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Executive Summary 
The CANARY event detection software was developed to enhance the detection of contamination in 
drinking water systems. Working in conjunction with a network of water quality sensors placed 
strategically throughout a water distribution system, CANARY increases the likelihood and speed of 
detection by interpreting sensor data in real time, identifying anomalies, and alerting the operator when a 
contaminant might be present.  CANARY has been adopted by several water utilities around the world to 
help continuously monitor their water quality.  One barrier to more widespread use of CANARY has been 
the lack of guidance on how to configure the software.  This report presents a logical process for 
configuring CANARY, as well as a set of rule-of-thumb configuration parameters that can be used by 
water utilities as they begin implementing CANARY. 

In order to develop reliable rule-of-thumb configuration parameters, this report analyzes sensor data from 
two real world water systems.  Eight months of data from five water quality sensor stations is studied, 
four historical datasets from the Singapore Public Utility Board and one from Greater Cincinnati Water 
Works (monitored at EPA’s Testing and Evaluation Facility), with data from the latter station containing 
laboratory-controlled contamination events.  Multiple configuration parameter combinations are evaluated 
in order to demonstrate the effect of each parameter on CANARY’s performance, and to determine the 
most useful rule-of-thumb parameters.  Results using sensor data from Greater Cincinnati Water Works 
demonstrate the ability to configure CANARY to detect 100% of true contamination events, while 
reducing the false alarm rate to below one alarm per week.  Results based on data from the Singapore 
Public Utility Board demonstrated that the alarm rate can be reduced to below one alarm per day.   

This report focuses on four configuration parameters: the history window, the binomial event 
discriminator (BED) window, the outlier threshold and the event threshold.  The history window is 
the number of historical data points used to calculate the baseline variability of a water quality signal. 
Water quality signals are time series of data produced by sensors measuring, for example, free chlorine, 
electrical conductivity, or total organic carbon.  The outlier threshold is the number of standard deviations 
away from the mean a data point must be in order to be declared an outlier. The BED window is the 
number of historical data points examined to look for the onset of water quality events, and is typically a 
subset of the history window. The event threshold is the value of probability that must be exceeded in 
order for a group of outliers to be declared as a water quality event.  

These parameters are important because they determine CANARY’s performance in terms of detection 
sensitivity (i.e., the proportion of events detected) and specificity (i.e., proportion of non-events that are 
correctly identified).  As the analysis shows, changing the values of the configuration parameters resulted 
in general trends across all five stations.  Increasing either the BED window or the outlier threshold 
parameters reduced false alarm rates; however, these parameter changes also decreased the number of 
true events detected. History window parameter values that correspond to 1.5 or 2 days generally 
reduced the number of alarms, while lower values increased alarms and higher values did not change 
results significantly.  The number and type of signals also impacts results: removing certain water quality 
signals from analyses, specifically turbidity, resulted in fewer alarms in all stations. Overall, alarm rates 
were most sensitive to the outlier threshold parameter. 

Based on the analysis conducted in this report, the configuration parameter values presented in Table 1 
are recommended as a starting point for most water utilities. The recommendations vary depending on 
the frequency at which water quality sensor data is recorded; for online monitoring, recording data at least 
every 5 minutes is recommended. This frequency is labelled the data interval in the CANARY software.  
A 2-day history window is recommended as it captures a baseline behavior that encompasses most day-to­
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day activity.  An outlier threshold of 1.15 treats 75% of sensor data variability as normal behavior, which 
allows some noise to be accepted as normal.  A BED window of 15 (for a 2-minute data interval) and 
event threshold of 0.90 is recommended; this combination means that 2/3 of the data points over the 
previous 30 minutes must be outliers in order for CANARY to alert that a possible event has occurred.  
This helps to ensure that a single outlier does not result in a CANARY detection and reduces the number 
of false alarms.  These parameters can capture events as short as 20 minutes, or those that onset over a 30 
minute period, and can be detected within 20 minutes after the initial deviation from normal behavior is 
picked up by sensors. These parameters should be adjusted in tandem if the detection of shorter events is 
desired. Similarly, a BED window of 12 and event threshold of 0.90 is recommended for a 5-minute data 
interval, which means that 2/3 of the data points over the previous 60 minutes must be outliers for 
CANARY to detect an event. 

Table 1: Recommended Configuration Parameter Values 

Parameter Recommended Values 
Data interval 2 minutes 5 minutes 
History window 1440 data points 576 data points 
Outlier threshold 1.15 1.15 
BED window 15 data points 12 data points 
Event threshold 0.90 0.90 
BED, binomial event discriminator 

The goal of this report is to help users develop a more intuitive understanding of the role of these 
important parameters, and to show how these recommended parameter values were derived from a study 
of two water systems.  The starting configuration shown above performs well for most water utilities. 
However, a simplified approach to optimizing parameter values shows how to improve this rule-of-thumb 
configuration, or optimize the configuration, at a specific location within a water utility’s distribution 
system.   This helps to fine-tune a parameter set for specific sensor locations, or enable the utility to detect 
longer or shorter water quality events. 

In most cases, the configuration parameter values do not need to be reconfigured for each new season. 
CANARY automatically recalculates the baseline variability of water quality parameters at each timestep 
using data from the history window; thus, it already incorporates changes over time. If there is an abrupt 
change in water quality due to a change in seasons, CANARY might produce an alarm, but should 
quickly stop producing an alarm as it adjusts to the new seasonal values. Sensor station locations play a 
large role in the number of false alarms produced by CANARY: sensors near tanks or pumps that witness 
large variability produce more false alarms than locations further from such facilities.  Utilizing additional 
features within CANARY, such as the set point algorithms or the precision and valid range configuration 
parameters, can also help to reduce false positives and increase the detection rate.  Finally, using highly 
reliable sensors, and properly calibrating and maintaining sensors reduces false alarm rates. 
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1.0 Introduction 
The CANARY event detection software was developed to enhance the detection of contamination in 
drinking water systems. Working in conjunction with a network of water quality sensors placed 
strategically throughout a water distribution system, CANARY increases the likelihood and speed of 
detection by interpreting sensor data in real time, identifying anomalies, and alerting the operator when a 
contaminant might be present.  CANARY has been adopted by several water utilities around the world to 
help continuously monitor their water quality.  One barrier to more widespread use of CANARY has been 
the lack of guidance on how to configure the software. This report presents a logical process for 
configuring CANARY, as well as a set of rule-of-thumb configuration parameters that can be used by 
water utilities as they begin implementing CANARY. 

1.1 Background 
The security of the water infrastructure of the United States (U.S.) gained increased awareness after the 
events of September 11, 2001.  The U.S. Environmental Protection Agency (EPA), as the lead federal 
agency for water security, helped develop tools, procedures and documentation to support water utilities 
and other agencies in protecting the water supply.  A primary focus of this effort has been to develop and 
to demonstrate components of drinking water contamination warning systems–monitoring and 
surveillance systems that can detect contamination in time to allow for mitigation of human health and 
economic consequences (U.S. EPA, 2008).  

As part of the contamination warning system development process, EPA has worked closely with the 
Greater Cincinnati Water Works (GCWW) and other water utilities to test the ability of continuous 
sensors to detect a wide range of contaminants (Pickard et al., 2011; Allgeier et al., 2011a; Hall et al., 
2007; Szabo et al., 2008; Hall and Szabo, 2010; Hall et al., 2009 and U.S. EPA, 2012a).  This work has 
shown that commercially available water quality sensors, such as for electrical conductivity, free chlorine, 
and total organic carbon can be used to indirectly detect the presence of contaminants in water (Hall et al., 
2007; Szabo et al., 2008; Hall and Szabo, 2010; Hall et al., 2009 and U.S. EPA, 2012a).  As water quality 
sensors detect changes in water quality but not the presence of specific contaminants, an automated data 
analysis tool, or event detection system (EDS), is needed to determine when such water quality changes 
indicate a potential contamination event.  

In 2003, EPA and Sandia National Laboratories began to work in partnership with the American Water 
Works Association and member utilities to investigate the ability of EDSs to automate the indirect 
detection of contamination using water quality sensors (Morley et al., 2007; Murray et al., 2010).  EDSs 
read in sensor data in real time and use statistical and data mining techniques to identify anomalous 
patterns indicative of contamination events. The result of this research was the CANARY Event 
Detection Software, a freely available EDS (Murray et al., 2010, and Hart and McKenna, 2012).  
CANARY was developed using water quality data from several U.S. water utilities and was also tested 
for its ability to detect real contamination events by using data from laboratory-controlled experiments 
involving more than 20 chemical and biological contaminants. In addition, the software has been piloted 
over several years in real time at multiple water utilities, including GCWW and the Singapore Public 
Utility Board. 

CANARY was designed to work with data from any type (or brand) of sensor by interfacing with 
databases or data files rather than with the sensor hardware. CANARY can communicate directly with 
supervisory control and data acquisition (SCADA) databases for easy integration into any water utility 
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system. This provides flexibility to the water utilities or other end users by allowing any type of filed 
data to be used for analysis. In addition to the built-in event detection algorithms, CANARY can also be 
expanded with user-developed algorithms (Hart and McKenna, 2012).  Algorithms within CANARY 
function as more than fixed set-point alarms; they can also detect anomalous behavior within the range of 
normal operating values.  CANARY uses a binomial event discriminator (BED), a moving time period 
over which signal data is examined to look for the onset of events, to require that multiple timesteps be 
anomalous before establishing that an event has occurred or is occurring (Hart and McKenna, 2012).  

CANARY was recently used in the “Water Quality Event Detection Challenge” to compare its ability to 
detect simulated events against other available EDSs (U.S. EPA, 2013a).  CANARY performed well 
overall and was able to detect 70% of the simulated events in data from six separate monitoring stations at 
several water utilities, each consisting of multiple water quality sensors; in two stations, CANARY was 
able to detect 86% or more of the simulated events (U.S. EPA, 2013a).  CANARY and one other EDS 
attempted to analyze data from all six stations.  Both detected 70% of known events; however, CANARY 
produced fewer total invalid alarms for all six stations (U.S. EPA, 2013a). This highlights CANARY’s 
ability to perform well across a wide variety of water quality data from multiple water utilities. See 
Appendix C for more information. 

Today, the software is available for free from EPA’s website and can be used by any water utility to 
detect anomalous water quality events (U.S. EPA, 2012c).  Although its intended use is for water security, 
and it has been tested primarily on water quality data, CANARY can be used to identify events in any 
time-based data stream (see for example, Kertesz et al., 2014).  

1.2 CANARY Configuration 
In order to use CANARY at a specific water quality monitoring station, the software needs to be 
configured.  Configuration parameters are set within a configuration, or input, file that defines the features 
of the data being analyzed and sets the parameters for the event detection algorithms.  A complete account 
of all the elements that are required in a configuration file can be found within the CANARY User’s 
Manual (U.S. EPA, 2012a). 

The configuration file specifies details about how CANARY is run (real time vs. batch mode), where to 
find the sensor data (in a database or spreadsheet), what sensor data to include (the time period and the 
data interval of the data to be analyzed), which water quality sensor signals to include (chlorine, pH, etc.) 
and where to find them in the file or database, which algorithms to use for event detection, and additional 
details for each monitoring station (see CANARY User’s Manual for further details (U.S. EPA, 2012a)). 
Much of this information is straightforward to complete in the input file; however, the choice of 
algorithms and the associated parameters can be a more difficult task. These parameters are important 
because they determine the performance of the EDS in terms of detection sensitivity and specificity.  The 
detection sensitivity is the proportion of events detected, or the true positive rate.  The specificity is the 
proportion of non-events that are correctly identified, or the true negative rate, which is complementary to 
the false positive rate. 

The selection of the algorithm configuration parameters is often referred to as training or optimizing the 
EDS and it requires analysis of historical data as well as user judgment.  CANARY does not include a 
machine learning capability in which the configuration parameters are automatically updated and 
improved by the software over time; instead, users must specify values in the input file. Four 
configuration parameters listed below are particularly important for users to select carefully. (Note that, 
for clarity, configuration parameter names appear in italics throughout this document.) Another 
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configuration parameter, data interval, is important for understanding the real meaning of several of these 
parameters.  The data interval parameter sets how frequently CANARY expects new signal data (e.g., 
every two minutes).  This value is usually the frequency at which a SCADA system or other database 
records sensor data. 

While discussed in more detail in the next section, the four critical configuration parameters are: 

•	 history window – the number of historical data points used to calculate the baseline variability of 
a water quality signal. 

•	 outlier threshold – the number of standard deviations away from the mean baseline variability of 
the water quality signal data must be in order to be declared an outlier. 

•	 BED window – the number of data points over which signal data is examined for the onset of 
events. 

•	 event threshold – the value of probability that must be exceeded in order for a group of outliers to 
be considered an event.  

Of the parameters listed above, history window and BED window are reasonably easy to understand in 
terms of real world timeframes. If these two parameters are multiplied by the data interval, they 
represent windows of historical data that move over time as CANARY analyzes data. The statistics 
involved in defining the event threshold and outlier threshold are more difficult to understand intuitively. 
A systematic approach to selecting these parameter values has been used in the past (Murray et al., 2010; 
Rosen and Bartrand, 2013) in which several values of each parameter is evaluated against a set of 
historical data.  Since most historical data does not contain true contamination events, the optimal 
parameter values for each sensor station, then, are often selected to be the ones that minimize false 
positive rates; this approach can have the unintended effect of reducing detection rates of true events. 
True contamination events can be uncommon, but water events that are the result of other disruptions 
within a water distribution system are quite common (Hagar, 2013; also see Appendix B); however, 
unless the timing of these events is known, it is difficult to use such data to determine true detection rates. 
Without any guidance on good starting points, a user might begin with tens or hundreds of different 
values for each parameter, resulting in thousands of CANARY runs, and utilizing weeks of computer 
time. This approach can be daunting to new users and might not be the best use of water utility staff time 
or computer resources.  

Fortunately, application of CANARY to the pilot cities has resulted in many lessons learned about the 
configuration process that can provide some practical starting points for new CANARY users. For 
example, a history window of about two days captures normal day-to-day signal behavior.  A shorter 
history window likely increases the false alarm rate, and although increasing the history window might, in 
some cases, result in fewer false alarms, changing the other three parameters has a greater impact. The 
goal of this report is to help users develop a more intuitive understanding of the role of these important 
parameters as well as to develop rule-of-thumb guidance for the selection of these four parameter values. 
This is accomplished by analyzing data from both pilot cities and comparing performance results for 
multiple parameter values. 

1.3 Overview of Report 
The rest of this report is organized as follows: in section 2, an overview of the configuration parameters is 
presented to provide a more intuitive understanding; in section 3, the data and methods used in this report 
are presented; in section 4, the results of the data analysis and testing are reported; in section 5, a 
discussion compares the results for the two pilot cities and selects the recommended rule-of-thumb 
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parameter values; in section 6, a simplified optimization protocol is presented and applied to a subset of 
the data.  Finally, an example CANARY output is provided in Appendix A, a discussion of what 
constitutes an event is in Appendix B and an application of the simplified optimization approach to the 
Water Quality Event Detection Challenge data is provided in Appendix C.  Appendix D contains full 
tabulated results for analyses presented in section 4. 
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2.0 An Overview of the Configuration Parameters 
From a user’s perspective, the configuration process begins by collecting information about the water 
quality time series data to be analyzed, the types of sensor signals and their variability at each location, 
and the type and duration of events that the user would like to be able to detect.  These factors can be 
translated into the statistical configuration parameter values: the history window, the BED window, the 
outlier threshold and the event threshold. 

2.1 The Four Parameters 
When performing event detection with the most commonly used algorithm, linear prediction coefficient 
filter (LPCF), CANARY uses historical water quality signal data to predict the signal value for the next 
timestep.  This predicted signal value is compared to the actual reported signal value, and the difference 
between the two is calculated and called the residual.  Figure 1 shows the observed and predicted residual 
chlorine concentrations at a specific sensor location over a 6-hour period in the top plot.  In the bottom 
plot, the concentrations have been normalized to their mean value over a given history window, and the 
residual, or the difference between the two, is also shown.   

Figure 1: Observed (blue) and predicted (pink) chlorine concentrations over time, and normalized 
observed, predicted and residual (grey) concentrations over time. 

Configuration parameters define how CANARY interprets a calculated residual. The history window and 
the outlier threshold determine when the residual is large enough to label the signal value an outlier, or an 
anomalous data point.  CANARY uses the binomial event discriminator (BED) and an associated 
probability distribution function to determine if enough outliers have occurred to declare an event. The 
two key parameters that describe the probability distribution within CANARY are the BED window 
parameter and the event threshold. The parameter history window also affects how CANARY determines 
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when an event is occurring. The parameter data interval is relevant to all of the time dependent 
parameters. 

For a user, the first parameter to define is the data interval of the data being analyzed. In most cases, this 
is defined by the fixed frequency (in minutes) at which the SCADA system polls the sensors at a given 
station. For example, if a SCADA system records data from chlorine, pH, and TOC sensors every 2 
minutes, the data interval is set to 2.  This data interval can be used to understand the real timeframes 
associated with the history window and BED window parameters.  Each of those CANARY parameter 
values is measured in terms of the number of data points; when multiplied by the data interval value, their 
values in real time can be understood. For example, if the data interval were 2 minutes and the history 
window were 1440 data points, then the history window would be equivalent to two days (2880 minutes). 
If the data interval were 5 minutes and the history window were 1440 data points, then the history 
window would be equivalent to five days (7200 minutes).  

Previous work has shown that EDSs perform better when sensor data is available at shorter data intervals 
– specifically, five minutes or shorter (U.S. EPA, 2013a; Allgeier et al., 2011b).  Additionally, a shorter 
data interval relates to more overall data, which in turn provides more flexibility in parameter selection. 
For example, with a data interval of 1-hour, if an event were to last for 90 minutes, only one or two data 
points might be outliers.  However, with a 2-minute data interval, multiple (from 2-45) outliers can be 
grouped using the BED window to decide whether they are significant enough to indicate an event.  In 
this way, longer data intervals require that a smaller group of outliers have a higher statistical 
significance in order to detect contamination events that occur over a short timeframe. 

history window:  This parameter is the number of historical data points used to 
determine the normal or baseline variability of a water quality signal.  The history 
window establishes a moving time frame over which the mean and standard 
deviation of the signal data are calculated. This parameter is multiplied by data 
interval to establish the corresponding real world length of time.  For example, a 
history window of 1080 data points is equivalent to 1.5 days when using a data 
interval of 2 minutes (i.e., 1080 data points × 2 minutes = 2160 minutes or 36 
hours or 1.5 days).  

The history window helps CANARY define the normal, baseline behavior for a signal. As stated above, 
the history window is a moving time period over which the mean and standard deviation of the signal data 
are calculated. Most water utility locations experience consistent day-to-day variability and benefit from a 
history window of 1.5 to 2 days (see the results in section 4).  By selecting a history window larger than 
the typical diurnal variability of the system, CANARY is better able to predict the baseline behavior of 
the signal and therefore, able to distinguish normal behavior from anomalous behavior.  As the history 
window moves in time, the baseline is recalculated, allowing CANARY to automatically adapt to 
changing conditions over time. Figure 2 shows a two day snapshot of an example sensor signal and how 
the BED window (green filled box) and history window (blue outline) change as CANARY analyzes the 
signal; the upper figure represents time t1, and the lower figure shows how these windows have shifted for 
the analysis of time t2. The red dashed line shows the baseline mean value recalculated over the history 
window at each time and the red dotted lines show the standard deviation. 
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Figure 2: Water quality signal over time showing the history window (blue box) and the BED 
window (green box) at time t1 and at time t2. The black line shows the water quality signal values 
over time, the red dashed line is the mean value and the red dotted lines show the standard 
deviation from the mean calculated using data in the moving history window. 

outlier threshold:  This parameter is the number of standard deviations away from the 
mean a data point must be to be labeled an outlier.  This parameter is multiplied by the 
standard deviation of a signal (as calculated within the moving history window) to 
produce the acceptable maximum normal deviation of a signal.  The statistics of a 
signal within the history window are calculated and normalized. The difference 
between the recorded (current value) and predicted value of a signal is normalized, 
producing a residual.  The data point is considered to be an outlier if the calculated 
residual exceeds the outlier threshold times the standard deviation. 
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The outlier threshold parameter defines when CANARY treats a data point as an outlier, and thus, a 
possible indicator of an event. It defines how large the difference between the data point and the predicted 
value (i.e., the residual) must be in order for the signal to be considered an outlier. This parameter is a 
multiplier of a signal’s standard deviation, and so an outlier threshold value of 1.0 means that a signal 
value greater than one standard deviation from the mean signal value is labelled an outlier.  Assuming the 
normal bell-shaped probability curve, the range of plus and minus one standard deviation (± 1σ) contains 
68.3% of the baseline data.  Using the outlier threshold parameter, the user is defining what CANARY 
considers acceptable, or good, variations within the signal. Anything that CANARY treats as an outlier, 
or anomalous, can ultimately contribute to an alarm.  Lower values of the outlier threshold result in more 
outliers, because less of the data is treated as good relative to the predicted behavior.  Higher values are 
less sensitive; if it is too high, almost all data might be considered good and real events might not be 
detected.  CANARY normalizes residuals relative to a signal’s value such that only one outlier threshold 
value is required for all signals. It should also be noted that this normalization occurs over the moving 
history window so that the definition of good changes over time. In the second plot of Figure 1, the 
normalized residual values are shown; in this case, an outlier threshold of one would not result in any 
detected events as the residual values never cross ± 1. 

BED window: This parameter is the number of historical data points examined to look 
for the onset of an event. This parameter establishes how many data points CANARY 
uses to determine whether or not an event is occurring.  CANARY calculates the 
probability that an event is occurring based on the number of outliers present in the BED 
window. For example, a BED window of 1 indicates that CANARY will decide if a 
single outlier is significant, whereas a BED window of 10 indicates that CANARY will 
determine the significance of multiple outliers within that timeframe before producing an 
alarm. 

The outlier threshold determines when a data point is declared an outlier, but in most cases, it is 
undesirable for CANARY to produce an alarm every time a single outlier is detected. While CANARY 
uses the outlier threshold parameter to determine when a data point is significantly different from a 
predicted, or normal, value, the event threshold and BED window parameter values work together to tell 
CANARY how many outliers are necessary in order to trigger an alarm. The BED window parameter 
defines the size of the historical data window that CANARY uses when grouping outliers.  A BED 
window value greater than one ensures that at least two outliers are needed before CANARY detects an 
event; this helps to greatly reduce false positives caused by noisy or bad data. The event threshold value 
defines the value of probability that must be exceeded in order for a group of outliers to be considered an 
event, and thereby, trigger an alarm.  CANARY’s statistical algorithms calculate the probability that an 
event is occurring at each time step; if this value exceeds the event threshold, CANARY alerts that a 
potential event has been detected. 

event threshold: This parameter defines the value of probability that must be exceeded 
in order for a group of outliers to be considered an event and to trigger an alarm by 
CANARY. This value determines the number of outliers that must be located within a 
BED window to trigger an alarm. 
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In practical terms, these two parameters represent: (1) the time period in which to look for the onset of an 
event and (2) the number of outliers that need to occur within that time period to indicate an event. The 
combination of the BED window and event threshold parameters also affects the delay between the start 
of an event and the alarm produced by CANARY, which might also be a consideration for water utilities. 
The BED window parameter does not have to be selected to capture the entirety of an event, only the 
length of time necessary to signify that a water quality change has begun.  For detection, CANARY is 
concerned with the significance of the change, not the total length of time that a signal remains abnormal. 

To illustrate the relationship between BED window and event threshold, assume that the data interval is 2 
minutes, the history window is set to 1080 (1.5 days) and the BED window to 15 (30-minutes).  If one 
would like to ensure that 10 of the 15 timesteps in this window are anomalous before declaring an event, 
Table 2 shows the corresponding event threshold that is required.  The table contains BED window 
parameter values corresponding to a real world window of 30 minutes, for data intervals of 1-minute, 2­
minutes and 5-minutes.  Assuming that 2/3 (67%), or more, of the data points within a window must be 
outliers in order to trigger an alarm, the number of outliers in the BED window must be 20/30, 10/15 and 
4/6, respectively.  It is equally valid to say that 20 minutes out of the 30-minute window must be 
anomalous in order to trigger an alarm. Binomial distribution theory is used to calculate the event 
threshold range required to satisfy this scenario (Table 2, also see equations 1 and 2, and the CANARY 
User’s Manual for further details (U.S. EPA, 2012a)). 

Table 2: Examples of How data interval, BED window and event threshold Parameters Interact 

data interval BED window # of outliers =2/3 Resulting range of 
value (≅ 30 min) of BED window event threshold values 

1 minute 30 20 0.951–0.9785 
2 minutes 15 10 0.85–0.94 
5 minutes 6 4 0.657–0.89 

BED, binomial event discriminator; BED window value = (30 min)/(data interval) 

The following conceptual process for calculating BED window and event threshold can be adopted. The 
BED window parameter value can be calculated based on the timeframe over which an extended period of 
outliers is likely to relate to an event.  For most systems, this is likely to correspond to a timeframe of 30 
minutes to 2 hours. This timeframe is divided by the data interval to establish the BED window value. 
The number of required outliers (NRO) can be chosen as a number less than the BED window, or can be 
thought of as the percentage of the BED window that must be outliers in order to trigger an alarm (NRO = 
(BED)(% outliers)).  Then the event threshold value can be calculated based on these two values (BED 
and NRO) as follows: 

𝑁𝑁𝑅𝑅𝑅𝑅−1 
𝐵𝐵𝐵𝐵𝐵𝐵 BED! (1) 

Minimum Event Threshold = ෎ ൬𝑖𝑖! (BED − 𝑖𝑖)!
൰ ൬

2
1
൰ 

𝑖𝑖=0 
𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐵𝐵𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐼𝐼𝐵𝐵𝐵𝐵(𝐵𝐵𝑅𝑅𝑅𝑅 − 1, 𝐵𝐵𝐸𝐸𝐵𝐵, 0.5, 𝐵𝐵𝑇𝑇𝑇𝑇𝐸𝐸)

𝑁𝑁𝑅𝑅𝑅𝑅 
𝐵𝐵𝐵𝐵𝐵𝐵 BED! (2) Maximum Event Threshold = ෎൬

𝑖𝑖! (BED − 𝑖𝑖)!
൰ ൬

1
2
൰ 

𝑖𝑖=0 
𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐵𝐵𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐼𝐼𝐵𝐵𝐵𝐵(𝐵𝐵𝑅𝑅𝑅𝑅 , 𝐵𝐵𝐸𝐸𝐵𝐵, 0.5, 𝐵𝐵𝑇𝑇𝑇𝑇𝐸𝐸) 
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As shown in the equations, this calculation can be easily done in Microsoft Excel® (Redmond, WA) 
which has a built in binomial distribution function. As the BED window value increases, the range of 
event threshold values corresponding to the number of required outliers decreases, as can be seen in Table 
2.  For most situations, it is sufficient to calculate the minimum event threshold and round this value up to 
three significant digits.  Additionally, increasing the event threshold increases the likelihood that a 
series of outliers are contiguous and reduce the likelihood of noise triggering an alarm.   

The BED window and event threshold also affect the timeliness of detection and the length of events 
detected.  The average detection delay is tied to the required number of data points that must be outliers in 
order to trigger an alarm. For example, in Table 2, if the data interval is 2 minutes, the BED window of 
15 timesteps equals 30 minutes, and the event threshold is 0.9, then 10 data points are required to be 
outliers, and an alarm is not triggered until at least 20 minutes after CANARY detects the first outlier. If 
an event lasts less than 20 minutes, it would result in fewer than 10 required outliers, and would not be 
detected with these configuration settings.  The shortest detection delay corresponds to the scenario when 
all outliers are consecutive between the first detected deviation and the alarm, however, if there are gaps 
in the outliers then there is a longer delay to detection.  The delay before alarm may exceed the BED 
window value when the initial deviation from normal behavior is accepted as normal, rather than being 
treated as an outlier. 

If the length of an event is less than or equal to the BED window, and the required number of outliers is 
satisfied, CANARY would only produce an alarm for a single timestep after the event occurs.  If, 
however, the event is longer than the BED window, CANARY would continue to produce an alarm as 
long as the event probability is larger than the event threshold up to the event timeout value. The event 
timeout parameter is specified by the user and is the number of consecutive data points after an event is 
found before the alarm is silenced automatically.  In this way, it is better to have a shorter BED window 
and allow for a prolonged alarm, than a large BED window that might only detect events at one timestep 
with a long delay.  

2.2 Additional Considerations 
Once the user has selected these important configuration parameters, CANARY can be run on historical 
or real time data.  The user might find, however, that the selected configuration parameters do not result 
in adequate sensitivity and specificity (i.e., they result in high false positive rates) of the EDS at one or 
more sensor stations.  An EDS that is being used to make real time decisions about water treatment for 
maintaining a finished water standard (i.e., a control system) might have different requirements when 
compared to an EDS that is looking for changes that could indicate large scale contamination.  The 
parameter values can be adjusted to reduce false alarm rates while ensuring adequate detection sensitivity. 

Although CANARY can be adjusted to minimize the effect of noisy data or missing data, using highly 
reliable sensors, and properly calibrating and maintaining sensors, helps reduce the need to optimize 
CANARY parameters (Allgeier et al., 2011a; Pickard et al., 2011). If maintaining water quality within a 
fixed set-point range is desirable (for system control, or for maintaining quality within a regulatory 
standard), algorithms such as the set-point proximity algorithms can be used in addition to the statistical 
algorithms to provide better event detection for a given system.  CANARY offers two proximity 
algorithms that incorporate both probability analysis and set-points when producing alarms; they use 
either the Set-Point Proximity algorithm using Beta distribution (SPPB), or using Exponential distribution 
(SPPE) to calculate how the probability of an event increases as a fixed set-point is approached (Hart and 
McKenna, 2012).  
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Thought should also be given to where sensors are located within a system.  Sensors located near pumps, 
tanks, chemical injections, mixing points or water sources might have much higher signal variability 
relative to sensors located further from these facilities in the distribution system. A water quality change 
that results in a sharp signal response at a pumping station results in a much broader, or muted, sensor 
response in the middle of a distribution system. This is the result of diffusion and mixing of water within 
a pipe. This broadening of sensor response causes two things: (1) it lengthens the duration of the event 
and (2) it decreases the maximum signal response at an individual timestep.  If the water quality change is 
a baseline shift, rather than a pulse, the timeframe over which the change occurs is lengthened, but the 
water quality eventually reaches its new baseline throughout the system. 

Sensors in the middle of a water distribution system might demonstrate less variability.  They might 
contain well-mixed water with fewer sharp changes in water quality readings; a sensor station in this type 
of location might provide good alarm behavior with a shorter BED window (8-12).  For sensors near 
facilities, the key is to determine how much a signal should change under normal conditions, and for how 
long.  The BED window should be set to be long enough to exceed the normal duration of a change in a 
signal.  Additionally, choosing an outlier threshold value from 1.0 to 1.5 ensures that normal signal 
variability is treated by CANARY as normal, and that only significant deviations from normal behavior 
are considered outliers.  

Changes in alarm behavior associated with seasonal changes were not explored in detail.  Although 
changing seasons could affect alarm behavior, this effect is expected to be small for most systems. 
CANARY relies on the moving history window to establish baseline behavior for signals. This means 
that CANARY is constantly recalculating the predicted behavior, and other statistics, associated with a 
signal.  Shifting of a baseline or an increase in the standard deviation of a signal is automatically adjusted 
as new data points are added to the history window and old data points are removed.  While an increase in 
alarms at the start or end of a season might occur, the rate of alarms during a season is likely to be 
unaffected because new baseline values are being used.  If a seasonal change does cause an increase in 
signal variability, a higher outlier threshold value than those discussed within this report might produce 
more favorable alarm rates.  In general, an outlier threshold value should be selected with periods of the 
highest normal variability in mind.  Simulating events within highly variable periods of signal data can 
ensure that a parameter set is still able to detect real events.  In practice, a 1.5 to 2 day history window 
helps limit the effect of day-to-day variability and seasonal changes; possibly only causing a slight 
increase in alarms for a few days around seasonal changes. 

In addition to the statistical parameters discussed above, two other parameters should be set for each 
sensor during the initial setup process: precision and valid range. These parameters can be found by 
examining each sensor’s technical documentation.  The valid range corresponds to the range of 
values that can be reported by a sensor; for example, a pH sensor might have a valid range 
from 0 to 14. The valid range parameter is not related to a set-point range; it only provides 
CANARY a frame of reference for whether a sensor is accurate if it reports a given value.  The 
precision is related to a sensor’s ability to report at a specific increment; in other words, if a 
sensor can only report with a precision of 1, then CANARY does not treat a change in that 
signal of 1 unit in the same way as for a sensor that can report in increments of 0.01.  These 
values would require only a single set up, with changes to these values only being necessary if 
new hardware were installed.  CANARY can operate successfully without setting either of 
these values; however, setting these parameters lessens alarms caused by invalid data. 

11 



   
     

      
     

   
     

      

    
          

     
       

    

  
         

            
 

     
     

   
            

       
 

  
   

  
          

   
    

      
  

      
  

    
       

      
    

 

3.0 Data and Methods 
In order to develop rule-of-thumb guidance for the selection of these four parameter values, historical 
water quality data from two pilot cities were analyzed and performance results compared for multiple 
parameter values.  In this section, the data and methods used for this analysis are presented. 

3.1 Station Information 
The CANARY EDS software was used to analyze sensor data from two different drinking water systems; 
one station from the GCWW distribution system (measured at EPA’s Testing and Evaluation (T&E) 
facility) and four datasets from the Singapore Public Utility Board (PUB) water distribution system. 

The T&E facility is a unique research facility that provides researchers an opportunity to perform real 
time sensor deployment in a municipal water system and to test sensor response to injected contaminants 
within a controlled water distribution system setting.  This provides an opportunity to test CANARY’s 
ability to detect real contamination events.  The research nature of the T&E facility produces an 
abundance of available sensor data. 

GCWW treats water from the Ohio River, and maintains a chlorine disinfectant residual in the distribution 
system. During the test period, GCWW tap water entered the T&E facility and was stored in a 750 gallon 
polyethylene tank that was refreshed several times per day. The travel time of the tap water between the 
GCWW treatment facility and T&E was approximately 12 hours.  The tap water was gravity fed into a 
1,200 feet (ft) long pipe loop made up of 3-inch diameter glass-lined ductile iron pipe, with a total 
capacity of 440 gallons.  The flow rate through the system varied from 3 to 22 gallons per minute 
depending on test conditions.  The contaminant injection port was located immediately after the storage 
tank, and two water quality sensor stations were located at 80 ft and 1180 ft downstream of the injection 
port.  After flowing through the entire loop, the water was discharged to the public sewer. Note that the 
experiments were designed so that the effluent did not exceed contaminant-specific discharge limits 
allowed.  For more information about the design and operation of the pipe loop as well as the 
implementation of these experiments, see Hall et al., 2009. 

PUB is Singapore’s national water agency.  PUB manages water collection, treatment and reclamation as 
part of their effort to supply drinking water to the population of Singapore. PUB supplies approximately 
5 million residents 300 million gallons per day from nine treatment facilities and 17 reservoirs.  Fifty 
percent of Singapore’s water is imported.  A large number of monitoring stations are located within 
Singapore’s water distribution system.  Signal data from four of these monitoring stations was analyzed 
within this report.  

Table 3 presents the ranges and averages of water quality sensor signal data during the 8-month test 
period for each of the five stations used in this study.  The data shows that water quality parameters for 
treated drinking water can vary considerably even within a single water utility. CANARY analysis was 
performed on two groups of sensors for each system as described further in the methods section of this 
report.  Sensor signals listed in bold were included in both analyses. Averages include all data in the 
tested date range; no attempt was made to remove bad data, or real events. 
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Table 3: Ranges and Averages for Sensor Signals from T&E and PUB Datasets
 

Facility Sensor† Units Data Range Average Std. Dev.
 
T&E Chlorine ppm -0.45 – 2.00* 1.13 ± 0.11 

pH – 5.03 – 10.01 8.35 ± 0.18 
Temperature °C 0.00 – 31.44 16.69 ± 4.78 

Spec. Conductivity μS/cm 0 – 526 338 ± 32 
Chlorine ppm -1.07 – 5.25* 1.65 ± 0.27 

pH – 0.00 – 9.98 8.92 ± 0.44 
ORP mV -192 – 763 135 ± 399 

Turbidity NTU -3.3 – 774.4* 502.1 ± 333.1 
UVA m-1 -0.7589 – 4.0037* 1.1601 ± 0.4848 

PUB1 Chlorine ppm 0.000 – 2.356 1.920 ± 0.062 
pH – 2.00 – 8.86 8.146 ± 0.140 

Spec. Conductivity μS/cm 159.829 – 187.912 166.855 ± 4.001 
Turbidity MNTU 0.040 – 2.995 0.096 ± 0.051 

PUB2 Chlorine ppm 0.000 – 5.000 2.118 ± 0.220 
pH – 2.499 – 10.766 8.170 ± 0.341 

Spec. Conductivity μS/cm 0.977 – 300.000 87.015 ± 7.959 
Turbidity MNTU 0.071 – 5.585 0.130 ± 0.096 

PUB3 Chlorine ppm 0.000 – 5.000 2.192 ± 0.229 
pH – 4.15 – 9.55 8.05 ± 0.11 

Spec. Conductivity μS/cm 0.000 – 445.000 312.993 ± 39.371 
Turbidity MNTU 0.00 – 1.99 0.08 ± 0.08 

PUB4 Chlorine ppm 0.000 – 5.000 2.151 ± 0.235 
pH – 6.67 – 8.94 8.06 ± 0.10 

Spec. Conductivity μS/cm 0 – 753 315 ± 41 
Turbidity MNTU 0.01 – 1.99 0.07 ± 0.11 

NTU, nephelometric turbidity units; MNTU, milli NTU; ORP, oxygen reduction potential; PUB, Singapore Public 
Utility Board; Spec., specific; T&E, U.S. EPA Testing and Evaluation Facility 
*Negative values for these sensor signals occurred during the test period, however, they were outside the valid range 
for each sensor.  No attempt was made to correct these values within the data file. 
† Analysis was performed on two groups of sensors for each facility.  Sensor signals listed in bold were included in 
both analyses. 

Table 4 contains information regarding the completeness of the data available from each station for the 
tested timeframes. In particular, some data points were missing from each location, perhaps caused by 
sensor malfunctions or data transmission errors.  CANARY, however, is designed to manage missing 
data.  

Table 4: Data Completeness of T&E and PUB Datasets 

Data Location Actual Timesteps Theoretical Timesteps Percent Complete (%) 
T&E 171292 171359 99.96 
PUB1 70247 70270 99.97 
PUB2 68782 70270 97.88 
PUB3 67851 70270 96.56 
PUB4 62616 70270 89.11 

PUB, Singapore Public Utility Board; T&E, U.S. EPA Testing and Evaluation Facility 
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Table 5 contains the information about the 14 contaminant testing events at the T&E facility that were 
performed during the analyzed timeframe of this study. Contaminants were injected for either 2 minutes 
or 20 minutes. Three contaminants and the dechlorinating agent sodium thiosulfulate were injected for a 
total of 14 testing events as listed.  See Hall et al., 2009 for more information about these tests. 

Table 5: Contaminant and Injection Times for Contaminant Tests at the T&E 

ID Contaminant Concentration Time of Injection 
1 Sodium thiosulfate * 11/14/2011 10:30 AM 
2 Escherichia coli 1.0×103 CFU/mL 11/15/2011 10:30 AM 
3 E. coli 1.0×103 CFU/mL 11/15/2011 12:00 PM 
4 E. coli 1.0×104 CFU/mL 11/15/2011 1:30 PM 
5 E. coli 1.0×104 CFU/mL 11/15/2011 3:00 PM 
6 KCN 10 ppm 11/28/2011 11:50 AM 
7 KCN 20 ppm 11/28/2011 1:40 PM 
8 Atrazine 10 mg/L 11/28/2011 2:40 PM 
9 Atrazine 10 mg/L 01/26/2012 11:40 AM 

10 Atrazine 10 mg/L 01/26/2012 3:00 PM 
11 Atrazine 1 mg/L 02/01/2012 1:00 PM 
12 Atrazine 1 mg/L 02/01/2012 2:30 PM 
13 Atrazine 0.1 mg/L 02/02/2012 2:00 PM 
14 Atrazine 0.1 mg/L 02/02/2012 3:30 PM 

CFU, colony forming units; T&E, U.S. EPA Testing and Evaluation Facility; *Concentration not recorded. 

3.2 Methods 
CANARY version 4.3.2 (Hart and McKenna, 2012) was used for the analysis of the T&E and PUB data. 
Results presented in Sections 4 and 5 utilized CANARY’s LPCF algorithm. This algorithm was chosen 
because it is the most commonly used and it applies a predictive algorithm to each signal individually 
when performing its analysis and thus provides a high likelihood of detecting contamination events that 
might only change one water quality signal. 

In order to explore the importance of the configuration parameters, several different combinations of 
parameter values were used as input to CANARY and the results were compared. A summary of tested 
parameters is outlined in Table 6. An 8-month timeframe was chosen for each station.  These date ranges 
were selected because they contained data for over 89% of the theoretically available data for the station 
PUB4, and over 96.6% of available data for the other datasets (see Table 4).  Data might not have been 
present for several reasons: power loss within the system, communication loss with SCADA system and 
sensor errors or failures. 

Water quality data from T&E and PUB datasets had data intervals of 2-minutes and 5-minutes, 
respectively.  Factoring in the system’s data interval, the tested history windows vary from 12 hours to 
one week, spanning the values of 1.5 and 2 days that were  recommended in the CANARY User’s Manual 
(Hart and McKenna, 2012).  One hundred ninety-two parameter combinations were tested using T&E 
data.  One hundred eight parameter combinations were tested for each PUB dataset. 

The outlier threshold was adjusted around one standard deviation (± 1 σ) in increments of 0.15 
(producing values of 0.85, 1.0 and 1.15) for all datasets.  A value of 1.4 was also included with T&E to 
see if a higher value would prevent CANARY from detecting true contamination events.  Increasing the 
outlier threshold increases the amount of variation that is considered normal.  A normal bell-shaped 
distribution and an outlier threshold of 0.85, 1.0, 1.15 and 1.4 correspond to 60.5%, 68.3%, 75% and 
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83.8% of variations being accepted as being normal, respectively.  The range of BED window values were 
selected in order to detect signal changes (i.e., events) that occurred for approximately 30 to 60 minutes. 
Real timeframes of 30, 40 and 60 minutes were used; for T&E, these BED window values were 15, 20 and 
30 and for PUB, values of 6, 8 and 12 were used.  For T&E, a BED window of 8 was also included, which 
is equivalent to 16 minutes.  The equivalent value of 3 for the PUB datasets 5-minute data interval was 
not used as it would result in less controllability of alarm behavior because only 2 or 3 anomalous data 
points would be required to trigger an alarm. The event threshold is fixed at 0.9 in order to limit the 
total number of permutations that were tested, and because it cannot be varied independently of the BED 
window as discussed in section 2.1.  The significance of the event threshold is discussed in conjunction 
with the BED window in sections 4.1.2 and 4.2.2. 

Table 6: Testing Information for the T&E and PUB Datasets 

Configuration Variables 
and Parameters 

T&E data sets PUB data sets 

Data Range 11/01/2011 – 06/26/2012 01/01/2008 – 08/31/2008 
Days Analyzed 238 244 
Number of Sensor Signals tested 4 & 9 3 & 4 

data interval (min) 2 5 
history windows (number of data points) 
tested 

360, 720, 1080, 1440, 2160 & 
5040 

144, 288, 432, 576, 864 & 
2016 

BED windows (number of data points) 
tested 

8, 15, 20 & 30 6, 8 & 12 

outlier thresholds (probability) tested 0.85, 1.0, 1.15 & 1.4 0.85, 1.0 & 1.15 
BED, binomial event discriminator; PUB, Singapore Public Utility Board; T&E, U.S. EPA Testing and Evaluation Facility 

CANARY analyses were conducted using signal data from four or nine sensor signals for T&E, and either 
three or four sensor signals for PUB datasets (see Table 3).  For some of the analysis, the total number of 
sensor signals was reduced to 4 for the T&E data and 3 for PUB datasets. This removed the turbidity 
signal from all datasets; previous work showed that the signal to noise ratio for the turbidity signal was 
not sufficient to be useful in contaminant event detection (Hall et al., 2009).  The four additional sensor 
signals that were removed from the T&E analysis were temperature, oxidation reduction potential (ORP), 
one pH and one chlorine.  The pH and chlorine signals that were removed from the T&E analysis had 
higher variability than the pH and chlorine signals that were retained (bolded in Table 3).  For the reduced 
signal testing scenario, there was a chlorine, pH and specific conductivity sensor for all datasets.  In 
addition to these signals, a UVA (ultraviolet) sensor signal was present in the T&E signal data, which 
responds to many of the same contaminants as a total organic carbon (TOC) sensor (U.S. EPA, 2012a).  
Chlorine and TOC sensors have been shown to respond to the widest variety of contaminants (U.S. EPA, 
2012a), and pH and specific conductivity have also been shown to respond to contaminants (Hall et al., 
2009).  

In general, the results are reported as the total number of alarms calculated by CANARY and the false 
alarm rate per day.  The number of false alarms per day is reported in order to provide a metric for 
translating these results to other systems. For the contamination events at T&E, the number of true 
detections, and the detection delay is also reported. For the purposes of this report, an alarm is produced 
when CANARY determines that a water quality event has occurred.  Alarms can be divided into four 
categories: a true positive (CANARY alarms and an event occurred), a false positive (CANARY alarms 
even though no event occurred), a true negative (CANARY did not trigger an alarm and no event 
occurred) and a false negative (CANARY did not trigger an alarm but an event did occur). In this report, 
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a true positive detection is defined to be any alarm associated with a known testing event that occurred at 
the T&E facility.  All alarms at PUB and any remaining alarms at T&E are reported as false alarms; 
however, these alarms might have a valid root cause that is not known by the authors.  Appendix B: What 
Constitutes an Event? discusses other types of water quality or operational changes that could be 
considered by water utilities to be true events. 

For T&E, detected events, or true positives, were determined based on the injection times listed in Table 
5. The alarm times reported by CANARY were compared to the known contaminant injection times to 
determine if each alarm corresponds to a real testing event.  Alarms that correspond to a real testing event 
were reported as a detected event. The delay to detection was reported and discussed in relation to the 
various parameters being tested.  For T&E, any alarm that did not correspond to a real testing event was 
considered a false alarm. All alarms for PUB analyses were treated as false alarms for the purpose of this 
report.  The rationale for this treatment is discussed further in the Section 4.0.  

These analyses were performed using CANARY version 4.3.2, running on Windows 7, updated to the 
version of the day available on August 6, 2013. The specific version information is CANARY 4.3.2 
(build b580:r3777, 2013-05-31 00:28:18).  This version of CANARY relies on the MATLAB® 

(MathWorks, Natick, MA) Compiler Runtime version R2008b and only runs on a single processor. 
Analyses discussed in this report were performed using CANARY’s batch mode on historical data 
contained in comma separated value files (CSV). Two computer systems – designated Computer 1 and 2 
– were used to perform all analyses.  

Runtime is not an issue when running CANARY in real-time; in that case, the software runs quickly and 
typically waits for the SCADA system to send real data.  However, runtime results are presented here in 
order to demonstrate how long it might take to run multiple configuration options in order to optimize the 
configuration. Each analysis configuration file, and consequently each run, consisted of only a single 
algorithm with a signal set of configuration parameters.  The performance improvement related to using 
multiple algorithms is discussed in section 5.3. Runtime statistics for these analyses are reported in terms 
of total runtime, runtime per day of historical data and runtime per timestep for two different computer 
systems.  Four designations are used to discuss runtime statistics: 

•	 Computer 1: Intel Pentium Dual E2180 (@2.00 GHz) processor with 4 GB of RAM. A single 
CANARY analysis running at a time. 

•	 Computer 1a: Same hardware as above. Two CANARY analyses running simultaneously (one 
per core). 

•	 Computer 1b: Same hardware as above. A single CANARY analysis running on a machine 
running other programs, at full CPU utilization. 

•	 Computer 2: Dual Processor Intel Xeon E5430 (@2.66 GHz) with 4 GB of RAM running – eight 
total cores. This machine was able to run four to six analyses simultaneously, without 
appreciable loss of performance. 
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4.0 Results 
This section is divided into results and discussion for T&E and PUB individually.  Throughout this 
section, the term “alarm” refers to the total number of alarms reported by CANARY.  No attempt was 
made to merge alarm events that were reported close together.  Alarms that occurred shortly after another 
alarm were not common, and were only present in a few parameter combinations that had higher alarm 
rates in PUB3. Additionally, true contamination detections at T&E were only considered to be correct if 
an alarm was triggered after the start of an event, not as part of a previous alarm. The term “false alarm” 
is used to describe all alarms reported from analyzing PUB datasets and any alarm at T&E that cannot be 
attributed to a contamination testing event. These alarms might have a root cause; however, no 
information was available relating to these causes. 

In order to highlight trends, graphical information is presented as an average over multiple parameter 
values unless specifically mentioned otherwise.  Total or false alarm values and true detections are 
tabulated at the beginning sections 4.1.2 and 4.2.2 for T&E and PUB data, respectively.  Graphs show the 
average of two or more values that satisfy the listed parameters. For example, a graph that shows alarm 
behavior with BED window and outlier threshold categories averages all values that satisfy each group; 
that is, each reported value is the average of both history window values that have the same BED window 
and outlier threshold. This was done because, while the history window does affect alarm behavior, this 
effect was generally much smaller than changes associated with the other two parameters. 

4.1 T&E 
Within this section, three main performance metrics are discussed: detected events, false alarms and delay 
time to detect real events. The effect of history window is investigated. The effect of BED window and 
outlier threshold are discussed together.  Finally, the effect of the number of signals is investigated.     

4.1.1 History Window 
The CANARY User’s Manual (Hart and McKenna, 2012) suggests using a history window of 
approximately 1.5 to 2 days – for this system with a 2-minute data interval, this corresponds to history 
window values of 1080 to 1440.  As shown in Table 6, most of the analysis results focus on these two 
values of history window; however, this subsection investigates why those values were recommended by 
considering a larger range of history window values, from ½ day (360) to 7 days (5040).  The analysis in 
this subsection uses data from four sensors (not the full set of nine sensors). 

Figure 3 shows the number of false alarms produced by CANARY over the eight month time period for 
the five history window values included in this testing: ½ day (360), 1 day (720), 1.5 days (1080), 2 days 
(1440) and 3 days (2160), and for four BED window values: 8, 15, 20 and 30. Note that these results are 
averaged over all of the outlier threshold values given in Table 6, and the event threshold is fixed at 0.9. 
The minimum number of false alarms occurs when using a history window of 1080; however, the results 
are nearly equivalent for a history window of 1440.  For this dataset, history window values of 360 and 
720 resulted in an increased number of false alarms, and a history window value of 2160 resulted in the 
same or slightly larger number of false alarms relative to a history window value of 1440. 
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Figure 3: Average false alarms per history window from CANARY using four signals from U.S. 
EPA Testing and Evaluation (T&E) Facility data from 11/01/2011 to 06/26/2012.  Blue indicates a 
binomial event discriminator (BED) window of 8, red is 15, green is 20 and purple is 30. 

Figure 4 shows the number of false alarms for a range of history window values when using a single BED 
window of 15, an outlier threshold of 1.4 and an event threshold of 0.9. This analysis includes a history 
window of 7 days (5040), which shows a continued increase in false alarms beyond the three days 
included in Figure 3. This figure shows a clear minimum at 1440, although the difference is still small 
relative to 1080. Increasing the history window from 2 days to 7 days translates to a difference of 
approximately 10 alarms in a 238 day analyzed window, or 0.042 alarms per day, which is unlikely to be 
noticed in real use.  
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Figure 4: False alarms per history window from CANARY using four signals from U.S. EPA Testing 
and Evaluation Facility data from 11/01/2011 to 06/26/2012.  Line indicates false alarm behavior 
when using a binomial event discriminator (BED) window of 15, outlier threshold of 1.4 and event 
threshold of 0.9. 

Figure 5 shows CANARY’s runtime for each of the 8-month analyses reported in Figure 4.  A more 
thorough discussion of runtime is presented in section 5.3, however it is clear from Figure 5 that there is a 
large penalty for using a history window of 7 days for this system.  The analysis using a history window of 
5040 took approximately 18 hours to analyze 8 months of signal data, compared to less than 5 hours for a 
history window of 1440. This increase in runtime is caused by more data being processed to predict 
future behavior. The ability to run real time CANARY event detection using longer history windows 
should not be affected; however, the runtime might be an issue if a large set of parameter combinations 
were run in batch in order to optimize configuration parameters.  

Further results based on T&E data focus on analyses that used history windows of 1080 and 1440.  These 
values of history window minimize false positives and produce approximately the same number of alarms 
when other parameters are the same.  Limiting the discussion to these values highlights general trends 
when examining the effect of other parameters. Moreover, changing the history window parameter within 
this range does not impact CANARY’s ability to detect true events.  Full alarm results can be found in 
Appendix D: Full Alarm Data. 
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Figure 5: Analysis runtime per history window for CANARY using four signals from U.S. EPA 
Testing and Evaluation Facility data from 11/01/2011 to 06/26/2012 using linear prediction 
coefficient filter (LPCF). Line indicates runtime behavior when using Computer 2, a binomial event 
discriminator (BED) window of 15, outlier threshold of 1.4 and event threshold of 0.9. 

4.1.2 BED Window and Outlier Threshold Parameters 
Table 7 contains the total number of alarms reported by CANARY for the analyzed timeframe – reported 
for each combination of BED window, number of signals, outlier threshold and history window. Each 
parameter’s impact on the total number of alarms is discussed individually for each parameter.  Values in 
Table 7 that are in parentheses indicate the number of true event detections based on events listed in Table 
5.  The number of false alarms for each parameter combination is shown in Table 8. 
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Table 7: Summary of Total Alarms Reported by CANARY on T&E Data from 11/01/2011 to 
06/26/2012 Using the LPCF Algorithm. 

BED 
window 

Number 
of 

Signals 

outlier threshold 

0.85 1.0 1.15 1.4 
history window 

1080 1440 1080 1440 1080 1440 1080 1440 
Total Alarms (True Detections) 

8 4 
9 

58 (14) 62 (14) 
115 (14) 107 (14) 

50 (14) 49 (14) 
84 (14) 77 (14) 

41 (14) 43 (14) 
68 (14) 64 (14) 

36 (14) 36 (14) 
53 (14) 48 (14) 

15 4 
9 

49 (14) 53 (14) 
88 (14) 84 (14) 

46 (14) 46 (14) 
71 (14) 66 (14) 

38 (14) 41 (14) 
55 (14) 51 (14) 

34 (14) 34 (14) 
47 (14) 42 (14) 

20 4 
9 

43 (10) 45 (10) 
76 (10) 77 (10) 

40 (10) 39 (10) 
60 (10) 58 (10) 

33 (10) 34 (10) 
49 (10) 44 (10) 

29 (10) 29 (10) 
39 (10) 36 (10) 

30 4 
9 

34 (4) 36 (4) 
65 (8) 65 (8) 

29 (4) 31 (4) 
53 (8) 51 (8) 

24 (3) 25 (4) 
39 (7) 37 (8) 

20 (3) 21(3) 
32 (7) 30 (7) 

BED, binomial event discriminator; LPCF, linear prediction coefficient filter; T&E, U.S. EPA Testing and Evaluation Facility 

These tables show clear trends in how each parameter affects the results. As the outlier threshold 
increases, the number of false alarms decreases. For these parameter combinations, the outlier threshold 
does not impact the number of true detections. As the history window increases, the number of false 
alarms changes little, and in most cases, the history window does not impact the number of true 
detections.  However, as shown in the previous subsection, history window can impact the results if the 
values are much smaller or larger than considered here. As the BED window increases, the number of true 
detections and the number of false alarms decrease.  Finally, as the number of signals decreases from 9 to 
4, the number of false alarms decreases and the number of true detections decreases, but only for large 
BED windows. These results are discussed in greater detail below. 
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Table 8: Summary of False Alarms Reported by CANARY on T&E Data from 11/01/2011 to 
06/26/2012 using the LPCF Algorithm 

Number 

outlier threshold 
0.85 1.0 1.15 1.4 

BED of history window 
window Signals 1080 1440 1080 1440 1080 1440 1080 1440 

8 4 
9 

44 48 
101 93 

36 35 
70 63 

27 29 
54 50 

22 22 
39 34 

15 4 
9 

35 39 
74 70 

32 32 
57 52 

24 27 
41 37 

20 20 
33 28 

20 4 
9 

33 35 
66 67 

30 29 
50 48 

23 24 
39 34 

19 19 
29 26 

30 4 
9 

30 32 
57 57 

25 27 
45 43 

21 21 
32 29 

17 18 
25 23 

BED, binomial event discriminator; LPCF, linear prediction coefficient filter; U.S. EPA Testing and Evaluation 
Facility 

Here the results for the BED window and the outlier threshold are presented together as their trends are 
similar. Table 8 shows that the number of false alarms decreases as the BED window and the outlier 
threshold increase, for all parameter combinations studied.  In this subsection, the effect of the BED 
window and the outlier threshold on false alarm rates, true detection rates and detection delays is further 
investigated.  In addition, the number of signals is also considered. 

Four BED window parameters were used with the T&E data: 8, 15, 20 and 30. Table 9 summarizes the 
real timeframes analyzed and reports how the event threshold value of 0.9 relates to each BED window 
used.  For example, a BED window of 8 is counting the number of outliers that have occurred within a 16­
minute timeframe (window) for the data interval of 2-minutes used at T&E. With an event threshold of 
0.9, 6 out of 8 timesteps must be considered to be outliers by CANARY to trigger an alarm.  This means 
that 12 minutes out of a 16-minute timeframe must be considered an outlier in order for CANARY to 
trigger an alarm. 

Table 9: BED Window Parameters and Number of Required Outliers for T&E Data with an Event 
Threshold of 0.9 with a 2-minute Data Interval 

BED BED Timeframe    Required Required 
window (min) outliers in BED duration of 

outliers (min) 
8 16 6 12 
15 30 10 20 
20 40 13 26 
30 60 19 38 

BED, binomial event discriminator; min, minutes; U.S. EPA Testing and Evaluation Facility 

Figure 6 shows the average number of false alarms per day for the studied parameter values.  Outlier 
threshold values are shown as 0.85 in blue, 1.0 in red, 1.15 in green and 1.4 in purple.  Darker shades 
indicate scenarios that use nine sensor signals and lighter shades indicate four sensors were used.  Each 
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graphed value is an average of the total false alarms over both history window values for a fixed BED 
window/outlier threshold/# signals combination.  Figure 6 shows that increasing either BED window 
or outlier threshold results in a reduction in false alarms. Examination of the data also reveals 
that the alarm rates are more sensitive to – i.e. have a larger change because of – the changes to outlier 
threshold relative to the BED window parameter. In general, using only four signals rather than all nine 
reduced the number of false alarms significantly – by 40%.  The effect of the number of signals on alarm 
behavior is discussed further below. 
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Figure 6: False alarms per day from CANARY using U.S. EPA Testing and Evaluation Facility 
data from 11/01/2011 to 06/26/2012.  Darker shades indicate scenarios that use nine sensor signals 
and lighter shades (overlaid) indicate four sensors used. Outlier threshold values are shown as 0.85 
in blue, 1.0 in red, 1.15 in green and 1.4 in purple. The values are the average of alarm rates with 
different history window values. 

The maximum individual false alarm rate was 0.42 false alarms per day, when using nine signals, BED 
window=8, outlier threshold=0.85 and history window=1080. The majority of the tested scenarios 
resulted in an alarm every three to ten days (0.1 – 0.33 false alarms per day). When only analyzing four 
signals, the alarm rates do not exceed 0.1 false alarms per day (see lighter colors in Figure 6). 

Figure 7 contains the average number of true contamination events (as listed in Table 5) detected by 
CANARY for each combination of BED window and outlier threshold values. A total of 14 testing 
events occurred at T&E during the analyzed timeframe.  Of those testing events, 14 (100%) were detected 
with all combination of parameters that used BED windows of 8 or 15. Using a BED window of 20 
resulted in only 10 (71%) events being detected.  Contaminant injections ID#12 – ID#15 were not 
detected with BED windows of 20 or 30. A BED window of 30 resulted in as few as three events being 
detected, but averaged five or six events detected. Below a BED window of 20, there was no difference in 
true event detection between analyses that used four or nine signals; therefore, the number of signals is 
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not shown in the figure.  The four events that were not detected using a BED window of 20 did trigger an 
increase in the probability of an event; however, this probability did not exceed the event threshold of 
0.9. These events correspond to the four Atrazine injections having concentrations of either 0.1 or 1.0 
ppm (see Table 5). 
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Figure 7: Number of true detections of contamination events using CANARY on U.S. EPA Testing 
and Evaluation Facility data from 11/01/2011 to 06/26/2012 using linear prediction coefficient filter 
(LPCF).  Outlier threshold values are shown as 0.85 in blue, 1.0 in red, 1.15 in green and 1.4 in 
purple. The values are the average of alarm rates with different number of signal and history 
window values. 

It should be noted that the reduction in the true detection rate for longer BED windows is linked to the 
specific experimental testing conditions at T&E, and in particular, the contaminant injection length.  
Contaminant injections were limited to twenty minutes, which translates to detectable changes in sensor 
signals only slightly longer than twenty minutes. Table 9 shows that, for the parameter combinations 
used for this testing, the signal changes would have to be at least 26 or 38 minutes for BED windows of 
20 and 30, respectively, in order to be detected by CANARY.  Therefore, for these parameter 
combinations, CANARY would not be able to detect these short events. This points to the importance of 
understanding the characteristics of the events that a utility would like to use CANARY to detect; using 
the BED window, event threshold, and the outlier threshold, the software can be configured to detect short 
or long events.  In general, events with both long and short durations can be detected with smaller values 
of the BED window parameter, whereas, only longer events can be detected using larger BED window 
values. 

Comparing results from Figure 6 to Figure 7, it is clear that there is a tradeoff between increased detection 
sensitivity with lower BED window values and decreased false positive rates with higher BED window 
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values. The false alarm rate can be reduced to 0.084 false alarms per day (20 false alarms in 238 days, 
light purple), using a BED window of 15, an outlier threshold of 1.4 and four signals, while maintaining 
the ability to detect 14 out of 14 true contamination events. Increasing the BED window to 30 only 
reduced the number of false alarms to 17 or 18, but failed to detect 11 events that were detected when the 
BED window was 15.  

When detecting real contamination events, another important factor is the detection time. In all 14 
detected events, there was a delay between the time the contaminant was injected and the time that 
CANARY detected the event. The delays are due to several factors: the flow time from the 
injection point to the sensors, time for the sensors to measure and report water quality values, 
and the time required for CANARY to witness enough outliers to determine an event has 
occurred and calculate results. The BED window and the event threshold determine the number 
of outliers needed before CANARY identifies an event, and therefore affect the delay time. 

Figure 8 shows how this delay is related to the BED window; the event threshold is fixed at 0.9. To 
minimize the number of figures, the delays were averaged over results for history windows of 
1.5 and 2 days, and four and nine signals. In all cases, delay times were approximately five 
minutes longer than the required duration of outlier values prior to CANARY detection as 
listed in Table 9 . The values listed in Table 9 represent the minimum delay, from the first 
detected outlier, associated with an event threshold of 0.9 and the listed BED window values. 
The additional 5-minute delay is attributed to the other factors listed above. Contaminants 
were injected into a pipe with water flowing with a linear velocity of 1 ft/s approximately 90 
feet from the junction where water is diverted into the sensor stations (U.S. EPA, 2012a), 
corresponding to a delay of 90 seconds.  Further delay can be attributed to the instrumentation 
delays, and delays caused by the flow from the main pipe to the sensors. Delay time was not 
significantly affected by changes to the outlier threshold or history window parameters.  This 
highlights how CANARY’s detection time is linked to the combination of BED window and 
event threshold values (see Table 9). The additional 5-minute delay is specific to the testing 
setup found at the T&E facility and cannot to be translated to other applications. 
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Figure 8: Delay from contaminant injection to the event alarm for U.S. EPA Testing and 
Evaluation Facility data using the linear prediction coefficient filter (LPCF) algorithm.  Outlier 
threshold values are shown as 0.85 in blue, 1.0 in red, 1.15 in green and 1.4 in purple. The values are 
the average of alarm rates with different number of signal and history window values. 

4.1.3 Number of Input Signals 
The T&E facility evaluates many different sensors under real world conditions.  This leads to an 
abundance of sensor data, and some overlaps in sensor signals due to comparisons between technologies 
or manufacturers. For example, two residual chlorine sensors and two pH sensors provided the analyzed 
data (see Table 3).  Additional sensors were also in use at T&E but were excluded because they were not 
operational for the majority of the studied timeframe.  Sensors that were included in the four signals 
analyses (pH, chlorine, specific conductivity and UVA as a surrogate for TOC) were selected because 
those signals have been previously shown to provide good detection rates for a wide variety of 
contaminants (Hall et al., 2010; Hall et al., 2009; U.S. EPA, 2012a); and to remove duplicate pH and 
chlorine sensors (those chosen had lower variability during the analyzed timeframe).  In practice, most 
utilities might have from one to ten sensor signals available at a given sensor station; however, not all of 
the data might be useful for event detection. 

Results in Figure 6 were broken down by the number of input signals.  Dark colors within Figure 6 
represent analyses with nine signals and their lighter counterparts represent those analyses with only four 
signals.  Relative to nine input signals, the analyses that used only four input signals had fewer false 
alarms in all tested scenarios (see Figure 6).  

With the exception of when the BED window was set to 30, there was no difference between the number 
of actual contamination events detected by either the four or nine sensor scenarios (see Table 7).  All 
combinations of parameters that contained BED window values of 8, 15 or 20 were able to detect the 
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same number of real contamination events for the four or nine input signal cases. In the case of the BED 
window parameter of 30, the runs with nine input signals were able to detect four more real contamination 
events relative to when using four inputs signals (i.e., three or four events detected for four inputs, and 
seven or eight events detected for nine signals). Examination of the alarm reports shows that the ORP 
sensor, which was not included when only using four sensors, had the longest deviation for the events that 
were only detected in the nine sensor case. The chlorine sensor also had a strong response to those 
injection events; however, that signal change alone did not increase the probability enough to exceed the 
event threshold – in other words, the signal change for that sensor was not long enough to trigger an 
alarm. 

For practical reasons, most utilities install the fewest number of sensors necessary to capture water quality 
data that is relevant for each station. For the majority of CANARY parameter combinations, the scenario 
with four sensor signals was able to detect the same number of contamination events as the corresponding 
nine signal scenario, while reducing the number of false alarms. CANARY is able to cope with signal 
variability; however, it performs best with signals from good-quality and well-maintained sensors. 
Previous reports outline the effectiveness of various sensors for true contamination event detection (U.S. 
EPA, 2012a; Hall et al., 2007; Hall and Szabo, 2010; Szabo et al., 2008). The sensors that were found to 
respond to a large number of contaminants were specific conductivity, free chlorine, chloride, and ORP; 
TOC sensors had the best response to organic containing compounds (Hall et al., 2007; U.S. EPA, 
2012a). 

Based on the data in Table 7 and Table 8, and the above discussion of each parameter, the parameter 
combination that results in the fewest false alarms while still being able to detect 14 of the 14 true 
contamination events is: a history window of 1440 (2 days), a BED window of 15 (30 minutes), an outlier 
threshold of 1.4 and an event threshold of 0.9.  

4.2 Singapore – PUB 
Historical data from four stations within the Singapore Public Utility Board (PUB) water distribution 
system was analyzed for dates ranging from January 1, 2008 to August 31, 2008.  These datasets are 
designated PUB1, PUB2, PUB3 and PUB4, to differentiate their originating location, and contain data 
from four water quality signals and two operational signals: water quality – free chlorine, pH, 
conductivity and turbidity, and operational – total output and pressure (see Table 3).  No real 
contamination events were believed to have occurred during the analyzed date range at PUB datasets, so 
all alarms for these stations are classified as false alarms. CANARY was in development at the time the 
data was collected, and no actual CANARY alarms or problems at any of those sites should be inferred. 

4.2.1 History Window 
The recommended values of 1.5 to 2 days for the history window correspond to 432 and 576, respectively, 
for the 5-minute data interval used at PUB datasets. Figure 9 contains the average alarm per day results 
for the four PUB datasets investigated. These values are the average of all combinations with the same 
history window. The tested history window values range from half a day, 144, to a week, 2016.  The 
turbidity signal was omitted from this analysis, leaving three signals. Tested BED window and outlier 
threshold values are listed in Table 6. Trends in Figure 9 are consistent across all four datasets.  
Increasing the history window leads to fewer alarms per day. 

These results are consistent with previously reported conclusions that increasing the history window 
results in fewer alarms (Murray et al., 2010); as shown in Figure 10. As the history window increases, 
more data points are used to determine the baseline normal variability in the sensor signals.  As more of 
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the data is considered normal, CANARY produces alarms less frequently.  These results are slightly 
different than those reported in section 4.1.1, where the number of alarms reaches a steady state and does 
not continue to decrease (see Figure 3).  This is probably due to the low variability in the data at T&E 
compared to the PUB data.  In T&E and PUB systems, history windows of 1.5 to 2 days provide good 
alarm behavior. Alarm behavior can be refined using the BED window and outlier threshold parameters, 
as discussed below.  Full alarm results can be found in Appendix D: Full Alarm Data. 
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Figure 9: Average false alarms per day when changing history window for Singapore Public Utility 
Board (PUB) dataset data.  Blue corresponds to data from PUB1, red is PUB2, green is PUB3 and 
purple is PUB4.  The values are the average of all combinations with the same history window. 

4.2.2 BED Window and Outlier Threshold Parameters 
Results in the previous section showed a reduction in alarms per day with increasing history windows. 
This section focuses on alarm behavior when using history windows of 432 and 576, 1.5 and 2 days, 
respectively.  Although there was a reduction in average alarm behavior when increasing the history 
window, there was not a significant decrease in alarms relative to the recommended 1.5 to 2 day range. 

Table 10 contains a summary of the number of alarms reported by CANARY for the tested parameter 
combinations using the four water quality sensor signals. Each dataset is independent, so no direct 
comparisons can be made between datasets; however, general trends can be seen in all four datasets. 
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Table 10: Summary of Total Alarms Reported by CANARY on Historical PUB Data from 
01/01/2008 to 08/31/2008 Using the LPCF Algorithm and Four Sensor Signals 

Dataset BED
 window 

outlier threshold 
0.85 1.0 1.15 

history window 
432 576 432 576 432 576 

6 240 196 136 131 106 88 
PUB1 8 198 167 114 110 88 73 

12 166 125 88 83 58 50 
6 227 186 156 128 114 100 

PUB2 8 214 168 146 123 107 93 
12 187 146 130 100 93 80 
6 561 518 407 361 304 262 

PUB3 8 510 470 375 330 283 248 
12 460 429 324 286 253 211 
6 517 443 378 324 293 261 

PUB4 8 469 405 343 301 265 229 
12 419 351 301 266 231 206 

BED, binomial event discriminator; LPCF, linear prediction coefficient filter 

The table shows clear trends in how each parameter affects the results.  As the outlier threshold increases, 
the number of false alarms decreases.  As the history window increases, the number of false alarms 
decreases.  As the BED window increases, the number of false alarms decreases.  These results are 
discussed in greater detail below. 

Three BED window parameter values were used for PUB datasets in this study: 6, 8 and 12 timesteps.  
Table 11 summarizes the real timeframes analyzed and reports how the event threshold value of 0.9 
relates to each BED window used.  For example, a BED window of six is counting the number of outliers 
that have occurred within a 30-minute timeframe (window) for the 5-minute data interval used at PUB 
datasets.  With an event threshold of 0.9, five out of six timesteps must be considered to be outliers by 
CANARY to trigger an alarm.  This means that 25 minutes out of a 30 minute timeframe must be 
considered an outlier in order for CANARY to trigger an alarm. 

Table 11: BED Window Parameters and Number of Required Outliers for PUB Station Data with 
an Event Threshold of 0.9 with a 5-minute Data Interval 

BED BED Timeframe Required Duration of 
window (min) outliers in BED outliers (min) 

6 30 5 25 
8 40 6 30 
12 60 8 40 

BED, binomial event discriminator; min, minutes 
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Figure 10 contains the average number of alarms per day (averaged over both history window results) for 
each combination of BED window and outlier threshold for all PUB datasets. Blue corresponds to 
an outlier threshold value of 0.85, red is 1.0 and green is 1.15. The alarm rates for datasets PUB1 and 
PUB2 ranged from approximately one alarm per day to one alarm per five days (0.2–1 alarms 
per day). Alarm rates for the PUB3 and PUB4 datasets ranges from approximately one to two 
alarms per day. Increasing either the BED window or outlier threshold is seen to decrease the 
alarm rate in all datasets. Alarm rates decrease more due to an increase of the outlier 
threshold value when compared to increasing the BED window value. 
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Figure 10: Alarms per day for Singapore Public Utility Board (PUB) datasets using the linear 
prediction coefficient filter (LPCF) algorithm.  Blue corresponds to an outlier threshold value of 
0.85, red is 1.0 and green is 1.15.  The values are the average of alarm rates with different history 
window values. 

4.2.3 Number of Signals 
Previous testing involving PUB datasets suggested that the turbidity signal alone triggered a large number 
of false alarms.  Removing the turbidity signal data resulted in an average alarm reduction of 28% for all 
four datasets (see Table 12).  For datasets PUB3 and PUB4, that had a higher initial alarm rate, this 
corresponds to an average of 85 fewer alarms or one fewer alarm per three day period.  The maximum 
reduction in total alarms was 124 fewer alarms for PUB3 when a BED window of 6, history window of 
576 and outlier threshold of 0.85 were used. For these datasets, the turbidity signal contributes to 
approximately one-quarter of all alarms and could be an unreliable indicator of real events. 
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Table 12: Summary of Total Alarms Reported by CANARY on Historical PUB Data from 
01/01/2008 to 08/31/2008 using the LPCF Algorithm Without the Turbidity Sensor Signal 

Station BED 
window 

outlier threshold 
0.85 1.0 1.15 

history window 
432 576 432 576 432 576 

PUB1 6 173 149 86 75 50 34 
8 145 125 65 65 37 24 
12 119 100 52 48 21 16 

PUB2 6 163 135 119 97 95 80 
8 153 125 112 91 88 76 
12 136 112 104 85 86 68 

PUB3 6 438 394 299 290 221 205 
8 407 357 284 221 213 195 
12 355 325 251 240 189 166 

PUB4 6 399 349 270 245 191 191 
8 362 307 245 227 178 173 
12 323 274 219 208 155 160 

BED, binomial event discriminator; LPCF, linear prediction coefficient filter; PUB, Singapore Public Utility Board 

Removing the turbidity signal resulted in a reduction in total alarms for all PUB datasets. Turbidity was 
also removed from the analysis of T&E data when using four sensors; however, no attempt was made to 
determine its specific effect on alarm behavior in that system.  

Based on the data in Table 10 and Table 12, and the above discussion of each parameter, the parameter 
combination that results in the fewest total alarms in the PUB data are as follows: a history window of 576 
(2 days), a BED window of 12 (60 minutes), an outlier threshold of 1.15 and an event threshold of 0.9.  
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5.0 Discussion 
This section is divided into three parts: a comparison of results from both systems, a discussion about 
CANARY’s runtime and the selection of recommended parameter values.  

5.1 Comparison 
To develop a fair comparison between the two data sets, the number of false alarms from T&E is 
compared to the number of total alarms of the PUB systems.  No contamination events were believed to 
have occurred during the eight-month period analyzed at PUB, so all PUB alarms were thought to be 
false.  No attempt was made to establish whether false alarms from any dataset had a valid root cause 
related to operational changes, or equipment malfunctioning or failure.  

No comparison of the effect that data interval has on true contamination event detection can be made 
since there are no contamination events in the PUB data.  Previous work suggests that a five-minute 
interval is likely the maximum data interval that is able to reliably detect true contamination events (U.S. 
EPA, 2013a; Allgeier et al., 2011b). 

In both T&E and PUB datasets, alarm rates were more sensitive to changes in the outlier threshold 
when compared to the BED window and the history window. Increasing either outlier threshold or 
BED window resulted in fewer alarms. This trend in alarm reduction is the result of two different 
behaviors.  When the outlier threshold is increased more signal variability is accepted as being normal 
and thus, not used in the event detection analysis.  Increasing the BED window increases the number of 
timesteps that are used to define when an event is occurring; in other words, increasing the BED window 
results in more outliers being necessary to trigger an alarm.  Increasing the history window also resulted 
in fewer alarms in the majority of cases, although the effect was smaller.  Increasing the history window 
lengthens the timeframe over which the baseline behavior of a signal is established; this results in more 
normal signal variability being factored into the predictive algorithm, helping to reduce the number of 
alarms. 

The primary difference between these two sets of data is that PUB sensors are located near source water 
or treatment facilities whereas and T&E sensors are located within the distribution system away from the 
treatment facility. Sharp quality changes that occur at a water processing or pumping station show a 
broader signal response further into the distribution system due to diffusion and mixing.  Visual 
inspection of the PUB data reveals significant variability due to operational changes.  Despite that 
variability, CANARY’s alarm rates can be reduced to manageable values in all four datasets. This same 
variability was not present the T&E facility. Since no attempt was made to introduce fictitious events in 
the PUB data, it is not possible to determine from this analysis how the tested parameters would respond 
to contamination events; however, even the maximum alarm rate reported here should be acceptable by 
most utilities. 

Sensor data analyzed here ranged from fairly stable, for T&E, to moderately variable, for PUB3 and 
PUB4 (see Table 3); however, results show that, for all datasets tested, it is possible to reduce alarm rates 
to below one alarm per day. For T&E, the alarm rate was reduced to approximately 0.1 alarms per day 
while maintaining the ability to detect 14 out of 14 real testing events. 
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5.2 Recommended Rule-of-Thumb Parameters 
Based on the analysis presented in section 4.0 Results, the following parameter values are recommended 
(Table 13) as a good starting configuration, or rule-of-thumb parameters, for CANARY for a 2-minute or 
a 5-minute data interval: 

Table 13: Recommended Rule-of-Thumb Values for Parameters 

Parameter Recommended Values 
Data interval (minutes) 2 5 
History window (number of data points) 1440 576 
Outlier threshold (number of standard deviations) 1.15 1.15 
BED window (number of data points) 15 12 
Event threshold (probability) 0.90 0.90 

BED, binomial event discriminator 

The rationale behind these parameters is as follows: 

1.	 A two-day history window captures a baseline behavior that encompasses most day-to-day 
activity. This was the optimal setting for all five sensor datasets included in this report. 

2.	 An outlier threshold of 1.15 treats 75% of signal variability as normal behavior, which allows 
some noise to be accepted as normal.  A larger value resulted in fewer false positives, but also 
increased detection time and reduced the number of true events detected. This is the optimal 
setting for the four PUB datasets, and performed close to optimal for the T&E station. 

3.	 For a data interval of 2 minutes, the BED window of 15 and event threshold of 0.9 combine to 
require 10 out of 15 timesteps to be outliers in order to produce an alarm. This requires that 2/3 
of a BED window contains outliers before producing an alarm.  This combination can capture 
events as short as 20 minutes, and can be detected as early as 24 minutes after the initial deviation 
from normal behavior. These parameters should be adjusted in tandem if the detection of shorter 
events is desired. Note that larger BED window values resulted in fewer false positives, but also 
increased detection time and reduced the number of true events detected. This was the optimal 
setting for the T&E station. 

4.	 For a data interval of 5 minutes, the BED window of 12 and event threshold of 0.9 combine to 
require 8 out of 12 timesteps to be outliers in order to produce an alarm.  This combination can 
capture events as short as 40 minutes.  This was the optimal setting for the PUB datasets. 

From the analysis reported in section 4, the rule-of-thumb parameters resulted in a false positive rate of 
0.17/day for the T&E station and an alarm rate of 0.067/day for PUB1, 0.28/day for PUB2, 0.69/day for 
PUB3, and 0.67/day for PUB4 (see raw data in Table 7 with 4 signals for T&E, and Table 12 with 3 
signals for PUB datasets).  For the T&E station, these parameters detected 14 out of 14 true events. 

5.2.1 Validation of Parameter Selection 
In this subsection, the selection of the recommended rule-of-thumb parameter values is validated by using 
them to analyze a different data set. The original T&E data set used in the initial analysis contained water 
quality data collected from 11/01/2011 – 06/26/2012. A second data set is used here to validate the 
parameter settings; this data set extends these dates to two years, from 01/01/2011 – 12/31/2012. 
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A summary of the parameter set is as follows: 

• Date range: 01/01/2011 – 12/31/2012 
• Algorithm: LPCF
 
• outlier threshold: 1.15 

• history window: 1440 (2 days) 
• BED window: 15 
• event threshold: 0.9 
• event timeout 30 
• signals chlorine, pH, conductivity, UVA 

Table 14 summarizes the contamination testing events that occurred during the entire two year window 
(which includes the 14 events previously studied); a total of 74 contamination experiments were 
conducted.  Using the parameters listed above to analyze the data with CANARY resulted in 130 total 
alarms, including 51 true detections (out of 74 possible contamination events for a 69% detection rate) 
and 79 false alarms (or 0.11 false alarms per day). (Appendix A provides a graphic that shows the water 
quality signal data for one day and the CANARY output in more detail.) 

Table 14: Summary of Testing Events and Detection by CANARY for Data from T&E between 
1/1/2011 and 12/31/2012 

ID Time Injection Concentration Note DET ID Time Injection Concentration Note DET 

1 03/15/2011 
08:30 AM 

KHP 10 ppm DET 20 04/21/2011 
12:30 PM 

Ethylene 
Glycol 

1 ppm NVC -

2 03/15/2011 
10:15 AM 

KHP 10 ppm DET 21 04/21/2011 
02:00 PM 

Ethylene 
Glycol 

10 ppm NVC -

3 03/15/2011 
01:45 PM 

KHP 10 ppm DET 22 04/21/2011 
03:31 PM 

Ethylene 
Glycol 

10 ppm NVC -

4 04/12/2011 
11:15 AM 

Escherichia 
coli 

1.26×104 

CFU/mL 
DET 23 04/26/2011 

02:00 PM 
Coolant 1 ppm -

5 04/12/2011 
12:40 PM 

E.coli 1.26×104 

CFU/mL 
DET 24 04/26/2011 

03:30 PM 
Coolant 1 ppm -

6 04/12/2011 
02:15 PM 

E.coli 1.26×104 

CFU/mL 
DET 25 04/27/2011 

10:00 AM 
Coolant 10 ppm DET 

7 04/14/2011 
02:30 PM 

Bleach 4 ppm DET 26 04/27/2011 
11:30 AM 

Coolant 10 ppm DET 

8 04/15/2011 
11:00 AM 

Bleach 4 ppm DET 27 04/28/2011 
10:00 AM 

Deicer 1 ppm NVC -

9 04/15/2011 
02:00 PM 

Bleach 4 ppm DET 28 04/28/2011 
11:30 AM 

Deicer 1 ppm NVC -

10 04/19/2011 
11:00 AM 

E.coli 5.74×102 

CFU/mL 
DET 29 04/28/2011 

01:00 PM 
Deicer 10 ppm -

11 04/19/2011 
12:30 PM 

E.coli 5.74×102 

CFU/mL 
DET 30 04/28/2011 

02:30 PM 
Deicer 10 ppm -

12 04/19/2011 
02:00 PM 

E.coli 5.74×103 

CFU/mL 
DET 31 05/02/2011 

09:30 AM 
Dispersant 1 ppm DET 

13 04/19/2011 
03:45 PM 

E.coli 5.74×103 

CFU/mL 
DET 32 05/02/2011 

11:00 AM 
Dispersant 1 ppm DET 

14 04/20/2011 
10:15 AM 

Pepsin 10,000 ppm DET 33 05/02/2011 
12:30 PM 

Dispersant 10 ppm DET 

15 04/20/2011 
12:00 PM 

Pepsin 10,000 ppm DET 34 05/02/2011 
02:00 PM 

Dispersant 10 ppm DET 

16 04/20/2011 
01:30 PM 

Pepsin 1,000 ppm DET 35 05/03/2011 
11:00 AM 

Diesel Fuel 1 ppm -
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ID Time Injection Concentration Note DET ID Time Injection Concentration Note DET 

17 04/20/2011 
03:00 PM 

Pepsin 1,000 ppm DET 36 05/03/2011 
12:30 PM 

Diesel Fuel 1 ppm -

18 04/20/2011 
04:30 PM 

Sodium 
Thiosulfate 

– DET 37 05/03/2011 
02:00 PM 

Diesel Fuel 5 ppm -

19 04/21/2011 
10:15 AM 

Ethylene 
Glycol 

1 ppm NVC - 38 05/03/2011 
03:30 PM 

Diesel Fuel 5 ppm -

39 08/15/2011 
11:55 AM 

E.coli 1.2×104 CFU/mL DET 57 11/15/2011 
03:00 PM 

E.coli 1.0×104 

CFU/mL 
DET 

40 08/15/2011 
02:40 PM 

E.coli 1.2×104 CFU/mL DET 58 11/28/2011 
11:50 AM 

KCN 10 ppm DET 

41 08/15/2011 
03:30 PM 

E.coli 1.2×103 CFU/mL DET 59 11/28/2011 
01:40 PM 

KCN 20 ppm DET 

42 08/18/2011 
04:15 PM 

E.coli 1.15×104 

CFU/mL 
DET 60 11/28/2011 

02:40 PM 
Atrazine 10 mg/L Merged 

43 08/19/2011 
10:00 AM 

Sodium 
Thiosulfate 

– DET 61 01/26/2012 
11:40 AM 

Atrazine 10 mg/L DET 

44 08/19/2011 
11:01 AM 

E.coli 1.15×104 

CFU/mL 
DET 62 01/26/2012 

03:00 PM 
Atrazine 10 mg/L DET 

45 08/23/2011 
11:00 PM 

Sodium 
Thiosulfate 

– DET 63 02/01/2012 
01:00 PM 

Atrazine 1 mg/L DET 

46 08/24/2011 
03:45 PM 

E.coli 1.15×105 

CFU/mL 
DET 64 02/01/2012 

02:30 PM 
Atrazine 1 mg/L DET 

47 08/25/2011 
02:00 PM 

E.coli 1.15×105 

CFU/mL 
DET 65 02/02/2012 

02:00 PM 
Atrazine 0.1 mg/L DET 

48 09/01/2011 
09:20 AM 

B. subtilis 
Spheres 

Unknown DET 66 02/02/2012 
03:30 PM 

Atrazine 0.1 mg/L DET 

49 10/26/2011 
10:00 AM 

Sodium 
Basagran 

1 ppm DET 67 09/20/2012 
12:00 PM 

E.coli 1.0×105 

CFU/mL 
No 
Cl2 

-

50 10/26/2011 
12:30 PM 

Sodium 
Basagran 

1 ppm DET 68 09/24/2012 
02:30 PM 

E.coli 1.0×105 

CFU/mL 
No 
Cl2 

-

51 10/26/2011 
02:00 PM 

Sodium 
Basagran 

10 ppm DET 69 10/16/2012 
09:00 AM 

E.coli 1.09×105 

CFU/mL 
No 
data 

-

52 10/26/2011 
03:30 PM 

Sodium 
Basagran 

10 ppm DET 70 10/16/2012 
11:15 AM 

E.coli 1.09×105 
CFU/mL 

No 
data 

-

53 11/14/2011 
10:30 AM 

Sodium 
Thiosulfate 

– DET 71 10/16/2012 
01:15 PM 

E.coli 1.09×105 

CFU/mL 
No 
data 

-

54 11/15/2011 
10:30 AM 

E.coli 1.0×103 CFU/mL DET 72 10/23/2012 
01:20 PM 

E.coli 6.85×104 

CFU/mL 
No 
data 

-

55 11/15/2011 
12:00 PM 

E.coli 1.0×103 CFU/mL DET 73 10/24/2012 
12:35 PM 

E.coli 1.37×105 

CFU/mL 
No 
Cl2 

-

56 11/15/2011 
01:30 PM 

E.coli 1.0×104 CFU/mL DET 74 10/24/2012 
02:35 PM 

E.coli 1.37×105 

CFU/mL 
No 
Cl2 

-

NVC, No Visible Change; DET, Detected by CANARY; U.S. EPA Testing and Evaluation Facility. Merged = Event timeout was longer 
than the delay between injections, consequently CANARY was still producing an alarm from the original event when the second event had 
begun. KHP = Potassium Hydrogen Phthalate 

A closer examination of the injection events shows that of the 74 total testing events, only 66 could have 
been captured by CANARY.  Eight of the injections occurred during periods of missing sensor data, so no 
true or false detections can be established for those events.  Of the 66 remaining events, 51 (77%) were 
captured by CANARY with these configuration settings.  Two events (ID#59 and 60) were merged since 
they were injected only one hour apart, and the length of the BED window and the event timeout 
parameters caused these alarms to be merged into one. Two coolant injections (ID#23 & 24) were not 
detected; both had a concentration of 1 ppm and there was a small (~0.01 ppm), but visible, signal change 
to the UVA signal; however, this change would likely go unnoticed when plotting the data if the range 
was set from 0 to 2.  In the case of the two undetected deicer events (ID#27 & 28), the tested 
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concentration was low, which produced no visible change in any sensor signal.  Other deicer injections 
(ID#29 & 30) caused visible changes in the UVA sensor data, suggesting that the first two deicer 
injections were below the detection limit of the tested sensors.  Only the UVA signal responded 
significantly to the deicer injections, but this was not sufficient to trigger an alarm using the specified 
configuration parameters.  The sensors used in this analysis did not respond to capture ethylene glycol; 
however, previous work showed that TOC sensors were able to detect the presence of ethylene glycol 
(U.S. EPA, 2012a). Injection ID#60 is listed as “merged,” because CANARY was still in an alarm state 
due to the previous injection.  Diesel fuel injections did lead to a change in the UVA signal, but this did 
not trigger an alarm with this parameter set. Eight of the undetected events show discernable changes in 
UVA and, given the right configuration parameters, CANARY would be able to detect these events. 

It would be possible to optimize CANARY’s performance further for this specific data set (in particular, 
to detect the eight events that changed the UVA signal); however, the purpose here is to demonstrate that 
the parameters selected for a subset of data also work quite well for a much larger set of data. 

5.3 Runtime Analysis 
The rule-of-thumb parameters developed in the last section provide a useful starting point for most 
utilities.  Some, however, would prefer to do a more in-depth analysis to select parameter values. Some 
papers in the literature might have given the impression that such an analysis would require enormous 
computational capabilities and would take a significant amount of time (Murray et al., 2010; Rosen and 
Bartrand, 2013).  To show how long such an analysis might take, this section summarizes the runtimes 
associated with performing the analyses described in this report. The runtimes for each analysis 
correspond to using CANARY’s batch mode.  This section reports the runtime per single analysis.  These 
values can be used to approximate the time it takes to perform multiple parameter testing.  Throughout 
this section, the word “instance” represents a single CANARY analysis; multiple analyses, or instances, 
can be run simultaneously on multi-core computers.  This results in a reduction in the total parameter 
testing time. 

Figure 11 shows the average total runtimes for the all water quality stations broken down by the computer 
used to conduct the analysis (see section 3.2 Methods for a definition of the computer capabilities). The 
longest runtimes were for systems with nine input streams on Computer 1 running two analyses at a time 
(1a).  Under those conditions, the eight month window took an average of approximately nine hours to 
analyze. Computer 2 was able to analyze the equivalent system in an average of approximately five hours. 
Figure 11 shows that increasing the number of parameters in the analysis increases the total runtime. 
Figure 11 also reveals an increased runtime associated with increasing the history window 
value. 
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Figure 11: Average total analysis runtime for stations using the linear prediction coefficient filter 
(LPCF) algorithm.  For U.S. EPA Testing and Evaluation Facility, red indicates four signals and a 
history window of 1080 (i.e., 4- 1080), green indicates 4- 1440, pink indicates 9- 1080 and light green 
indicates 9- 1440. For Singapore Public Utility Board (PUB) datasets, purple indicates a history 
window of 432 and blue indicates 576. 

The average runtime using one algorithm for all PUB datasets was approximately one hour.    PUB 
analyses required an average of 0.23 minutes per analyzed day (60 minutes/244 days) on Computer 2, 
whereas, analyses on T&E data on Computer 2 for four signals required an average of 1.0 minutes per 
analyzed day.  The higher total runtime for T&E analyses can be attributed to the larger number of data 
points when using a two-minute data interval; there are two and a half times more data points when 
using a data interval of two-minutes relative to a five-minute interval.  This suggests that analyzing one 
day of two-minute data would be expected to take two and a half times longer than five-minute data.  
Actual runtimes are closer to four times longer for similar four signal data streams.  This suggests that 
history window values also play a role in runtimes.  

The parameter combination testing outlined above utilized 18 to 20 combinations for each dataset.  This 
provided a good picture of how CANARY performed for each system, and resulted in the rule-of-thumb 
parameter set.  Users might want to conduct analyses on their own data to select configuration parameters. 
Runtimes discussed in this document were run with only a single algorithm per input file.  CANARY is 
capable of accepting multiple algorithms per input file and reporting results for each of those algorithms 
in a single output file. This ability can be used to test multiple algorithms at a time, and might perform 
these tests in less time than if the tests were run individually. See the CANARY User’s Manual (Hart and 
McKenna, 2012) for more information. 
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Based on the runtime results presented here for an eight-core machine (Computer 2), which is capable of 
running six instances of CANARY at once, the following timetables can be established to run 50 
parameter combinations on eight months of data that use four input signals: 

•	 5-minute data interval – Using four parameter combinations (four algorithms) per instance (this 
maintains a runtime of approximately one hour per algorithm) and six concurrent instances of 
CANARY produce results for 24 parameter combinations in four hours.  This means that 50 
combinations can be tested in approximately eight hours, much less than a single day.   Fifty 
combinations should be sufficient to refine the input parameters in order to produce manageable 
alarm behavior. 

o	 A standard dual-core computer can run one or two instances of CANARY at a time.  The 
same four algorithm per input file example (described above) would require 
approximately one to two days to analyze 50 combinations.  This could be accomplished 
over a weekend. 

•	 2-minute data interval – Using four parameter combinations (four algorithms) per instance and 
six concurrent instances of CANARY will produce alarm results for 24 combinations in 
approximately one day.  Fifty combinations could be tested in two days.  

o	 Using a dual-core computer would limit the analysis to three algorithms per instance and 
two instances concurrently to produce six combinations per day.  This would require 
approximately nine to ten days to analyze 50 combinations on a single dual-core 
computer.  A single quad-core computer could run three concurrent instances, cutting the 
required time to approximately six days.  
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6.0 Optimization 
The above discussion lays out a rationale for establishing rule-of-thumb parameters for any system. This 
rationale should help CANARY users reduce the number of unwanted alarms caused by noisy signals, 
without needing to run thousands of test runs to fully optimize their system.  This section discusses a 
simplified optimization process for users who want to optimize their CANARY analysis. In addition, an 
example of the optimization process is given for the T&E data. 

6.1 A Simple Optimization Protocol 
If the rule-of-thumb parameters listed in section 5.2 produce too many false alarms, the following 
protocol can be used to understand how varying each parameter impacts alarm behavior and ultimately 
how to improve the configuration settings for a given sensor station.  This protocol outlines a test for 48 
parameter combinations that can be used to understand alarm behavior at a sensor station. 

•	 BED window – A good starting point should correspond to 15 to 60 minutes of real time.  Values 
should be incremented in steps of approximately 5–15 minutes of real time.  It is worth 
considering what the shortest event duration of concern might be for a given application.  The 
entire event does not have to be within a BED window in order to trigger an alarm; in fact, 
CANARY has a shorter alarm delay with shorter BED windows. Increasing event threshold and 
outlier threshold can reduce the number of alarms for a given BED window, while maintaining 
the benefits of having a shorter BED window (short delay).  For 2-minute data interval, testing 
values between 8 and 20 will provide a good indication of how alarm behavior will change over 
this range.  This range responds to events as short as approximately 15 minutes (for 8), or on the 
high end (20) have a delay of around 40 minutes from the first signal change. 

•	 Event threshold – As previously discussed (see section 2.1), this parameter value works with the 
BED window to determine the number of outliers required to trigger an alarm.  The number of 
required outliers is a subset of the BED window; in other words, if the BED window is six, then 
the number of required outliers can be from one to six.  As such, the BED window and event 
threshold are intricately linked and a user should not vary the event threshold independently.  In 
this example, running 100 variations of this parameter does not make sense because it only results 
in six distinct behaviors corresponding to the one to six required outliers; at most, six values of 
this parameter should be investigated.  Instead of varying this parameter independently, event 
threshold should be calculated using the equation for minimum event threshold (see equation 
1 in section 2.1).  It is likely that most users only want alarms to occur when more than 50% of 
the data points in a BED window are considered outliers; for example, a user would only consider 
testing event threshold values relating to 4, 5 or 6 outliers are in a BED window of 6.  For larger 
BED windows, the increment between the number of required outliers could be 
expanded to two or three in order to reduce the number of testing steps (e.g., 10, 12, or 
15 out of a BED window of 15 may provide a good understanding of behavior). 

o	 It is worth mentioning again that BED window and event threshold work 
together. Increasing the percentage of required outliers within a BED window 
results in alarms that are trigged by contiguous sets of outliers. For example, if 
five out of six timesteps must be outliers to trigger an alarm (event 
threshold=0.9), they are likely to all be contiguous; however, if only 5 out of 10 
timesteps must be outliers (event threshold=0.38), then an alarm could be 
triggered by noisy data. In most applications, a shorter BED window coupled 
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with a higher event threshold likely alarms only for events caused by contiguous 
outliers, while maintaining a short alarm delay. 

•	 Outlier threshold – Table 15 shows the percentage of points that fall within ± x standard 
deviations of the mean on a normal probability curve, where x is the outlier threshold. These 
values help show how changing the outlier threshold changes the likelihood that a new signal 
value is considered normal. CANARY treats a point that fell within the range equal to ± x 
standard deviations as being part of the normal variability. A good starting point should be from 1 
to 1.5.  Incrementing this value by 0.01 only changes the amount of variation that is accepted as 
normal by an average of 0.27% within the outlier threshold range of 1 to 2.  This small change 
would likely not lead to significantly different alarm behavior between most tested increments.  
For this reason, outlier threshold values should be incremented in steps of 0.1, 0.15 or 0.25.  The 
Δ % column in Table 15 indicates the effective increase in the percent of data that is accepted as 
normal for each 0.25 step increase in outlier threshold (e.g., 16.4% more data that fits in a 
Gaussian distribution is accepted as normal when increasing outlier threshold from 0.5 to 0.75). 

Table 15: Effect of Outlier Threshold - Percentage of Data Surrounding the Mean that is Accepted 
as Normal Based on the Outlier Threshold Value (x) 

outlier % Treated 
threshold as Normal Δ % 
0.5 38.3% 

0.75	 54.7% 16.4% 
1 68.3% 13.6% 

1.25 78.9% 10.6% 
1.5 86.6% 7.8% 

1.75	 92.0% 5.3% 
2 95.4% 3.5% 

2.5	 98.8% 3.3% 
3 99.7% 1.0% 

•	 History window – Users should begin with a history window equivalent to 1.5 or 2 days (based 
on their data interval). Adjustments to this parameter should be made in increments that are 
equivalent to one-quarter of a day or more.  This value can be fixed for much of the optimization, 
with variations tested after other parameters have been optimized. 

Using the approach described above, the optimization process should require analysis of fewer than 200 
individual parameter configurations – in most cases, a logical approach should reduce this process to 100 
or fewer tested variations.  The optimization process can be simplified by remembering that slightly 
different combinations of parameters yield essentially the same alarm response; for example, requiring 
five outliers out of a BED window of seven might produce the same results as five outliers out of six.  For 
this reason, initial testing can be done with larger tested increments to establish how parameters impact a 
system.  Once large increments have been explored, smaller changes can be made to completely optimize 
the parameters. 
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Combinations of the following parameters provide a good initial understanding of how parameters might 
perform on a data set, values are listed for a station with a 2-minute data interval: 

•	 History window: 1440 (2 days) 
•	 Outlier threshold: 0.85, 1.0, 1.15, 1.3 
•	 BED window: 8, 10, 12, 15 
•	 Event threshold: Calculated using equation 1.  These should correspond to N-0, N-1 and 

N-2 for each BED window (e.g., 6, 7 and 8 required outliers for BED window of 8 – 0.8555, 
0.9649 and 0.9961, respectively).  

This corresponds to 48 parameter combinations.  After this initial set of tests, trends in behavior should be 
apparent, and an optimum set of parameters could be selected.  If further refinement is still desired, more 
parameters can be tested based on these results.  Further tests might only incrementally change one of the 
four parameters, focusing on the parameter that impacts that alarm behavior most. The set of parameters 
that results in the lowest number of alarms might not be the best set of parameters. If detecting short 
events, or events after only a short delay, is the primary goal of optimization, then further exploration of 
parameters using, for example, a BED window of 8 or 10, could provide the best match , even if a BED 
window of 15 results in fewer alarms. 

To aid in this testing process, CANARY can be configured to run using multiple sets of parameters within 
a single configuration file.  Each parameter set is defined as a different “algorithm” even though they 
might all use the same EDS algorithm (e.g., LPCF, see USEPA, 2013b for an example).  In this way, it is 
possible to group optimization test steps and thereby, reduce the total number of CANARY runs and the 
computational runtime.  Multi-algorithm configuration files have longer total runtimes, but can have 
better performance on a per test basis. Analyses for PUB datasets that included four to six algorithms had 
runtimes that were at least as fast or faster per algorithm than the corresponding single algorithm analysis.  
This merging of testing allows a user to set up a prolonged run that incorporates multiple tests without 
having to restart CANARY for each individual test or having to program a script to automate the starting 
of multiple runs.  In this way, multiple analyses could be run overnight, or over a weekend, without much 
effort. 

The goal of optimization is to minimize false alarms, not all alarms. This distinction is crucial to the 
optimization process.  It is easy to eliminate all, or at least most, alarms; however, the resulting analyses 
would not yield good real-event detection.  For example, as demonstrated in Section 4.1, increasing the 
BED window reduced false alarms, but it also reduced the number of true events detected and increased 
the detection delay.  It is important to keep the shortest event duration that might be significant in mind as 
parameter selection, or testing, is being done.  Low BED window values are recommended as they 
produce short delay-to-alarm times while maintaining the ability to detect short or long events. However 
the BED window should be long enough to contain several data points so that CANARY does not produce 
an alarm on a single outlier.  Adjusting the outlier threshold and event threshold values help reduce false 
alarm rates. 

The Water Quality Event Detection System Challenge (U.S. EPA, 2013a) utilized simulated events to test 
the true detection rate for a variety of EDSs.  This test provides some guidance on how to superimpose 
simulated events on top of real signal data.  In addition to simulated or real contamination events, it is 
important to consider events that could be linked to water quality, operations or treatment that an EDS 
might be able to detect (e.g., pipe break, chemical overfeed, or nitrification) (Hagar et al., 2013). 
Appendix B: What Constitutes an Event? discusses why an EDS might produce an alarm, which could 
help guide the parameter testing process by establishing when a disturbance is meaningful to a utility.   
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Users who chose to perform controlled testing in their system (with tracers or other materials) or 
artificially create events within their data should remember that the type of response selected biases 
CANARY’s alarm behavior.  A variety of concentrations and event durations should be tested to best 
understand how CANARY will behave for a variety of simulated events.  

6.2 Optimization Example Using T&E Data 
This section presents an example of the simplified optimization process using the 8-month 4-signal T&E 
data. As reported above, the 4-signal analyses were able to detect the same number of contamination 
events as their 9-signal counterparts for the majority of parameter sets. These signals were also felt to 
better represent the types of signals that would be present in a typical utility installation. 

6.2.1 Methods 
During this optimization process both the LPCF and multivariate nearest neighbor (MVNN) algorithms 
were used with each set of parameters. This is simply to demonstrate the several algorithms available 
within CANARY; however, LPCF is the most commonly used. A total of 48 parameter combinations 
were tested; each configuration had two algorithms, LPCF and MVNN, which produced a total of 96 
combinations.  The parameters tested are as follows: 

• Algorithms: MVNN, LPCF 
• History window: 1080 
• Outlier threshold: 0.85, 1.0, 1.15, 1.4 
• BED window: 6, 8, 12, 15 
• Event threshold: BED-1, BED-2, BED-3 

Table 16 contains the specific event threshold that relates to the BED-# value.  Values in parentheses in 
Table 16 are the number of required outliers in a given BED window. BED window values larger than 15 
were not tested because initial testing (in section 4.1) revealed that above 15 the number of true detections 
began to decline.  Only a history window of 1080 was selected for this example to simplify the discussion, 
and previous testing (see section 4.1) revealed that 1080 and 1440 performed similarly. 

Table 16: Event Threshold Values Used in Optimization Testing on T&E Data 

event threshold BED window 
6 8 12 15 

BED-1 0.8907 (5) 0.9649 (7) 0.9969 (11) 0.9996 (14) 
BED-2 0.6563 (4) 0.8555 (6) 0.9808 (10) 0.9964 (13) 
BED-3 0.3438 (3) 0.6368 (5) 0.9271 (9) 0.9825 (12) 

BED, binomial event discriminator; U.S. EPA Testing and Evaluation Facility 

6.2.2 Optimization Results & Discussion 
Table 17 contains the number of false alarms and true detections reported by CANARY for the period of 
11/01/2011 to 06/26/2012 for all parameter and algorithm combinations studied; the total number of 
alarms is the sum of these two values.  In general, the number of false alarms produced by both LPCF and 
MVNN algorithms are similar.  The exception is when using an outlier threshold of 1.0 and the MVNN 
algorithm.  This dramatically increased the number of false alarms reported by CANARY.  Examination 
of the alarm information showed that many of the extra alarms reported by CANARY were related to the 
conductivity signal.  It was expected that using an outlier threshold of 1.0 would result in an alarm total 
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between 0.85 and 1.15 false alarm totals, as was seen when using the LPCF algorithm. It is unclear why 
this outlier threshold value would increase the number of false alarms in this way. 

Table 17: False Alarms Reported by CANARY on T&E Data from 11/01/2011 to 06/26/2012 

BED 
window 

event 
threshold 

outlier threshold 

0.85 1.0 1.15 1.4 
Algorithm 

LPCF MVNN LPCF MVNN LPCF MVNN LPCF MVNN 
False Alarms (True Contaminant Detections) 

6 0.3438 

0.6563 

0.8907 

118 (14) 110 (12) 

68 (14) 63 (12) 

47 (14) 50 (12) 

59 (14) 1138 (10) 

42 (14) 475 (10) 

38 (14) 330 (10) 

37 (14) 50 (12) 

30 (14) 38 (10) 

29 (14) 36 (10) 

26 (14) 40 (10) 

25 (14) 31 (10) 

24 (14) 30 (10) 

8 0.6368 

0.8555 

0.9649 

56 (14) 55 (12) 

44 (14) 48 (12) 

38 (14) 41 (11) 

39 (14) 430 (10) 

36 (14) 325 (10) 

33 (14) 289 (11) 

29 (14) 37 (10) 

27 (14) 33 (10) 

25 (14) 30 (10) 

24 (14) 31 (10) 

22 (14) 26 (10) 

22 (14) 24 (10) 

12 0.9271 

0.9808 

0.9969 

36 (14) 39 (10) 

34 (14) 38 (10) 

33 (12) 38 (8) 

32 (14) 283 (9) 

32 (14) 270 (10) 

31 (12) 265 (8) 

24 (14) 28 (10) 

23 (14) 26 (10) 

22 (12) 26 (8) 

20 (14) 23 (10) 

20 (14) 23 (10) 

19 (12) 23 (8) 

15 0.9825 

0.9964 

0.9996 

32 (10) 37 (7) 

32 (10) 36 (6) 

32 (9) 36 (6) 

28 (10) 270 (6) 

28 (10) 263 (5) 

28 (8) 254 (4) 

23 (10) 26 (6) 

22 (10) 26 (6) 

22 (7) 26 (5) 

19 (10) 23 (6) 

19 (10) 23 (6) 

19 (6) 23 (4) 

BED, binomial event discriminator; LPCF, linear prediction coefficient filter; MVNN, multivariate nearest neighbor; U.S. EPA 
Testing and Evaluation Facility 

Figure 12 shows the false alarms per day reported by CANARY on T&E data from 11/01/2011 to 
06/26/2012.  The minimum number of false alarms occurred when using an outlier threshold value of 1.4 
(purple bars), a BED window of 12 or 14, and the LPCF algorithm; in this case, the false alarm rate was 
reduced to 0.08 false alarms per day or 19 false alarms over the 8-month studied period.  
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Figure 12: False alarms per day reported by CANARY on U.S. EPA Testing and Evaluation 
Facility data from 11/01/2011 to 06/26/2012.  Blue represents an outlier threshold value of 0.85, red 
is 1.0, green is 1.15 and purple is 1.4.  Dark colors indicate results from the linear prediction 
coefficient filter (LPCF) algorithm and lighter shades (overlaid) indicate results from the 
multivariate nearest neighbor (MVNN) algorithm.  

Figure 13 shows the number of true detections by CANARY on T&E data from 11/01/2011 to 
06/26/2012 for parameter and algorithm combinations.  This shows that the LPCF algorithm is able to 
detect 14 out of 14 contamination events for all parameter combinations up to a BED window of 12 and 
an event threshold of 0.9808.  The corresponding false alarm rate for this combination is 0.084 false 
alarms per day (or 20 false alarms in the studied period).  Note that this same low alarm rate was reached 
during the initial testing (section 4.1) when using a BED window of 30 and event threshold of 0.9; 
however, the true detection total dropped to only 3 detected events (see Table 7). This highlights that the 
false alarm rate can be reduced with a short BED window when the event threshold value is high enough 
to require more contiguous outliers to trigger an alarm.   

The reduction in true detections beyond a BED window of 12 and an event threshold of 0.9808 can be 
attributed to the testing conditions at T&E.  As noted in the previous discussion concerning T&E results 
(see section 4.1), the average contamination event duration was 20 minutes, or 10 timesteps.  The 
combination of the BED window of 12 and event threshold of 0.9808 corresponds to 10 out of 12 
timesteps must be an outlier to trigger an alarm. Any combination of BED window and event threshold 
that require more than 10 data points to be outliers results in lower detection rates.   
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Figure 13: True detections reported by CANARY on U.S. EPA Testing and Evaluation Facility 
data from 11/01/2011 to 06/26/2012.  Blue represents an outlier threshold value of 0.85, red is 1.0, 
green is 1.15 and purple is 1.4.  Dark colors indicate results from the linear prediction coefficient 
filter (LPCF) algorithm and lighter shades (overlaid) indicate results from the multivariate nearest 
neighbor (MVNN) algorithm.  

Results from the MVNN algorithm (Figure 12, Figure 13 and Table 17) contain similar trends to those 
produced by the LPCF algorithm. In general, increasing the outlier threshold parameter decreased the 
number of alarms produced.  One obvious difference relates to all analyses that use an outlier threshold of 
1.0 (light red in Figure 12).  The total number of alarms when using MVNN and an outlier threshold of 
1.0 resulted in a 10-fold increase in alarms, relative to the LPCF counterpart.  The alarm values when 
using the MVNN algorithm and an outlier threshold of 1.0 were expected to fall between the 0.85 and 
1.15 results, as was seen when using LPCF; no explanation for this behavior is available at this time.  

The number of true detections reported by CANARY using MVNN was lower with all tested parameter 
combinations relative to LPCF.  The maximum number of true detections by the MVNN algorithm was 
12 out of 14 contaminations events; two fewer than when the LPCF algorithm was used. Using the 
MVNN algorithm, the false alarm rate can be reduced to 0.2 false alarms per day while maintaining the 
ability to capture 12 out of 14 contamination events.  Additionally, no combination that included an 
outlier threshold of 1.0 exceeded a true detection capability of 11 out of 14 contamination events, despite 
the high number of false alarms present.   

It is important to note that these results do not show that the LPCF algorithm is better than the MVNN 
algorithm for all systems; only that the LPCF algorithm performed better for the combinations of 
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parameters tested for the T&E system.  Previous testing also showed that the percentage of true detections 
differed between these algorithms (Murray et al., 2010).  Although the LPCF algorithm was able to detect 
a higher percentage of events for two of the three locations used in previous testing, the MVNN algorithm 
was able to detect a higher percentage for the third location (Murray et al., 2010).  The MVNN and LPCF 
algorithms were able to detect 80% or more of the short contamination events present in the T&E data for 
the eight month period that was analyzed.   

This parameter optimization case study considered 48 combinations. The total runtime for this analysis 
was 52 hours. These results suggest that the optimal configuration would use the LPCF algorithm with a 
history window of 1.5 days, a BED window of 12, an outlier threshold of 1.4, and an event threshold of 
0.9271-0.9808.  This combination results in 14 out of 14 events detected and 20 false positives over the 8­
month period (0.084 false alarms per day or about one alarm every 12 days).   

Table 18 shows how these results compare to the rule-of-thumb parameter settings. The number of false 
alarms is reduced in half by this optimization procedure; however, the rate was already low at only one 
alarm about every 6 days (0.17/day). 

Table 18: Rule-of-Thumb vs. Optimized Parameter Performance 

Parameters Rule-of-thumb parameter values Optimized parameter values 
History window 1440 1080 
BED window 15 12 
Outlier threshold 1.15 1.4 
Event threshold 0.9 0.9808 
Output metrics 
Number of  false alarms (rate) 41 (0.17/day) 20 (0.084/day) 
Number of events detected 14 out of 14 14 out of 14 

BED, binomial event discriminator 
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7.0 Conclusion 
CANARY is a powerful and customizable EDS software, capable of differentiating real water quality 
events from background variability.  It requires a configuration file to get started, and some of the 
statistical parameters can be difficult for new users to determine; in particular, the BED window, outlier 
threshold, event threshold, and the history window. 

In section 2, an in-depth discussion of these four parameters was presented in order to provide a more 
intuitive understanding of each parameter. The history window is a moving time period over which 
historical data is used to calculate the baseline variability of a water quality signal. The outlier threshold 
is the number of standard deviations away from the mean the signal data must be in order to be declared 
an outlier and potentially indicate an event.  The BED window is a moving time period over which signal 
data is examined to look for the onset of events, and helps to reduce false positives by eliminating alarms 
from single data outliers. The event threshold is a probability that, if exceeded by CANARY’s event 
probability, indicates an event has occurred.  The BED window and event threshold are linked and should 
not be considered independent of one another. 

In sections 3 and 4, an analysis of data from five real-world sensor datasets is conducted in order to 
investigate their effect on CANARY’s alarm behavior. Increasing the BED window, outlier threshold or 
event threshold parameters was shown to decrease the number of alarms generated by CANARY in all 
five datasets.  Values of the history window parameter from 1.5 to 2 days generally minimized alarm 
rates. The number and type of signals also impacts results: removing certain water quality signals from 
analyses, specifically turbidity, resulted in fewer alarms in all datasets.  Overall, alarm rates were most 
sensitive to the outlier threshold parameter. 

A set of rule-of-thumb configuration parameters was developed and are recommended as a starting point 
for new users of CANARY, see 

Table 13 in section 5.2.  Using these parameters, CANARY was successfully able to detect 14 out of 14 
real contamination events that occurred during the analyzed timeframe for the T&E facility while the 
number of false alarms was 41 (0.17 alarms per day).   For PUB1 and PUB2, alarm rates were reduced 
below 0.5 alarms per day.  For PUB3 and PUB4, alarm rates were reduced below one alarm per day. 

A simple optimization procedure is outlined in section 6 to aid in testing more parameter combinations if 
the rule-of-thumb parameters produce too many alarms. This procedure is tested on the T&E data, and an 
improved configuration is generated that reduces the number of false alarms to 20 (or 0.083 alarms per 
day) while maintaining the ability to detect all test contaminant injections. 
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Appendix A: One-Day Detail for Contamination Detection for T&E 
This graphic shows the water quality signal data and CANARY output on one day in 2012 in order to 
demonstrate CANARY detection of an event in more detail. 

Figure 14: CANARY output for 02/01/2012 with four signals and two linear prediction coefficient 
filter (LPCF) algorithms from U.S. EPA Testing and Evaluation Facility (T&E) data.  

Figure 14 shows water quality data collected at T&E on 2/1/2012, including chlorine, pH, conductivity, 
and UVA signals.  On that day, two experiments with the chemical Atrazine were conducted, one at 1:00 
PM and the second at 2:30 PM. These events caused visible changes in the UVA signal and slight 
decreases in the chlorine signal.  Two events are detected (as shown by the blue dots) caused by rapid 
changes in the UVA data. 
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Appendix B: What Constitutes an Event? 
In order to be consistent with other CANARY documentations and studies, this report uses the term “false 
alarms” to describe alarms that do not correspond to known contamination events.  The EPA report for 
the event detection system (EDS) Challenge uses the term “invalid” to describe alarms that did not have a 
known origin in the challenge data (U.S. EPA, 2013).  The report’s corresponding discussion highlights 
that a false or invalid alarm might have a valid root cause that was not known by the challenge designers.  

A utility might wish to reduce the total number of alarms, and the associated follow-up investigations; 
however, it is important to establish why an EDS might produce an alarm in order to gain the most value 
out of an EDS.  Hagar et al. (2013) discuss the likelihood of CANARY, or another EDS, detecting six 
types of common water distribution system disruptions or issues that might be of interest to a utility 
(summarized in Table 19). 

The value of any EDS is found in its ability to detect changes in sensor signals.  Some EDSs focus on 
detecting when a signal exceeds a fixed bound (set-point), while others attempt to predict signal behavior 
to produce better results.  A signal change that is large enough to trigger an alarm from an EDS may have 
an underlying cause that has significance to a utility, even if it is not associated with a malicious event. 

In general, the reason an EDS might produce an alarm fall into five categories: 

1. material additions from an outside source (contamination event, cross-connection) 
2. component failure (pipe breaks, sensor failure or loss-of-calibration) 
3. operational changes within the system (variability of finished water quality) 
4. variability of source-water quality 
5. signal noise 

Of those listed reasons, only signal noise (5) generates truly false alarms. It is possible to dramatically 
reduce, or eliminate, alarms caused by a noisy signal; this can be done within CANARY, which does not 
require any pretreatment of the signal data.  This leaves four reasons that an EDS would produce an 
alarm. 

For the purpose of this report, real events were classified as being those related to material additions from 
an unknown source (1). At the T&E facility, contamination injections are performed in order to test the 
response of an EDS or sensor to contaminants and their ability to detect contamination events.  From a 
water security perspective, these material additions would be events that should be detected. 

Utilities might also wish to detect events associated with component failures (2).  Pipe breaks, 
specifically, could result in customer complaints and disruption in the water supply network. Early 
detection of pipe breaks will result in a prompt response and limit disruptions to the system. 
Additionally, an EDS is only as good as the sensor data that it is analyzing, so alarms that might be 
indicative of sensor problems could be equally desirable.      

The detection of the two remaining reasons an EDS might produce an alarm, operational changes and 
variability of source water, might or might not be desired by a utility. Operational changes and water 
quality variability can trigger alarms because they will cause a change in the sensor signal at a station. 
These types of alarms could be considered invalid because they do not relate to a security concern. On 
the one hand, setting CANARY to detect such events would provide confidence that CANARY is 
working, and would detect rarer events (such as 1 and 2).  On the other hand, an operational change or 
variability in source or finished water quality that does not exceed set-points is probably anticipated and 
therefore the operators do not need to be alerted to such a change.   
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Some utilities might wish to monitor the water quality of source water. In some communities, the source 
water is the drinking water, so this is also their finished water quality; whereas, for other utilities, 
knowledge about the source water quality might aid in the treatment process.  Water quality at a source 
could change because of a contamination event, which would be considered a valid alarm; however, 
source water quality could change due to rainfall or other natural events might be considered an invalid 
event. Monitoring source water quality might produce some valid alarms; however, source water quality 
could produce a higher number of invalid alarms.  A contaminant found in source water might be 
removed as part of the treatment process.  If the contaminant is removed during the treatment process, 
then the treatment has worked; if it was not, then any signal change associated with that contaminant 
should occur in the finished water’s signal as well as a source-water’s signal.  

While changes in source water quality could indicate valid events, many utilities might consider 
operational changes to be invalid alarms.  These changes include water treatment chemical additions or 
switching, or mixing, of water sources. They would be considered invalid alarms when they do not 
exceed set-points for a water quality parameter. These alarms might provide useful information to a 
utility.  A chemical overfeed will trigger an alarm because it results in changes in water quality signals.  
These could possibly be caused by a control system or valve problem, and a utility would wish to correct 
this because it will reduce their chemical usage. Mixing two finished water sources would likely also be 
considered an invalid alarm; however, if the water quality of these sources is different an EDS can 
produce an alarm. Alarms related to mixing events could also be valuable, in that they verify that a 
system change occurred.  For example, if additional water is pumped into the network from a storage tank 
during peak demand periods, an alarm might occur at the beginning of this process change; this alarm 
would validate that a control system change had occurred in the system.  Control systems might include 
built in system integrity checks; however, this type of alarm would provide a secondary verification of a 
system change. Additionally, a decrease in the quality of water in a storage tank could indicate a problem 
in that tank. 

An EDS is designed to produce an alarm whenever a signal change meets certain criteria.  For set-point 
EDSs, the criteria would be whether a signal exceeds a set-point range.  For algorithms within CANARY 
that utilize signal prediction, the criteria are whether a signal deviates from a predicted behavior and for 
how long.  If a signal deviates from a normal behavior for a sufficiently long time, then CANARY will 
produce an alarm.  Many normal operational changes will be captured as normal behavior; however, some 
changes might trigger an alarm. 

The preceding discussion outlined why an EDS might produce an alarm, but is not meant to suggest that 
normal operations will always trigger alarms; however, there could be some unrealized value in invalid 
alarms. Alarms associated with noisy signals can be reduced or eliminated within CANARY by altering 
configuration parameters.  Valid alarms would be related to the detection of contamination events and 
system disruptions (i.e., pipe breaks).  Utilities could choose to consider alarms related to source water 
quality changes or operational changes as valid or invalid depending on how they hope to use their EDS.   

It is possible to reduce invalid or false alarms reported by CANARY while maintaining a high true 
detection rate.  A parameter combination that eliminates all events triggered by normal operational 
variability will likely drastically reduce or eliminate CANARY’s ability to detect true contamination 
events. Furthermore, these invalid alarms might provide valuable information to utilities. 
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Table 19: Summary of Sensor Responses and Likelihood of Detection for Common Issues in Water 
Distribution Systems 
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Time 
Scale 

EDS 
Detection 
Potential 
§ 

Pipe Break – † + – Hours High 
Corrosion – – + + Weeks 

to years 
Low 

Cross-
connection 

– + ± – Hours Medium 

Nitrification – – + – + Weeks Medium 
Decay in 
Water Quality 

– – – + Days to 
months 

Medium 

Pressure 
Transients 

– Seconds 
to 
minutes 

Low* 

Caustic 
Overfeed 

+ + – + Hours High 

Disinfectant 
Overfeed 

+ + + + Hours High 

a.Oxidation Reduction Potential, b.Total Organic Carbon, c.Dissolved Oxygen 
† Shading = not likely a viable indicator of that type of incident
§.The environmental detection system (EDS) detection potential of each type of event is predicted based on the 
strength of signal responses, proximity of an event to a sensor station, length of a typical event and the 
responsiveness of the EDS. (Information consolidated from Hagar et al., (2013) “The Potential for Using the 
CANARY Event Detection Software to Enhance Security and Improve Water Quality.” Proceedings, Environmental 
& Water Resources Institute, Cincinnati, OH.) 
* Pressure transients are listed as having a low potential for detection because the duration is so short.  These could 
potentially be detected; however, it is likely that false alarm rates would increase in order to capture these transient 
events.  If desired, an analysis of only a pressure signal might provide utilities the ability to detect these pressure 
events at a higher likelihood. 
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Appendix C: Event Detection Software Challenge 
In addition to the analyses described in this report, data from the Water Quality Event Detection Software 
Challenge (Challenge) (U.S. EPA, 2013) was also analyzed using the same methods described in the 
optimization section.   The Challenge data included simulated events (in comparison to the real 
contamination experiments conducted at T&E); these events simulated sensor responses for six different 
contaminants, at four different times, with two different concentrations and two different durations for a 
total of 96 simulated events per station.  Refer to the original Challenge report for a full discussion on 
how the Challenge was conducted, including how events were simulated (U.S. EPA, 2013). 

During the EDS Challenge, water quality sensor signal data for six stations was given to each EDS team; 
this data did not contain any simulated events and was assumed to be free of any type of water quality 
events.  The teams provided a set of configuration parameters back to the designers of the Challenge to be 
used in the actual testing, based on this training data.  The teams involved were not aware of the specific 
nature of the simulated events. 

As the Challenge provided a rich set of simulated events with which true detection rates can be measured, 
this appendix applies the rule-of-thumb parameters to the Challenge data in order to provide more 
evidence that these parameters can be used to detect events. The results in this section should not be 
compared directly to the Challenge results as the same rigorous testing approach was not used here.  In 
particular, this appendix focuses on true detection rates, but does not analyze all the data needed to 
produce comparable false alarm rates. 

The rule-of-thumb parameters used in this analysis were selected based on the process described in this 
report (and its results) without any consideration of the Challenge data. In addition to the rule-of-thumb 
parameter testing, an optimization process was undertaken to find out how many true detections would be 
found for each of the six stations. This analysis focused on two questions: (1) how many true detections 
were possible, and (2) how many parameters were able to maintain a high level of true detections.  These 
results are presented here as further testing for the configuration parameter selection process described 
above, and the optimization process described in Section 6.0, for a dataset that includes simulated events.  

C.1 Methods 

The results discussed in this appendix focus on analyses performed on previously published Challenge 
data (U.S. EPA, 2013).  Challenge data was analyzed by CANARY using data from six stations 
(designated A, B, D, E, F and G).  

The following parameters were selected for the initial assessment of how CANARY performs with 
Challenge data: 

• Name: Initial Parameters 
• Algorithm: LPCF 
• BED window: 10 
• Event threshold: 0.99 
• Outlier threshold: 1.4 
• History window: 1.5 days (calculated based on the data interval present in each dataset) 

These initial parameters were chosen based on a slight variation of the rule-of-thumb approach to 
parameter selection (as described below). These parameters were tested on all stations.  The stations had 
different data intervals (2, 5, or 20 minutes) and thus the history window was calculated to be 1.5 days 
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based on the data interval found in each system. The combination of a BED window of 10 and an event 
threshold of 0.99 results in 9 out of 10 timesteps being outliers in order to trigger an alarm. The BED 
window of 10 was a compromise value that would work for all of the data intervals utilized in the six 
stations. An outlier threshold of 1.4 was used because two of the six stations had high variability in water 
quality (as reported in U.S. EPA, 2013a). (Note that for real world application of CANARY, 
configurations should be specific to each station.  For this analysis, some of the parameters were kept 
constant across stations for simplicity.) 

The above parameters performed reasonably well for all stations; however, the true detection rate from 
one station was well below the detection rate from another station. This preliminary result prompted 
further testing on the Challenge data.  Analyses using the initial parameters present both a true and false 
alarm value; however, for the second part of this testing only true alarm rates are discussed. This second 
set of testing was geared towards determining the maximum number of detectable events.  Only the best 
parameter set from each station will be used to analyze the minimum false alarm rate that maintains the 
maximum number of detected events. 

A script was used to test a series of parameters.  Ninety-six combinations of parameters and algorithms 
were tested, as follows: 

• Name: Parameter Testing 
• Algorithm: LPCF, MVNN 
• History window: 1.5 days (calculated based on the data interval present in each dataset) 
• BED window: 6, 8, 10, 12 
• Event threshold: BED-1, BED-2, BED-3 
• Outlier threshold: 1.0, 1.15, 1.3, 1.5 

The event threshold value was calculated for each BED window to satisfy the three values listed.  For 
example, event threshold values were calculated for 3/6, 4/6 and 5 out of 6 required outliers. The 
resulting event threshold values for this example were 0.3438, 0.6563 and 0.8907, respectively.   

Both LPCF and MVNN algorithms were tested in order to determine if there was a difference in true 
detection rates. 

In order to be consistent with Challenge results, an alarm was considered to be a true detection if it 
occurred within the timeframe of a simulated event.  Multiple alarms within a simulated event were 
counted as a singular detection, ensuring that a maximum of 96 true detections could occur for each 
station. 

C.2 Results 

The results reported in this Appendix are divided into two sections.  Section C.2.1 presents the results 
using the LPCF algorithm and an initial set of parameters derived from the rule-of-thumb approach of 
parameter selection.  Section C.2.2 presents results from an optimization process, focused on determining 
the maximum number of detectable events for each station. These analyses used both the LPCF and 
MVNN algorithms. 

C.2.1 Initial Parameters 

Results from CANARY analyses using the LPCF algorithm and the initial parameters are summarized in 
Table 20.  The percent detected is also presented graphically in Figure 15.  The initial parameter set was 
able to detect a higher percentage of simulated events in data from four out of six stations (B, D, E & G), 
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relative to the CANARY results reported in the Challenge (U.S. EPA, 2013).  The results for Station A 
data was approximately the same, with the initial parameters detecting only 3% fewer events.  The initial 
parameters detected 24% fewer events for Station F data. 

Table 20: True Detection and Invalid Alarm Rate Comparison between Rule-of-Thumb Parameters 
and Challenge Results 

Location Data interval 

Initial Parameters 

Detection (%) Invalid Alarms 

Event 
Challenge* 
Detection 

Detection System 

(%) Invalid Alarms 
Station A 
Station B 
Station D 
Station E 
Station F 
Station G 

5 
20 
2 
10 
2 
2 

67 69.8 99 
70 72.9 126 
89 92.7 151 
82 85.4 159 
60 62.5 112 
91 94.8 106 

70 
37 
62 
71 
83 
83 

72.9 38 
38.5 54 
64.6 96 
74.0 23 
86.5 1146 
86.5 90 

Total 459 79.7 753 406 70.0 1447 
*Source: U.S. EPA, 2013, EPA/817/R-13/002 
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Figure 15: Percentage of detected events reported by CANARY for Challenge dataset.  Blue 
indicates results reported in the Environmental Detection System Challenge (U.S. EPA, 2013, 
EPA/817/R-13/002) and red indicates results for the initial parameter set (listed above). 

Table 20 also contains the number of invalid alarms for each station for the initial parameters and as 
reported by the Challenge.  With the exception of Station F, parameters used in the Challenge resulted in 
fewer invalid alarms.  Averaging all six stations, these initial parameters produce an invalid alarm 0.488 
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times per day (approximately once every two days), compared to 0.239 invalid alarms per day when 
Station F is excluded (or 0.792 invalid alarms per day when Station F is included).   

The initial parameters performed well for the six stations studied here.  An average detection rate of 
approximately 80% for all six stations, with a variety of data intervals, confirms that these parameters are 
a good starting point for further optimization. The invalid alarm rates are higher than those reported for 
the Challenge results; however, the average invalid alarm rate was less than one alarm every two days.   

C.2.2. Parameter Testing 

The initial parameter tests revealed that the initially selected parameters performed well when using a 
variety of data intervals (ranging from 2 to 20 minutes).  Those parameters were able to detect more than 
60% of the simulated events at each individual station, and over 90% for Stations D and G.  The 
percentage of detected events using Station F data was lower than expected; however, this station proved 
challenging for all EDSs in the Challenge. This prompted further testing – focused on determining how 
many events could be detected for each station. 

In what follows, the simplified optimization process discussed within this report is utilized.  The history 
window for all tests was 1.5 days – calculated for each station’s data interval. Forty-eight parameter 
combinations were tested with either the LPCF or the MVNN algorithm, as described above.   

This section focuses on the maximum number of events that could be detected for each station.  The 
invalid alarm rates are presented for the parameter combination that achieved the maximum event 
detection for each algorithm for each station. Figure 16 contains a graphical representation of the average 
and maximum percentage of true detections for each station, divided by algorithm (CANARY Challenge 
results [green bars] are included for comparison). The averages are calculated over all variations of 
parameters tested; in comparison, the maximum values are for a single set of parameter values that 
achieved the maximum number of simulated events detected. Averages are included to highlight how 
much latitude in parameter selection is available for each station, based on parameters tested; that is, if the 
average is near the maximum percent detected, then CANARY is likely to maintain a high true positive 
rate while providing some ability to reduce invalid alarms.  For example, Stations D and G maintain a 
high true detection rate throughout the range of parameters tested, which will allow for more flexibility in 
selecting parameters that reduce invalid alarms. 
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Figure 16: Summary of average and maximum percent detected reported by CANARY for the 
Challenge dataset.  Green indicates results reported in the Challenge (U.S. EPA, 2013, EPA/817/R­
13/002), blue indicates the linear prediction coefficient filter (LPCF) algorithm and red indicates 
the MVNN algorithm.  Dark shades are average (over all tested parameters) and light shades are 
the maximum percentage of detected events. 

Table 21: Maximum Percentage of Detected Events by CANARY for the LPCF and MVNN 
Algorithms for the Parameter Testing Combinations 

Location Maximum Percent Maximum Percent Water Quality 
Detected LPCF Detected MVNN Variability* 

Station A 81.25 94.79 Medium 
Station B 96.88 100.0 Low 
Station D 95.83 100.0 Medium 
Station E 91.67 100.0 Low 
Station F 79.17 87.50 High 
Station G 98.96 97.92 High 

*Source: reported in Challenge (U.S. EPA, 2013, EPA/817/R-13/002)
 
LPCF, linear prediction coefficient filter; MVNN, multivariate nearest neighbor
 

Table 21 contains the maximum percentage of true detections of simulated events reported by CANARY 
for each station for both algorithms using the Parameter Testing combinations.  These results show that at 
least one combination of parameters was able to achieve this level of true detections.  Also contained in 
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this table are the water quality variability that was reported for each station in the Challenge report (U.S. 
EPA, 2013); this is only intended to provide a general idea of how variable the water quality was during 
the analyzed period.  CANARY was able to detect one-hundred percent of the simulated events in three of 
the stations using the MVNN algorithm and at least one combination of parameters tested (Stations B, D 
& E).  At least one parameter combination resulted in a true detection rate of over 87.5% for all stations 
using the MVNN algorithm.  For the LPCF algorithm, the best true detection rate for any combination 
was 98.96%; with CANARY able to detect over 90% of simulated events for four out of six stations.  The 
MVNN algorithm had a higher maximum detection rate within the range of parameters tested for five out 
of six stations – the only exception being Station G. 

Figure 17 – Figure 22 contain graphical representations of the percentage of simulated events detected for 
each parameter combination tested for Station A – Station G.  The outlier thresholds of 1.0, 1.15, 1.3 and 
1.5 are represented by blue, red, green and purple, respectively.  Dark shades indicate the use of the LPCF 
algorithm and lighter shades represent when the MVNN algorithm was used.  Results from the MVNN 
algorithm were overlaid on the results from the LPCF algorithm.  

The results of these analyses are applicable only to the stations that were tested and during the period that 
was tested. While universal predictions cannot be made based on these results, general trends can help in 
the parameter selection process. 

In general, event detection rates should decrease with increasing outlier threshold values.  As the outlier 
threshold is increased, more variation is included in the baseline behavior and therefore it is less likely to 
trigger an alarm.  This type of behavior can be seen for stations that utilize a data interval of five minutes 
or less (Stations A, D, F and G shown in Figure 17, Figure 19, Figure 21 and Figure 22).  Stations B and 
E (20- and 10-minute data intervals, respectively) exhibit much less consistent behavior throughout the 
range of tested parameters – specifically using the LPCF algorithm (see Figure 18 and Figure 20).  Two 
factors might play a role in this inconsistency: the method for simulating events; or, the loss of detail 
associated with increasing the data interval. 
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Figure 17: Percent of simulated events detected by CANARY for Station A (5-minute data interval).  
Outlier threshold values of 1.0, 1.15, 1.3 and 1.5 are indicated by blue, red, green and purple.  Dark 
shades indicate linear prediction coefficient filter (LPCF) and light shades indicate MVNN 
(overlaid). 
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Figure 18: Percent of simulated events detected by CANARY for Station B (20-minute data 
interval).  Outlier threshold values of 1.0, 1.15, 1.3 and 1.5 are indicated by blue, red, green and 
purple.  Dark shades indicate linear prediction coefficient filter (LPCF) and light shades indicate 
MVNN (overlaid). 
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Figure 19: Percent of simulated events detected by CANARY for Station D (2-minute data interval).  
Outlier threshold values of 1.0, 1.15, 1.3 and 1.5 are indicated by blue, red, green and purple.  Dark 
shades indicate linear prediction coefficient filter (LPCF) and light shades indicate MVNN 
(overlaid). 
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Figure 20: Percent of simulated events detected by CANARY for Station E (10-minute data 
interval).  Outlier threshold values of 1.0, 1.15, 1.3 and 1.5 are indicated by blue, red, green and 
purple.  Dark shades indicate linear prediction coefficient filter (LPCF) and light shades indicate 
MVNN (overlaid). 
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Figure 21: Percent of simulated events detected by CANARY for Station F (2-minute data interval).  
Outlier threshold values of 1.0, 1.15, 1.3 and 1.5 are indicated by blue, red, green and purple.  Dark 
shades indicate linear prediction coefficient filter (LPCF) and light shades indicate MVNN 
(overlaid). 
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Figure 22: Percent of simulated events detected by CANARY for Station G (2-minute data interval).  
Outlier threshold values of 1.0, 1.15, 1.3 and 1.5 are indicated by blue, red, green and purple.  Dark 
shades indicate linear prediction coefficient filter (LPCF) and light shades indicate MVNN 
(overlaid). 

The effect of data interval and the effect of how the events were simulated have different impacts on this 
discussion.  Previous work showed that increasing the data interval reduced the detection rate of 
CANARY and other EDSs (Allgeier et al., 2011).  When the duration of an event is shorter than the data 
interval, water quality sensor signals might not show any changes in values; they might miss the event 
entirely.  In addition, if the event duration is not much larger than the data interval, the number of 
corresponding outliers detected will be small; therefore, events are only detected for appropriate values of 
BED window and event threshold.  In both cases, a smaller data interval is preferred to maximize the 
probability of detecting a high percentage of events.  While events with long durations could be captured 
using a variety of data intervals, the probability of detecting shorter events is reduced for longer data 
intervals. 

However, the Challenge results did not show this expected trend of decreasing true detection rates with 
increasing data intervals. This is because in the Challenge, event durations were not constant but were a 
function of data interval. Previous testing (Allgeier et al., 2011) compared the detectability of an event 
with a given duration with various data intervals; whereas, the Challenge simulated events that were 
shortened or lengthened depending on the data interval. Simulated events lasted one or two hours when 
using a data interval of two minutes and 9 or 19 hours with a data interval of 20 minutes. It is expected 
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that the detectability of 1- to 2-hour events when using a data interval of 20 minutes would be decreased 
relative to the results presented here. 

This approach to testing in the Challenge makes these results not comparable to the previous study by 
Allgeier et al., and make it difficult compare across stations.  However, some general trends can be 
observed.  Results from Station G (Figure 22) are very consistent throughout all 48 tested combinations 
and between both algorithms tested – all 48 parameter combinations resulted in a greater than 90% 
detection rate for both algorithms. Station D (Figure 19) results also show a greater than 90% detection 
rate for the majority of tested parameter sets. This consistent true detection rate throughout the tested 
range of parameters provides greater flexibility when selecting parameters that will minimize false 
alarms.  In other words, the user does not have to try too many configuration settings before finding one 
that performs very well, and the initial parameter settings might perform adequately. In contrast, Station 
B (Figure 18) only has 9 out of 48 sets of parameters that maintain a greater than 90% detection rate using 
the LPCF algorithm and 15 sets when using the MVNN algorithm.   For Stations D and G, it is likely that 
there is a tested parameter set that would maintain a high percentage of true detections while minimizing 
the invalid alarms. For Station B, there is a clear tradeoff in order to reduce false alarms, the true event 
detection rate must also be reduced.  

Stations D and G show a wide latitude in parameter values that result in a high detection rate; this range is 
expected to be greater for systems with short data intervals. Of the Challenge Stations, D and G show the 
highest latitude (both with 2-minute data intervals), followed by A and F (5 and 2-minute data intervals), 
and Stations B and E (20 and 10-minute data intervals respectively) have the lowest latitudes of those 
tested.  Available latitude in parameter selection should not be confused with maximum detectability of 
events.  High latitudes suggests that a user can reduce false alarms while not appreciably reducing the true 
positive rate; it does not always follow that the true positive rate is high, just that it is less sensitive to 
changes in parameter values.  

Within the set of Testing Parameters, no combination was found that could detect 100% of events at three 
of the six stations. At least one combination of parameters was able to detect all simulated events using 
the MVNN algorithm for three out of the six stations.  Ninety-one out of 96 simulated events or more 
were detected in two other stations using the MVNN algorithm.  Three out of six stations detected at least 
91 simulated events using the LPCF algorithm and at least one combination of parameters tested.  At least 
one of the combinations of parameters tested was able to detect at least 76 of the simulated events for all 
stations. 

The results from the Challenge and T&E datasets highlight the power of CANARY to detect true events 
when using either algorithm.  In contrast to the results of CANARY testing with data from T&E (see 
sections 4.1 and 6.0), for five of the six stations studied, the MVNN algorithm performed better than the 
LPCF algorithm.  The MVNN algorithm’s ability to detect more events might have been related to the 
method of simulating the events in the Challenge’s stations; however, these results show that both 
algorithms can produce a high percentage of true positives. 

This testing did not include a full investigation of invalid alarms for each parameter combination; 
however, it is clear that there is a significant amount of latitude in parameter selection that would enable a 
utility to reduce invalid alarms while maintaining a high degree of true event detections. Table 22 
contains the parameters used for each algorithm with each station that were expected to produce the 
fewest invalid alarms while maintaining the highest true detection percentage. Table 23 contains the 
maximum true detection percentage and number of invalid alarms reported for the parameters listed in 
Table 22.  
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Table 22: Summary of CANARY Parameters that Maintained the Maximum True Detection Rate 

Location Algorithm BED Window Event Threshold Outlier Threshold 
Station A LPCF 10 0.9454 1.0 

MVNN 10 0.8282 1.0 
Station B LPCF 8 0.8555 1.0 

MVNN 10 0.8282 1.15 
Station D LPCF 12 0.9969 1.0 

MVNN 12 0.9969 1.15 
Station E LPCF 10 0.8282 1.0 

MVNN 12 0.9969 1.0 
Station F LPCF 8 0.8555 1.0 

MVNN 8 0.6368 1.0 
Station G LPCF 12 0.9969 1.0 

MVNN 12 0.9969 1.0 
BED, binomial event discriminator; LPCF, Linear Prediction Coefficient Filter; MVNN, multivariate nearest neighbor 

Table 23: Summary of Invalid Alarms Reported by CANARY for Parameter Sets that Resulted in 
the Maximum True Detection Rates 

Location LPCF LPCF MVNN MVNN 
% Detected Invalid Alarms % Detected Invalid Alarms 

Station A 81.25 135 94.79 166 
Station B 96.88 221 100.0 427 
Station D 95.83 224 100.0 282 
Station E 91.67 256 100.0 928 
Station F 79.17 303 87.50 331 
Station G 98.96 147 97.92 385 

LPCF, Linear Prediction Coefficient Filter; MVNN, multivariate nearest neighbor 

Parameters in Table 22 were selected to minimize invalid alarms while maximizing true detections.  An 
alternative approach would be to ensure that a set of parameters produced at least a minimum level of true 
event detection (e.g., 90%), or that a minimum percentage of events with longer durations are detected. 
Invalid alarm rates (see Table 23) correspond to below two alarms per day for all stations except when the 
MVNN algorithm was used at Station E. The MVNN algorithm was able to detect 100% of the simulated 
events; however, the invalid alarm rate was nearly four per day, which is likely unacceptable for most 
applications. This case highlights the direct tradeoff between true event detection and invalid alarm rates; 
that is, it was possible to detect all of the simulated events, but in this case it resulted in a higher than 
acceptable invalid alarm rate.  At other stations, the invalid alarm rate ranged from 1.62 alarms per day 
down to 0.57 alarms per day; 6 of the 12 combinations resulted in an alarm rate of less than one invalid 
alarm per day.  Invalid alarm rates could be further reduced when selecting parameters to maintain a 
minimum acceptable detection rate rather than maximizing detection. 

For the Challenge data, the true detection rate could also be affected by the nature of the simulated events. 
Figure 23 contains two simulated events of the same contaminant with the same start time but with 
differing durations.  The event with the shorter duration (dashed line) reaches its maximum concentration 
– that is, the largest deviation from baseline – much sooner than in the longer event (solid line).  Both 
examples clearly have deviations from baselines; however, it is possible that the difference in the shape of 
signal response will affect detectability – specifically when simulating lower concentration events.  Both 

67 



        
 

   
        

         
 

  

    
 

  
  

 
   

    
       

 
    

      

 

 

     
     

 

algorithms were better able to detect the shorter duration simulated events in five out of the six stations. 
Some parameter combinations resulted in equal detection of short and long duration simulated events; 
however, in five out of the six stations, when a difference in detection percentage was observed, a higher 
percentage of these cases favored detection of the shorter event. Station B (with a 20-minute data 
interval) was the only station where the longer simulated events were more readily detected, with results 
from the LPCF algorithm having approximately the same behavior for both length events and only 
slightly favoring longer events.   

Despite having different simulated sensor response profiles, the majority (or in some cases, all) of the 
events were detected with at least some of the parameter combinations tested.  This suggests that 
CANARY is able to detect events with differing sensor response profiles and those with different 
durations.  This difference in simulated response profiles is introduced as a reason why parameter latitude 
is reduced for some stations.   In addition to testing two different event durations, two concentrations 
were also tested for each simulated contamination event.  For shorter events, detection of events was 
approximately equivalent for the majority of tested concentrations.  For longer simulated events, those 
with a lower concentration were detected with a lower frequency than those with a higher concentration. 
This effect was not unexpected, as a small signal change over a long timeframe might not likely to be 
considered significant with many combinations of parameters.  Detection of events with a minimal 
change might require a combination of parameters that is very sensitive – that is, those that will result in a 
large number of false positives.   
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Figure 23: An example comparison of simulated events from a Challenge dataset.  Solid lines 
represent a simulated long event and dashed lines represent a simulated short event. 
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In simulating future events, it might be appropriate to test not only different concentrations and durations, 
but also sensor response shape to gain a better understanding of how CANARY will behave with a wide 
variety of simulated events.  Sensor response profiles could differ between distribution systems due to 
differences in pipe size, flow rates, mixing behavior and water chemistry; so, events must be simulated 
based on knowledge of the system and how contaminants affect sensors.  Sensors monitoring large water 
mains might respond more slowly than a smaller pipe in a testing facility (e.g., the ones found at T&E), 
because contaminants must become mixed into the water in order to register a water quality signal 
change.  

For comparison, Figure 24 contains adjusted signal responses for a contamination event performed at the 
T&E facility.  In order to better visual signal changes, Figure 24 normalizes the signal data; such that 
100% equals the maximum signal change (positive or negative) and 0% represents the normal signal 
behavior before the event. In general, signal responses to contamination events performed at the T&E 
facility tended to be abrupt (i.e., have a sharp response) for chlorine (blue and green) and UVA (cyan) 
sensors and resemble a normal distribution for conductivity (red) or turbidity (not shown for the plotted 
example due to lack of response to this contaminant) sensors.  Changes in the ORP signal (purple) 
occurred more slowly (i.e., the ORP reached a maximum deviation after other signals had returned to 
normal, and it did not return to normal until approximately 1.5 hours after the injection). 
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Figure 24: An example of an adjusted signal responses for example contamination event at the U.S. 
EPA Testing and Evaluation Facility (T&E) facility. 

In addition, the results presented for the Challenge stations were obtained without incorporating alarms, 
calibration or operational signals in the CANARY analyses described in this section. This was done 
because not all stations provided equivalent data related to calibration, alarms or operational signals; so, 
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omitting these signals equalized the analysis process.  The use of these signals might have reduced the 
invalid alarm rates below the levels reported in this section.  

C.3 Conclusions 

The results of retesting the Challenge data provided further information into how CANARY performs, 
and additional evidence that the recommended rule-of-thumb parameters are capable of detecting real or 
simulated events.  At least one combination of the tested parameters was able to detect over 90% of the 
simulated events in four stations using the LPCF algorithm and five stations using the MVNN algorithm. 
At least one combination of the tested parameters was able to detect over 75% of the simulated events in 
all stations using either algorithm. 

These results highlight that CANARY is able to maintain a high percentage of true positive detections 
using water quality data from a variety of stations.  Stations with data intervals less than five minutes had 
a wider latitude in parameter selections, which will provide more choices in parameters in order to 
minimize false alarms. 
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Appendix D: Full Alarm Data for Testing of all Stations 
This appendix provides complete results from section 4 for all values of history window, binomial event 
discriminator (BED) window, and outlier threshold.  These tables expand on Table 7 and Table 10 from 
section 4. 

Table 24: Total Alarm and True Detections Reported by CANARY for 11/01/2011 to 6/27/2012 for 
T&E Data 

outlier 

BED window 

8 15 20 30 

history window 

threshold 

36
0

72
0

10
80

14
40

21
60

36
0

72
0

10
80

14
40

21
60

36
0

72
0

10
80

14
40

21
60

36
0

72
0

10
80

14
40

21
60

 

Total Alarms (Detected Events) 

0.85 121 
(14) 

70 
(14) 

58 
(14) 

62 
(14) 

58 
(14) 

83 
(14) 

52 
(14) 

49 
(14) 

53 
(14) 

51 
(14) 

72 
(10) 

43 
(10) 

43 
(10) 

45 
(10) 

41 
(8) 

53 
(4) 

36 
(5) 

34 
(4) 

36 
(4) 

34 
(4) 

1 93 
(14) 

53 
(14) 

50 
(14) 

49 
(14) 

53 
(14) 

73 
(14) 

47 
(14) 

46 
(14) 

46 
(14) 

46 
(14) 

67 
(10) 

39 
(10) 

40 
(10) 

39 
(10) 

36 
(8) 

59 
(4) 

34 
(6) 

29 
(4) 

31 
(4) 

29 
(4) 

1.15 52 
(14) 

41 
(14) 

41 
(14) 

43 
(14) 

46 
(14) 

49 
(14) 

39 
(14) 

38 
(14) 

41 
(14) 

42 
(14) 

43 
(10) 

33 
(9) 

33 
(10) 

34 
(10) 

32 
(8) 

36 
(4) 

28 
(3) 

24 
(3) 

25 
(4) 

24 
(4) 

1.4 47 
(14) 

37 
(14) 

36 
(14) 

36 
(14) 

40 
(14) 

45 
(14) 

35 
(14) 

34 
(14) 

34 
(14) 

37 
(14) 

36 
(8) 

30 
(10) 

29 
(10) 

29 
(10) 

28 
(8) 

31 
(4) 

22 
(6) 

20 
(3) 

20 
(3) 

22 
(4) 

BED, binomial event discriminator; T&E, U.S. EPA Testing and Evaluation Facility 

Table 25: Total Alarms Reported by CANARY for 01/01/2008 to 08/31/2008 for PUB Stations 

Facility 
outlier 
threshold 

BED window 

6 8 12 

history window 

14
4

28
8

43
2

57
6

86
4

20
16

14
4

28
8

43
2

57
6

86
4

20
16

14
4

28
8

43
2

57
6

86
4

20
16

 
PUB1 

0.85 

1 

1.15 

507 232 

330 132 

233 84 

173 149 

86 74 

50 34 

112 

58 

24 

87 

41 

21 

443 197 137 125 99 

294 117 65 65 44 

201 64 38 24 21 

70 

31 

19 

365 159 

242 84 

156 46 

114 100 

52 48 

21 16 

73 

32 

6 

53 

23 

11 

0.85 392 204 163 135 107 95 374 187 153 125 103 90 336 167 135 113 95 80 

1 284 154 119 97 76 71 262 144 112 91 75 70 237 133 104 85 70 63 
PUB2 

1.15 225 120 95 80 69 58 205 115 88 76 68 55 185 107 80 68 60 47 

PUB3 

0.85 

1 

1.15 

780 521 

588 370 

476 282 

438 394 

298 288 

222 205 

340 

246 

181 

268 

171 

146 

716 482 407 357 314 

546 343 283 269 224 

432 265 214 194 172 

244 

158 

131 

641 423 

485 298 

384 235 

355 325 

249 239 

187 163 

283 

195 

147 

217 

143 

111 

0.85 720 454 399 349 327 273 660 411 362 308 305 245 595 367 322 273 266 222 

1 531 334 269 244 232 184 489 296 244 226 208 166 443 262 218 207 188 148 
PUB4 

1.15 413 245 191 190 164 139 376 222 178 172 148 126 338 204 155 159 135 120 
BED, binomial event discriminator; PUB, Singapore Public Utility Board 
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