in vitro screening may not be enough to 
understand the complex systemic effects seen in vivo.   Virtual screening has been shown to greatly 
enhance the success rates of screening experiments [8,9] and virtual molecular profiling has been 
shown to be an effective tool for understanding the potential polypharmacology of a chemical leading 

http://www.epa.gov/actor
http://www.epa.gov/ncct/dsstox/
http://www.epa.gov/ncct/toxrefdb/
http://www.epa.gov/ncct/toxcast/


to probabilistic, data-driven drug discovery [10,11,12]. It is therefore quite appropriate to apply similar 
techniques when attempting to understand the polypharmacology that may lead to chemical hazard.   
 
The unparalleled amount of data, low cost, high speed and rich information-content afforded by in silico 
structure-based inquiry (e.g., molecular docking) in addition to the large number of public resources for 
both target crystal structures and chemical libraries has urged us to consider the development of a 
structure-based in silico database, DockScreen, to complement both the ToxCast™ program’s 
screening/prioritization effort and computational toxicology in general. This database contains the 
biophysical evaluation of molecules within relevant structural constraints of the target proteins 
(receptors and enzymes) through multiple-chemical, multiple-target molecular docking experiments. 
We have created a web interface for accessing the data including multiple binding poses and scores for 
each protein/ligand pairing, but this report is limited to only the most  generally useful data: a table 
containing the highest score obtained for the docking of each ligand to each crystal structure.  
 



2. Methods 
 
Chemical Collection and Preparation 
 
The chemical landscape covered in DockScreen comprises a selected set of environmental chemicals 
from ToxCast Phase I (http://www.epa.gov/ncct/dsstox/sdf_toxcst.html) [7] and therapeutic chemicals 
from the FDA MDD database (http://www.epa.gov/ncct/dsstox/sdf_fdamdd.html) [13] as drawn from 
DSSTox [4]. Multiple stereoisomeric forms of ToxCast Phase I chemicals were generated using FLIPPER 
[14] since many chiral anthropogenic environmental chemicals are unresolved racemic mixtures.  
Chirality is an important factor in nearly all biomolecular interactions [15] and docking must therefore 
be carried out using only single isomers.  Pregnancy categories for many of the therapeutics were 
manually extracted from Briggs GG, et al. [16].  Parent-SMILES fields for all chemicals were imported 
into MOE [17], structures were cleaned, hydrogens were added, and geometries were optimized in a 
molecular mechanics framework using the MMFFx force-field parameters [18]. 
 
(NOTE: For docking all 3D ligand chemical structure files were submitted as .SDF (MDL) format, however 
ligand_ID and smiles codes are provided for brevity in supporting information under the SMILES field 
within the Ligand tab.) 
 



Target Selection and Preparation 
 
The target landscape covered in DockScreen was selected based on the availability of high-quality crystal 
structures that covered the assay space of ToxCastTM Phase I in vitro assays 
(http://www.epa.gov/ncct/toxcast/files/ToxCast_Assays_01aug2007.pdf).  A breakdown of the targets 
selected for study by class is available in Fig 1 and more detailed information is contained in the dataset. 
  

 
 
 
 
The 3D structure files of target proteins were obtained from the Protein Data Bank (PDB), visually 
inspected in COOT [19], and cleaned up by removing HETATM and solvent waters. HETATM structures, 
e.g., primarily bound ligands, were used as the starting point for clip-file geometries. In some instances 
(e.g., 2BXK and 1LFO, human serum albumin and fatty-acid binding protein respectively) multiple 
binding sites within the same crystal structure were evaluated, in which case the PDBID was augmented 
by a letter code (a-g) designating a different binding region. There were several redundant target 
sequences; however, each pocket’s 3D conformation is different providing a unique computational 
docking experiment.   
 
Docking 
 
We chose eHiTS [20] as our initial docking platform since it has a flexible ligand docking method that is 
exhaustive on the conformations and poses that avoid severe steric clashes between receptor and ligand 
[21, 22], a potential benefit to computational toxicology where minimizing false negatives is one of 
many goals. It has also been shown to compete well with other docking software in accuracy of docking 
and enrichment of chemical libraries [23].   
 
In eHiTS, the binding pocket is determined by building a steric grid for the specified receptor binding 
site and a cavity description is built that consists of thousands of geometric shapes. The ligand is divided 
into rigid fragments and connecting flexible chains, where the rigid fragments are docked to all possible 

Figure 1: Biomolecular target class breakdown used in computational 

molecular docking. 



places in the defined cavity independently of each other.  Then an exhaustive matching of compatible 
rigid fragment pose sets is performed by a rapid hyper-graph clique detection algorithm that enables 
the elucidation of acceptable combinations of poses and respective scores. The flexible chains are then 
fitted to the specific rigid fragment poses that comprise a matching pose set, driven by a scoring 
function built upon a local energy minimization in the active site of the receptor.  
 
The default clip-file parameters were used for docking in eHiTS, using a square docking box around the 
desired ligand. An intermediate pose-reconstruction with “Accuracy level” 3 was used to evaluate all 
poses balancing accuracy with speed. The minimum energy score for each ligand/receptor complex are 
included in this dataset, however all poses and scores are retained in the internal DockScreen database. 
All scores are stored and reported in units of log(Ki[M]). 
 
Computational Complexity 
 
The total project comprised of ~1100 ligands on 150 unique protein (receptor/enzyme) binding sites 
that covered a total of ~ 100 unique targets. At 32 pose maximum storage this puts the upper range of 
calculations at 1.6x105 unique ligand/target complex combinations. At a run time of > 5 minutes on 
average we anticipated a total run-time of > 1.5 years; clearly a job suited for distributed computing 
architecture.  Calculations were run at the US Environmental Protection Agency’s National Computing 
Center and deployed over a heterogeneous distributed High-Performance computing cluster using 
primarily idle time and resulted in an average performance of ~ 20 nodes running at any given instant 
over the period of two (2) months. 
 
ADME Properties 
 
Biomolecular interaction profiles require the ligand to reach its target.  For many chemicals, Absorption, 
Distribution, Metabolism, and Excretion (ADME) impose a limit on the interactions available.  
QikProp[24] was applied to the cleaned, stereospecific set of chemicals to provide an initial set of 
predictions regarding these chemicals’ ADME characteristics.  All chemicals were energy minimized 
using OPLS-AA[25] in MOE[17] to match with the energy minimization technique used in QikProp model 
generation. 
 
3. Dataset Description 
 
The included dataset consists of four data items: 
 
Dataset Item 1 (Table).  This item consists of a listing of 1094 ligands for which docking results are 
available.  Documented for each ligand is its name and stereospecific SMILES along with whether it came 
from the ToxCast or FDA dataset.  DSSTox_CID is included for linking to DSSTox 
(http://www.epa.gov/ncct/dsstox/).  FDA therapeutic categories and pregnancy class are included for 
therapeutic chemicals. 
 
Column 1: LigandId 
Column 2: DSSTox_CID 
Column 3: SMILES 
Column 4: Name 

http://www.epa.gov/ncct/dsstox/


Column 5: Categories 
Column 6: CASRN 
Column 7: ToxCast_ID 
Column 8: FDA_Therapeutic_Class 
Column 9: FDA_Pregnancy_Class 
 
 
Dataset Item 2 (Table). This item consists of a listing of 140 pdb entries from which target protein 
structure were extracted for docking studies.  Contained is the PDBId for linking to the Protein Data 
Bank (www.pdb.org), a description of the protein and details on the deposition, origin, and quality of 
the structure.  Included is a target class annotation made manually by the authors and comments on 
whether multiple chains were used in docking studies.   
 
Column 1: PDBId  
Column 2: Description  
Column 3: Experimental Technique  
Column 4: Deposition Date  
Column 5: Release Date  
Column 6: Authors  
Column 7: Keywords  
Column 8: Target Class  
Column 9: Resolution  
Column 10: Comment 
 
Dataset Item 3 (Table).  This item consists of minimum scores resulting from docking the 1094 ligands 
defined in Dataset Item 1 to the 150 targets (from 140 PDB entries) denoted in Dataset Item 2.  Each 
row contains data for one ligand linkable by LigandId.  Column names correspond to PDBId with an 
additional chain letter if applicable.  Data values are the minimum scores obtained from docking that 
ligand to that target.  If no score is listed, no poses where found to have sufficient binding to warrant 
scoring.   
 
Column 1: LigandId 
Column 2-Column152: 1A28 – 3ERT (PDBId) 
 
Dataset Item 4 (Table). This item consists of the prediction made using the QikProp program.  Contained 
are several commonly used descriptors and ADME properties.  These data form a basis for attempting 
to evaluate the effects ADME may play on toxic effects with which a particular ToxCast chemical may or 
may not be associated.  More information on the calculated properties is available in the Qikprop 
manual downloadable at http://www.schrodinger.com/supportdocs/18/.   
 
Column 1: LigandId 
Column 2-Column 53: #star - Jm 
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4. Concluding Remarks 
 
Potential methods by which 3D modeling techniques could inform mechanistic toxicology have 
previously been documented [26], but the wealth of data contained in DockScreen may provide even 
more options.  As can be seen from comparison studies of different docking method [22], the use of 
only a single software has its limitations; however, the creation of a large database of docking results 
across many targets yields advantages for data mining and analysis which are unavailable elsewhere.   
One apparent use is combining DockScreen with chemical descriptors to model and understand in vitro 
or in vivo assay results, as reported previously [27].  This application as a unique source of knowledge 
in modeling may improve linking chemical structures with in vitro and in vivo effects in a fully 
computational approach, thereby increasing in silico predictive power and reducing our reliance on 
animal models.  A second use for DockScreen is the population of information in data fusion tools intent 
on enabling decision support in chemical screening and prioritization.  Efforts to build such tools have 
increased recently, resulting in the creation of “Dashboards” in the EPA’s Chemical Safety and 
Sustainability program (http://actor.epa.gov/actor/faces/CSSDashboardLaunch.jsp). Third, DockScreen 
contains molecular-level representations that are readily searchable and can be a valuable resource for 
scientists within the EPA working on molecular-level insight to some of their in vitro data efforts. For 
instance, a DockScreen user can use the system to search for structural analogues of the novel 
compounds. Similarly, the nature of the data is amenable to probing molecular similarity based on 3-
dimensional biophysical interaction profiles (e.g., multiple target vector scores for a given chemical) [11] 
which are significantly different from 2D Tanimoto similarity based on chemical fingerprints.  
 
5. Acknowledgements 
This research was enabled by a Material Transfer Agreement between SimBioSys Inc. 
(http://www.epa.gov/ncct/download_files/partners/SimBioSys.pdf ) for a multi-node license for eHiTS 
5.8 which was deployed on the National Computing Center’s High-Performance Computing 
infrastructure (http://www.epa.gov/nesc/) from 2007-2008. Many thanks to Dr. Ann Richard (US EPA 
NCCT) and Maritja Wolf (Lockheed Martin IT) for quality assurance and assistance on chemical structure 
curation and quality. 
 
 
6 . References  
 
[1] Judson, R., Richard, A., Dix, D., Houck, K., Elloumi, F., Martin, M., Cathey, T., Transue, T. R., Spencer, 
R., and Wolf, M. ACToR — Aggregated Computational Toxicology Resource. Toxicol. Appl. Pharmacol. 
233(1) (2008) 7-13, ISSN 0041-008X, http://dx.doi.org/10.1016/j.taap.2007.12.037 
 
[2] Judson, R., Richard, A., Dix, D. J., Houck, K., Martin, M., Kavlock, R. and Smith, E. The toxicity data 
landscape for environmental chemicals. Environ. Health Perspect. 117(5), (2009) 685 
 
[3] Rabinowitz, J. R., Goldsmith, M.-R., Little, S. B. and Pasquinelli M. A. Computational Molecular 
Modeling for Evaluating the Toxicity of Environmental Chemicals: Prioritizing Bioassay Requirements. 
Environ. Health Perspect., 116, (2008) 573-577 
 
[4] Richard, A. M. and Williams, C. R. Mutation Research 499 (2002) 27-52 (b) 
http://www.epa.gov/ncct/dsstox/  

http://actor.epa.gov/actor/faces/CSSDashboardLaunch.jsp
http://www.epa.gov/ncct/download_files/partners/SimBioSys.pdf
http://www.epa.gov/nesc/


 
[5] Martin, M. T., Judson, R. S., Reif, D. M., Kavlock, R. J., and Dix, D. J. Profiling chemicals based on 
chronic toxicity results from the US EPA ToxRef Database. Environ. Health Perspect. 117(3), (2009) 392 
 
[6] National Research Council. Toxicity Testing in the 21st Century: A Vision and a Strategy. 
Washington, DC: The National Academies Press (2007) 
 
[7] David, D. J., Houck, K. A., Martin, M. T., Richard, A. M., Setzer, W. R., and Kavlock, R. J. The ToxCast 
Program for Prioritizing Testing of Environmental Chemicals. Toxicol. Sci. 95(1), (2007) 5-12  
 
[8] Bajorath, J. Integration of virtual and high-throughput screening. Nature Reviews Drug Discovery 
1.11 (2002): 882-894 
 
[9] Fara, D. C., Oprea, T. I, Prossnitz, E. R., Bologa, C. G., Edwards, B. S. and Sklar, L. A.  Integration of 
virtual and physical screening   Drug Discovery Today: Technologies 2, (2006) 377-385 
 
[10] Paolini, G. V., Shapland, R. H., van Hoorn, W. P., Mason, J. S., and Hopkins, A. L. Global mapping of 
pharmacological space. Nature Biotechnology, 24(7), (2006) 805-815 
 
[11] Peragovics, A., Simon, Z., Tombor, L., Jelinek, B., Hári, P., Czobor, P. and Málnási-Csizmadia, A. 
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