Abstract for Society of Environmental Toxicology and Chemistry, Midwest Chapter Annual Meeting

March 9-11, 2015 Duluth, MN

Assessment of wastewater treatment plant effluent on fish reproduction

<u>Cavallin, JE^{1,2}</u>, Jensen, KM³, Kahl, MD³, Villeneuve, DL³, Mayasich, J⁴, Lee, K⁵, Schroeder, AL², Eid, EP³, Nelson, KR³, Milsk, RY¹, Blackwell, BR¹, Berninger, JP³, LaLone, CA², Lee, M³, Hughes, MN³, Blanksma, C⁶, Johnson, R³, Ankley, GT³

¹ ORISE Research Participation Program, U.S. EPA, 6201 Congdon Blvd., Duluth, MN 55804

² University of Minnesota, Duluth, MN;

³ U.S. EPA, Duluth, MN;

⁴ Western Lake Superior Sanitary District, Duluth, MN;

⁵ U.S. Geological Survey, Mounds View, MN;

⁶ Badger Technical Services, Duluth, MN.

Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined the reproductive effects of exposure to a historically estrogenic WWTP effluent. A 21-d reproduction study using fathead minnows was conducted on-site at a WWTP using a continuous flow-through system, delivering final effluent in real-time. Fathead minnow breeding pairs were exposed to control water and three effluent dilutions (5%, 20%, and 100%). Molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation, and other molecular initiating events, to reproductive impairment were examined. Seven-day composite effluent samples were collected for analytical chemistry and in vitro bioassays. Chemistry results were used to construct a chemical-gene interaction network to aid in targeted gene expression analyses examining additional potentially impacted pathways. Results indicate that cumulative fecundity was significantly reduced in fish exposed to 100% effluent and increased in 20% effluent, the approximate dilution factor in surrounding waters. Male vitellogenin concentrations increased in a dose-dependent manner with effluent dilution. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes. The contents of this presentation do not constitute official EPA policy.

Keywords: Wastewater treatment plant, Estrogens, Reproduction, Fish

<u>Author Contact Information:</u> Jenna Cavallin US EPA, Mid-Continent Ecology Division 6201 Congdon Blvd. Duluth, MN 55804 T: 218-529-5246