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ABSTRACT 24 

Numerical models have long predicted that the deforestation of the Amazon 25 

would lead to large regional changes in precipitation and temperature, but the 26 

extratropical effects of deforestation have been a matter of controversy.  Here, the 27 

simulated impacts of deforestation on Northwest United States December-January-28 

February climate are investigated.  Integrations are carried out using the Ocean-29 

Land-Atmosphere Model (OLAM), here run as a variable-resolution atmospheric 30 

GCM, configured with three alternative grid meshes: (1) 25 km characteristic length 31 

scale (CLS) over the US, 50 km CLS over the Andes and Amazon, and 200 km CLS 32 

in the far-field; (2) 50 km CLS over the US, 50 km CLS over the Andes and 33 

Amazon, and 200 km CLS in the far-field; (3) 200 km CLS globally.  In the high-34 

resolution simulations, Amazon deforestation results in 10-20% precipitation 35 

reductions for the coastal Northwest US and the Sierra Nevada. Snowpack in the 36 

Sierra Nevada experiences declines of up to 50%.  These changes are associated with 37 

a modification of the jet stream such that storms are diverted away from the 38 

Northwest US and most of California.  However, in the coarse-resolution 39 

simulations, this modification to the jet stream does not occur, and precipitation is 40 

not reduced in the Northwest US. These results highlight the need for adequate 41 

model resolution in modeling the impacts of Amazon deforestation.  We conclude 42 

that the deforestation of the Amazon can act as a driver of regional climate change 43 

in the extratropics, including areas of the western US that are agriculturally 44 

important.  45 

46 
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1. Introduction 47 

Many numerical models have predicted that Amazon deforestation would lead to 48 

local increases in surface temperature and decreases in precipitation (Henderson-Sellers 49 

et al. 1993; Lean and Rowntree 1993; Gash and Nobre 1997; Hahmann and Dickinson 50 

1997; Costa and Foley 2000; Gedney and Valdes 2000; Werth and Avissar 2002; Avissar 51 

and Werth 2005; Findell et al. 2006; Sampaio et al. 2007; Hasler et al. 2009; Medvigy et 52 

al. 2011).  However, deforestation is likely to have other complex effects on climate. For 53 

example, the fires that frequently accompany deforestation affect aerosol concentrations, 54 

reduce cloud droplet size, and can intensify updrafts (Williams et al. 2002; Andreae et al. 55 

2004).  Such changes can increase the vigor of individual convective events even if 56 

annual average rainfall decreases. It has also been proposed, not without controversy, that 57 

Amazon deforestation can impact extratropical climate (Gedney and Valdes 2000; Werth 58 

and Avissar 2002; Findell 2006; Medvigy et al. 2012).  These studies of extratropical 59 

impacts have all relied on numerical models, and thus are subject to all the caveats that 60 

are generally associated with model simulations.  Using observations to directly assess 61 

extratropical impacts of deforestation is extremely difficult because large-scale 62 

deforestation has only been going on for a few decades and thus any signal would be 63 

obscured by natural climate variability.  Furthermore, total deforested area in the Amazon 64 

may increase by a factor of 2-3 in the next few decades to 40-60% (Soares-Filho et al. 65 

2006; Walker et al. 2009), and this may lead to a very different climatic response than 66 

that arising from the pattern of deforestation that exists today (Ramos da Silva et al. 67 

2008).   68 
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It is possible that other climate anomalies can be used to better understand the 69 

impacts of Amazon deforestation.  El Niño events, for example, arise from the natural 70 

variability of tropical climate. El Niño operates by bringing increased near-surface 71 

temperatures and increased convective activity to the eastern tropical Pacific.  This 72 

results in the strengthening and contraction of the Hadley cell, and an equatorward shift 73 

of the tropospheric zonal jets (Seager et al. 2003, 2005).  Midlatitudes are affected by 74 

changes in transient-eddy momentum fluxes and in the eddy-driven mean meridional 75 

circulation that result from changes in the jet (Seager et al. 2005).  The northwest US, 76 

including northern California and western Oregon and Washington, is affected 77 

particularly strongly. Composite maps show an intensified Aleutian low and ridging high 78 

pressure in the Pacific Northwest, which results in warm, dry weather in this sector 79 

(Ropelewski and Halpert 1987, 1989; Redmond and Koch 1991; Wallace et al. 1992; 80 

Cayan 1996). This warm and dry anomaly has important societal and ecological 81 

implications, affecting drought, snowpack, and fires (Dai et al. 1998; Enfield et al. 2001; 82 

McCabe et al. 2004; Seager et al. 2010). 83 

It has previously been suggested that Amazon deforestation may generate an 84 

extratropical signature that resembles the extratropical signature of El Niño (Avissar and 85 

Werth 2005).  For example, El Niño brings increased near-surface temperatures and 86 

increased convective activity to the eastern tropical Pacific, and Amazon deforestation is 87 

likely to bring increased temperatures and increased convective activity to tropical South 88 

America.  Of course, Amazon deforestation and El Niño differ in important ways, 89 

including the obvious fact that the Amazon is situated to the east and somewhat to the 90 

south of the eastern tropical Pacific.  However, different historical El Niño events having 91 
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large differences in equatorial SST anomalies have nonetheless elicited quite similar 92 

extratropical responses (Hoerling and Ting 1994).  Thus, we conjecture here that there 93 

will be important similarities between the extratropical responses to El Niño and to 94 

Amazon deforestation.  In particular, this study will focus on the northwest US because 95 

this region is known to be highly sensitive to El Niño.   96 

Analysis of this problem in the context of numerical models is difficult. Many 97 

climate models give large underestimates of the climatological precipitation in the 98 

Amazon (Randall et al. 2007), and it is uncertain if this would compromise their ability to 99 

simulate the impacts of Amazon deforestation. In one recent study, it was shown that 100 

simulation of the Amazon hydroclimate markedly improved when model resolution of 101 

the Andes became finer, and that the model failed to capture interannual variability of 102 

precipitation in the Amazon until the Andes were simulated at < 100 km resolution 103 

(Medvigy et al. 2008). Furthermore, in the US, the impacts of El Niño are highly 104 

regional, and may be challenging to resolve with current GCMs.  Previous work has 105 

shown that adequate resolution of topography is critical for correctly simulating 106 

precipitation in the northwest US (Leung and Qian 2003; Leung et al. 2003a,b; Zhang et 107 

al. 2012).  Leung et al. (2003a,b) carried out sensitivity analyses and found that a 40 km 108 

resolution was adequate for simulating seasonal and interannual precipitation variability 109 

in the region.  Leung and Qian (2003) compared simulations at 40 km and 13 km, and 110 

found that simulation of snowpack was greatly improved at the higher resolution, but 111 

differences in precipitation biases were small.   112 

The computational problem of carrying out high-resolution simulations becomes 113 

more tractable by using a variable-resolution GCM.  Variable-resolution GCMs allow for 114 
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fine resolution in the region of interest with a coarser, more computationally efficient 115 

resolution in the far-field. This enables the simulation of regional-scale circulations 116 

without the need for lateral boundary conditions, while maintaining a reasonable 117 

computational cost (Medvigy et al. 2008, 2010, 2011).  In this study, we use the Ocean-118 

Land-Atmosphere Model (OLAM) (Walko and Avissar 2008a,b, 2011) variable-119 

resolution GCM to investigate the impacts of Amazon deforestation on the US.  Unlike 120 

past studies, we use locally fine-resolution grid spacing over both North America and 121 

South America. Because El Niño has particularly large effects over the US during winter 122 

(e.g., Harrison and Larkin 1998), by analogy our focus is on the December-January-123 

February (DJF) season.  The objectives of this work are to identify impacts of Amazon 124 

deforestation on the US during DJF, identify relevant mechanisms, and assess the 125 

sensitivity of the mechanisms to model resolution. 126 

2. Model simulations 127 

We used the OLAM model (Walko and Avissar 2008a,b, 2011) run as an 128 

atmospheric GCM with prescribed sea-surface temperatures (SSTs). Amazon 129 

deforestation has previously been simulated with OLAM (Medvigy et al. 2011, 2012), 130 

and the model’s ability to simulate global and especially South American precipitation, 131 

temperature, and surface solar radiation has previously been evaluated (Medvigy et al. 132 

2008, 2010, 2011, 2012). In this study, we carried out multiple pairs of simulations.  The 133 

pairs of simulations differed only in their grid mesh.  In our first pair (“FINE”), the grid 134 

mesh had a 50 km characteristic length scale (CLS) over the Andes, most of the Amazon, 135 

and also over the contiguous US (Fig. 1a,b).  This 50 km CLS was previously shown to 136 

be adequate for OLAM to simulate South American hydroclimate (Medvigy et al. 2008).  137 
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The grid mesh gradually expanded to 200 km away from North and South America.  138 

Second, we carried out a pair of simulations with the same horizontal grid mesh as FINE, 139 

but with enhanced vertical resolution (“FINEV”; see below).  Third, we carried out a pair 140 

of simulations with the same vertical resolution as FINE but with a more refined 141 

horizontal mesh.  This pair, “XFINE”,  had a 50 km CLS over the Andes and most of the 142 

Amazon and a 25 km CLS over most of the contiguous US (Fig. 1c).  The purpose of the 143 

FINEV and XFINE pairs was to evaluate and challenge the conclusions stemming from 144 

the FINE pair.  Finally, we carried out a coarse pair of simulations (“COARSE”), in 145 

which the entire globe was simulated with a uniform 200 km CLS, which is a typical 146 

GCM resolution (Fig. 1d). This pair would be most comparable to previous investigations 147 

of the extratropical impacts of Amazon deforestation.   148 

The FINE, XFINE, and COARSE simulations used a Cartesian vertical grid 149 

consisting of 53 levels, with the grid spacing stretching from 200 m near the surface to 2 150 

km near the model top at 45 km.  The FINEV simulations also used a Cartesian vertical 151 

grid, but in this case there were 74 levels, with the grid spacing stretching from 100 m 152 

near the surface to 2 km near the model top at 45 km.  As a post-processing step, upper-153 

air variables were interpolated to pressure levels.  For the convective parameterization, 154 

we used the Eta version of the Kain-Fritsch scheme (Kain 2004), which has been shown 155 

to work well in variable-resolution OLAM runs (Kim et al., in prep.).  All other 156 

parameterizations are the same as those used in Medvigy et al. (2011). 157 

In each pair, the two pair members correspond to two land cover scenarios, tagged 158 

as forested (“FOR”) and deforested (“DEF”).  These land cover scenarios are described in 159 

detail in Medvigy et al. (2011) and are only briefly described here.  In our FOR runs, 160 
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each land grid cell is assigned a single land cover classification according to the Olson 161 

Global Ecosystem framework (Olson 1994a,b), which was based on satellite imagery 162 

from 1992-93.  About 10% of the Amazon sector is classified as agriculture or short grass 163 

in FOR.  Our corresponding DEF runs are identical to the corresponding FOR runs in 164 

every way except land cover classification.   The DEF runs, meant to represent the total 165 

deforestation of the Amazon, classes all land grid cells between 75-49W and 15-0S 166 

(boxed areas in Fig. 1) as deforested land cover.  The land surface and vegetation 167 

properties of these deforested grid cells are prescribed according to in situ measurements 168 

at pasture sites (Gash and Nobre 1997) and have been tested in previous studies (Gandu 169 

et al. 2004; Avissar and Werth 2005; Ramos da Silva et al. 2008; Hasler et al. 2009; 170 

Medvigy et al. 2011).  A more sophisticated treatment might distinguish between pasture, 171 

soy, and cultivation of other crops, but we expect differences between these types to be 172 

much smaller than the differences between tropical forest and pasture (Sampaio et al. 173 

2007).  The naming convention that we use for our simulations combines the grid mesh 174 

identifier (FINE, FINEV, XFINE, or COARSE) with the land cover identifier (FOR or 175 

DEF), e.g., FINE-FOR.  Our simulations are summarized in Table 1. 176 

Atmospheric and soil initial conditions were prescribed from NCEP reanalysis 177 

from October 1, 1996, 0000 UTC (Kalnay et al. 1996). All simulations were forced with 178 

weekly, 1 sea-surface temperatures (SSTs) (Reynolds et al. 2002), and sea ice extent 179 

from NCEP reanalysis (Kalnay et al. 1996). CO2 and other greenhouse gas concentrations 180 

were held fixed throughout all the simulations at current-day levels to enable us to isolate 181 

the effects of deforestation. We simulated the period from October 1, 1996 to April 1, 182 

2012.  Preliminary simulations using climatological SSTs indicated that soil moisture and 183 
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soil temperature in the Amazon region equilibrate after about a year, and so all days prior 184 

to March 1, 1998 were discarded as spin-up, leaving 14 years for analysis.  In this paper, 185 

we limited our analysis to December-January-February (DJF), though the other months 186 

were saved to disk and are available for future analyses.  187 

We performed a series of statistical tests to evaluate the significance of 188 

differences between the DEF and FOR simulations. The 95% confidence level is taken as 189 

the threshold for statistical significance throughout this paper. Tests were performed for 190 

each pair (FINE, FINEV, XFINE, or COARSE) by itself, as well as for the ensemble 191 

consisting of the FINE, FINEV, and the XFINE pairs (note that the COARSE pair was 192 

excluded, for reasons that will become evident later).  All statistical tests are conducted in 193 

R (R Development Core Team 2008). A t-test can be used to test the null hypothesis that 194 

the means from the DEF and FOR simulations are equal, provided that the DEF and FOR 195 

samples are independent and normally distributed.  If the normality assumption does not 196 

hold, a non-parametric test such as the Wilcoxon signed-rank test (“wilcox.test” in R; 197 

Hollander and Wolfe 1999) may be used instead of the t-test.  The null hypothesis of the 198 

Wilcoxon signed-rank test is that the median difference between the DEF and FOR 199 

samples is zero. We used the Shapiro-Wilk test (“shapiro.test” in R; Royston 1982) to test 200 

for normality.  We occasionally found that the normality assumption was violated for as 201 

many as 15-20% of the grid cells, and so we conservatively adopted the Wilcoxon 202 

signed-rank test as our test of choice in this paper.  We used the Ljung-Box test 203 

(“Box.test” in R; Ljung and Box 1973) to test for independence.  In no case did we find 204 

that the assumption of independence was violated for more than 5% of the grid cells, and 205 

so we adopted independence as a generally reasonable assumption.   206 
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3. Results 207 

a. Model evaluation for North America 208 

 We limited our model evaluation to North America because model evaluation for 209 

South America has already been carried out (Medvigy et al. 2008, 2010, 2011, 2012).  210 

Precipitation and near-surface temperature are evaluated using the Princeton Global 211 

Forcings (PGF) dataset at 0.5º resolution (Sheffield et al. 2006). This dataset blends 212 

surface observations with reanalysis and is available for 1948-2008.  Because this study 213 

focuses on DJF quantities and our (post-spin-up) simulations begin in March 1998, we 214 

defined a climatological winter daily precipitation rate and daily temperature by 215 

averaging the daily values of these quantities over all days in December, January, and 216 

February within the period March 1998 through December 2008.  We constructed such 217 

climatological averages for our FINE-FOR, FINEV-FOR, XFINE-FOR, and COARSE-218 

FOR simulations. 219 

 The PGF precipitation dataset (Fig. 2a) is generally well-represented by the FINE-220 

FOR (Fig. 2b) simulation.  The model captures such features as the rainfall maxima along 221 

coastal British Columbia, Washington, northwest California, and the Sierra Nevada.  222 

However, in Oregon, the simulated rainfall maximum is about 100 km inland from the 223 

maximum in the PGF data.  Precipitation is generally overestimated in the rain shadow 224 

on the eastern side of the Rockies and underestimated along the east coast of North 225 

America.  The FINEV-FOR simulation is very similar to FINE-FOR in the western US, 226 

but gives slightly improved precipitation estimates in the Midwest (Fig. 2c).  The 227 

XFINE-FOR simulation (Fig. 2d) is a better match to the PGF data than FINE-FOR in 228 

that (1) it yields larger precipitation amounts for the Appalachian Mountain region, and 229 
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(2) the rainfall maximum in Oregon shifts closer to the coast.  The COARSE-FOR 230 

simulation generally gives lower rainfall values than the other simulations, leading to 231 

underprediction of the rainfall maximum on the west coast and exacerbating the 232 

underprediction on the east coast (Fig. 2e).  However, it gives a better simulation of the 233 

low precipitation values in the rain shadow of the Rockies. 234 

 The PGF temperature dataset (Fig. 3a) was well-simulated by FINE-FOR (Fig. 235 

3b) for most of the US.  However, one notable bias occurred for parts of the Great Basin, 236 

where the model was too cool.  This is potentially related to biases in the 1º SST data, 237 

especially near relatively small-scale features like the Gulf of California (Kim et al., in 238 

prep.).  Most of the nearby offshore temperatures were also lower in the simulations than 239 

in the PGF, and advection of this relatively cool air may be biasing the model over land.  240 

A second bias was that the model was too warm in eastern Canada. Temperature biases in 241 

FINEV-FOR (Fig. 3c), XFINE-FOR (Fig. 3d) and COARSE-FOR (Fig. 3e) were similar 242 

to those in FINE-FOR. 243 

 The Pacific Northwest relies heavily on winter snowfall to provide water for the 244 

summer months because there is relatively little summer precipitation.  To measure snow 245 

water equivalent (SWE), the US Department of Agriculture’s Natural Resources 246 

Conservation Service maintains a network of snow courses throughout Oregon, 247 

Washington, Idaho, and other western states.  The earliest records go back to 1915.  The 248 

California Department of Water Resources has an independent network of snow courses.  249 

Details on the measurements have been previously published (Clark et al. 2001; McCabe 250 

and Dettinger 2002).  Mote (2003) reported that SWE on April 1st has typically ranged 251 

from 40-50 cm for the past ~25 years for a region that include mountainous areas of 252 
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Oregon, Washington, and Idaho.  In California, Howat and Tulaczyk (2005) found peak 253 

SWE of about 120 cm along much of the central spine of the Sierra Nevada. 254 

We compared these observation-based numbers to values simulated by OLAM, 255 

considering the higher-resolution simulations first.   The corresponding April 1st SWE 256 

simulated in XFINE-FOR averaged over 1999-2012 is shown in Fig. 4a.  Values in the 257 

Northwest are generally consistent with the observed values, and ranged from about 65 258 

cm in the southern Cascades, to about 20 cm in northwest Oregon, to about 50 cm in 259 

western Idaho.  Peak values along the Sierra Nevada reached 100-120 cm and are also 260 

consistent with observations.  The simulation with enhanced vertical resolution, FINEV-261 

FOR, also gave reasonable results for central California (Fig. 4b), but gave less SWE 262 

than XFINE-FOR in other sectors.  In contrast, simulated values from FINE-FOR were 263 

much lower (Fig. 4c), which is unsurprising given its coarser representation of 264 

topography (Leung and Qian 2003).  Peak SWE in southern Oregon and the Sierra 265 

Nevada reached only 50 cm.  Finally, in COARSE-FOR, simulated SWE was less than 266 

35 cm throughout the western US, and was negligible in California (Fig. 4d).  These 267 

results show that the quality of the simulation of snowpack degrades sharply with 268 

coarsening model resolution. For this reason, we limit the remainder of our analysis of 269 

snowpack to the XFINE and FINEV pairs of simulations. 270 

b. Impacts of deforestation on surface climate 271 

We found that FINE-DEF had a large, statistically significant precipitation deficit 272 

relative to FINE-FOR throughout the Pacific Northwest (Fig. 5a). Precipitation 273 

differences were typically 10-20% (or 1-2 mm day-1) and reached up to 30%.  There was 274 

also a comparable precipitation deficit along the western slopes of the Sierra Nevada 275 
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range, but this difference was not statistically significant at the 95% confidence level. In 276 

the finest-resolution simulations, XFINE-DEF had large precipitation deficits relative to 277 

XFINE-FOR, and these precipitation deficits were indeed statistically significant near the 278 

Sierra Nevada as well as in the Pacific Northwest (Fig. 5b).  Differences between 279 

FINEV-DEF and FINEV-FOR (not shown) were very similar to the differences between 280 

FINE-DEF and FINE-FOR. Finally, in the combined ensemble consisting of FINE, 281 

FINEV, and XFINE, the region with statistically significant precipitation deficits 282 

encompasses Washington, Oregon, Idaho, northern California, and Nevada (Fig. 5c). Our 283 

analysis of the COARSE pair of simulations led to very different results (Fig. 5d).  In this 284 

case, the COARSE-DEF actually had more precipitation than COARSE-FOR in the 285 

Northwest US, although this difference was not statistically significant. The effects of 286 

model resolution will be discussed in more detail below. 287 

We also computed changes in other important hydroclimatic variables, including 288 

evapotranspiration, moisture convergence, and temperature. The precipitation deficits in 289 

the western US occurred almost entirely because of changes in moisture convergence in 290 

the FINE simulation pair (Fig. 6a), while changes in evapotranspiration were much 291 

smaller for all grid cells (Fig. 6b).  Similar results held for the FINEV, and XFINE 292 

simulation pairs (not shown).  In the Northwest US, FINE-DEF was generally about 293 

0.5°C cooler than FINE-FOR (Fig. 6c).  However, these changes were generally not 294 

statistically significant in the locations where the largest precipitation changes occurred, 295 

including western Washington, western Oregon, and California.  Temperature differences 296 

between XFINE-DEF and XFINE-FOR were small, generally of magnitude less than 297 

0.2°C in the western US (Fig. 6d).  These temperature differences were only statistically 298 
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significant in the southeast US.  Temperature differences between FINEV-DEF and 299 

FINEV-FOR and between COARSE-DEF and COARSE-FOR were also small and 300 

generally not statistically significant (not shown). 301 

Given the large decreases in precipitation and relatively small changes in 302 

temperature in the XFINE simulation pair, we expected that SWE would decrease in the 303 

mountains of the Northwest US and the Sierra Nevada. The April 1st SWE averaged over 304 

1999-2012 from XFINE-FOR and XFINE-DEF are shown in Figs. 4a and 4f, 305 

respectively.  SWE from XFINE-DEF is much lower than in XFINE-FOR.  Values over 306 

the central Sierra Nevada are reduced by about half, with values in XFINE-DEF 307 

generally ranging from 30-90 cm.  In XFINE-DEF, snowpack no longer exists in parts of 308 

northern California and is reduced by over 50% in southern Oregon, but areas farther 309 

north and east were not strongly affected. Similar results were obtained for the FINEV 310 

simulation pair, with FINEV-FOR (Fig. 4b) having much more snowpack than FINE-311 

DEF (Fig. 4f). 312 

c. Comparison to El Niño 313 

The simulated reductions in precipitation in the Northwest US resulted from 314 

Amazon deforestation, but similar precipitation anomalies are commonly observed during 315 

El Niño events (Redmond and Koch 1991). We now pursue this analogy a bit further. 316 

During the DJF, precipitation in the Northwest is strongly controlled by the jet stream 317 

position.  However, in El Niño years, the jet has an increased tendency to split into two 318 

branches, with one over the Queen Charlotte Islands and the other over the southern tier 319 

of the US, bringing wetter conditions to British Columbia and to the Southwest US. In 320 

the FINE simulations, deforestation resulted in positive anomalies of 1-3 m s-1 in the 250 321 
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hPa zonal winds for northern British Columbia and northern Mexico, while negative 322 

anomalies of 2-4 m s-1 were evident over the Pacific Northwest (Fig. 7a).  These changes 323 

were statistically significant, but hatching was omitted from the figure to reduce visual 324 

clutter.  Thus, as with El Niño, deforestation modifies the jet stream so as to divert storms 325 

either to the north or south of the Northwest US.  This is consistent with the simulated 326 

precipitation reductions in the Northwest US (Fig. 5a).  In the XFINE simulation pair, 327 

deforestation also causes a reduction in 250 hPa zonal wind speed over the western US 328 

(Fig. 7b).  However, the magnitudes of the changes are about 1 m s-1 smaller and are 329 

shifted to the south relative to the FINE simulation pair.  The FINEV simulation pair was 330 

very similar to the FINE simulation pair, and for simplicity we will not consider it 331 

further. 332 

The Southeast US is also typically affected by El Niño, and experiences relatively 333 

cool, wet conditions during DJF (Ropelewski and Halpert 1987, 1989).  These conditions 334 

arise because of a stronger, more southerly jet stream.  In the FINE simulations (Fig. 7a), 335 

we see that deforestation caused the southern flank of the jet over the southeastern US to 336 

be strengthened by 2-4 m s-1. In the XFINE simulations (Fig. 7b), the southern flank of 337 

the jet over the southeastern US strengthens by 1-2 m s-1, while the jet weakens by a 338 

similar amount over Quebec.  As with El Niño, this change brings cooler temperatures to 339 

the southeastern US. However, unlike during El Niño, the southeast is simulated to be 340 

drier in the deforested simulation than in the forested simulation.  This situation arises 341 

because of the influx of cool, dry air from the north. 342 

d. Planetary scale impacts 343 
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Although our focus has been on North America, where our grid mesh has fine 344 

resolution, we found that the changes in the jet stream described above are part of a 345 

planetary-scale set of changes generated by Amazon deforestation.  We illustrate our 346 

results with the FINE simulation pair; the XFINE pair is similar except where noted.  As 347 

reported in many previous studies, we find that deforestation acts to increase near-surface 348 

temperatures in the deforested region (Fig. 8a).  This heating leads to increases in the 349 

850-300 hPa thickness (Fig. 8b), and extends nearly tropics-wide (Held and Hou 1980). 350 

Previous idealized experiments have demonstrated how a tropical heating anomaly can 351 

act as a source of Rossby waves that can propagate from the tropics to the extratropics 352 

(Hoskins and Karoly 1981; Jin and Hoskins 1995; Held et al. 2002).  Indeed, examination 353 

of the deforestation-induced changes in the 250 hPa (Fig. 9a) and 850 hPa (Fig. 9b) wind 354 

fields reveals that wave trains were excited in both hemispheres, with the higher-355 

amplitude wave train in the northern (winter) hemisphere.  These changes bear marked 356 

similarities to the idealized experiments of Jin and Hoskins (1995), who carried out 357 

numerous simulations investigating the impacts of tropical tropospheric heating 358 

anomalies. When they placed a heating source over the Amazon, they found that Rossby 359 

wave trains were excited that propagated into both hemispheres, and that North America 360 

in particular was affected.   361 

Jin and Hoskins (1995) also found that there was an upper-level negative vorticity 362 

anomaly in the northern vicinity of their heating source and a positive vorticity anomaly 363 

in the southern vicinity of their heating source.  The reverse configuration was realized at 364 

low levels.  We obtained very similar results here.  Our southern upper-level anomaly is 365 

located south of the deforested region and spans approximately from 90°-40°W (Fig. 9a).  366 
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Our northern upper-level anomaly is located in the northern part of the deforested area 367 

and is more limited in spatial extent, perhaps due to constraints imposed by the Andes 368 

(Fig. 9a).  Our lower-level northern anomaly is evident in the northern part of the 369 

deforested region, though our lower-level southern anomaly, just south of the deforested 370 

area, is weak (Fig. 9b). Results from the XFINE simulation pair (Figs. 9c-d) are broadly 371 

similar, with the main differences being slightly stronger lower-level anomalies and 372 

slightly weaker upper-level anomalies in the deforested sector. 373 

In the COARSE simulation pair, deforestation also generates wave trains (Fig. 374 

10), but these are nearly 180° out of phase with the FINE and XFINE wave trains 375 

throughout the midlatitudes.  To quantify this, we interpolated the 250 hPa meridional 376 

wind fields from FINE, XFINE, and COARSE onto a common 3° longitude by 3° 377 

latitude grid, and then computed the Spearman’s  correlation coefficients between FINE 378 

and XFINE and between FINE and COARSE for all grid cells between 30°-48°N. We 379 

found a positive correlation (=0.27; p < 1x10-5) between FINE and XFINE and a 380 

negative correlation (=-0.28; p < 1x10-5) between FINE and COARSE.  Unsurprisingly 381 

then, the COARSE simulation pair gave a (not statistically significant) increase in 382 

precipitation for northwestern North America, rather than an increase (Fig. 5d). These 383 

differences between COARSE and FINE are consistent with previous work that 384 

underlined the importance of a high-resolution representation of topography for the 385 

simulation of Amazon precipitation (Medvigy et al. 2008) and local impacts of 386 

deforestation (Ramos da Silva et al. 2008; Medvigy et al. 2011).  387 

4. Discussion and conclusions 388 
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 This work has focused on some potential extratropical responses to the complete 389 

deforestation of the Amazon.  We find that precipitation in the Northwest US and in parts 390 

of California is strongly reduced during DJF because of deforestation.  Such an effect has 391 

not been seen in previous analyses (Gedney and Valdes 2000; Werth and Avissar 2002; 392 

Avissar and Werth 2005; Findell et al. 2006; Hasler et al. 2009).  A critical difference 393 

between our simulations and previous simulations is the model resolution.  Whereas 394 

previous work was carried out at resolutions of about 200 km, we studied simulations that 395 

used a mesh with a characteristic length scale of 25-50 km for much of North and South 396 

America.  This permits the simulation of regional scale circulations in the Amazon that 397 

are important for the propagation of waves from the tropics to the extratropics.  When we 398 

ran simulations at a resolution typical of previous studies, the wave trains resulting from 399 

deforestation had a different phase and their extratropical impacts were strongly reduced.   400 

 In this study, we confirm a suggestion made by Avissar and Werth (2005) that 401 

substantial similarities may exist between the extratropical effects of Amazon 402 

deforestation and of El Niño.  Like El Niño, we find that Amazon deforestation has a 403 

widespread warming effect on the tropical troposphere (Seager et al. 2003), and this 404 

generates Rossby wave trains in both hemispheres. The implication of this for western 405 

North America is that storms tend to be diverted to the north and south of the path that 406 

they would have followed in the absence of deforestation.  Western Washington and 407 

Oregon receive much less precipitation.  However, the extratropical signature of 408 

deforestation extends farther south than that of El Niño, and consequently the Sierra 409 

Nevada are also strongly impacted by deforestation.  Furthermore, because temperatures 410 

do not drastically change, snowpack on the Sierra Nevada is markedly reduced.  These 411 
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changes are co-located with significant topography, and the historical precipitation record 412 

can only be reproduced in OLAM if this topography is represented at fine enough 413 

resolution.   414 

 To the extent that our simulations are consistent with reality, the deforestation of 415 

the Amazon will have enormous consequences for the irrigation-fed agriculture in 416 

California.  In the US, agriculture and food sectors contribute 4.8% of the gross domestic 417 

product and are the source of 15.8 million jobs nationwide.  California has been the 418 

nation’s number one state for food and dairy production during the past 50 years.  The 419 

ability of California to maintain its large output is directly related to the availability of 420 

irrigation water (Draper et al. 2003).  Our work complements the many previous studies 421 

that have investigated the impact of climate warming on California hydrology 422 

(Lettenmaier and Gan 1990; Kim et al. 2002; Maurer 2007).  In response to increases in 423 

greenhouse gases, climate models have consistently simulated a warmer, slightly wetter 424 

California, with overall reduced end-of-winter snowpack.  Our simulations indicate that 425 

Amazon deforestation would likely exacerbate this snowpack reduction. 426 

Natural ecosystems would also be strongly affected by the rainfall reductions 427 

simulated here.  In the relatively wet forests of western Oregon and Washington, fires are 428 

relatively rare.  However, fuel accumulations are high, and when fires do occur, they can 429 

lead to complete stand replacement (Mote et al. 2003).  In California, the California 430 

Floristic Province has been designated as one of 33 global biodiversity hotspots as a 431 

result of its large number of native and endemic species (Myers et al. 2000). Drawdown 432 

of freshwater resources is one of the principal threats facing the area.   433 
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This study represents an initial effort at using a high-resolution GCM to 434 

investigate inter-continental effects of Amazon deforestation, and raises many important 435 

questions.  First, our experiment design was simplified in that it considered the complete 436 

deforestation of the Amazon.  However, about 40% of the Brazilian Amazon is in some 437 

form of a protected area (Walker et al. 2009), and deforestation may be less severe in 438 

these areas.  Furthermore, actual future spatial patterns of deforestation may be complex 439 

(Soares-Filho et al. 2006) and induce local or even regional scale circulations.  Thus, 440 

future analyses should consider more realistic spatial patterns of deforestation. Second, 441 

our simulations used relatively coarse resolution over most of the world outside of the 442 

Americas.  Pursuing the analogy of Amazon deforestation with El Niño, additional 443 

Amazon deforestation experiments should be carried out using model grid meshes with 444 

fine resolution over areas known to be sensitive to El Niño.  Third, our model simulations 445 

were designed to isolate the impacts of Amazon deforestation and so they did not 446 

consider the effects of changes in greenhouse gases.  Assessing the combined effect of 447 

Amazon deforestation and greenhouse gas increases on the Northwest US and California 448 

should be a priority. Fourth, there are a number of physical processes that were either 449 

parameterized, like cumulus convection, or not represented at all, like fires, aerosol 450 

effects, and the dynamic responses of terrestrial ecosystems.  These are all processes that 451 

merit future attention.  Fifth, our simulations were driven by historical SSTs and so they 452 

did not account for ocean feedbacks.  Coupled atmosphere-ocean GCMs should be used 453 

to assess the extent to which the ocean can buffer (or exacerbate) the changes simulated 454 

here. Sixth, though our precipitation changes were statistically significant, additional 455 
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runs, especially those carried out with independent models, would bolster this 456 

assessment.   457 

Acknowledgments 458 

The authors gratefully acknowledge support from National Science Foundation Awards 459 

1151102 (to D.M.) and 0902197 (to R.A. and R.L.W.).  NCEP Reanalysis 2 data were 460 

provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site 461 

at http://www.esrl.noaa.gov/psd/. The simulations presented in this article were 462 

performed on computational resources supported by the PICSciE-OIT High Performance 463 

Computing Center and Visualization Laboratory at Princeton University. 464 

465 



  22

References 466 

Andreae, M.O., D. Rosenfeld, P. Artaxo, A.A. Costa, G.P. Frank, K.M. Longo, and 467 

M.A.F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337-468 

1342. 469 

Avissar, R., and D. Werth, 2005: Global hydroclimatological teleconnections resulting 470 

from tropical deforestation. J. Hydrometeorol., 6, 134-145. 471 

Cayan, D.R., 1996: Interannual climate variability and snowpack in the western United 472 

States. J. Climate, 9, 928-948. 473 

Clark, M.P., M.C. Serreze, and G.J. McCabe, 2001: Historical effects of El Nino and La 474 

Nina events on the seasonal evolution of the montane snowpack in the Columbia and 475 

Colorado River Basins. Water Resour. Res., 37, 741-757. 476 

Costa, M.H., and J.A. Foley, 2000: Combined effects of deforestation and doubled 477 

atmospheric CO2 concentrations on the climate of Amazonia.  J. Climate, 13, 18-34. 478 

Dai, A., K.E. Trenberth, and T.R. Karl, 1998: Global variations in droughts and wet 479 

spells: 1900-1995. Geophys. Res. Lett., 25 (17), 3367-3370. 480 

Draper, A.J., M.W. Jenkins, K.W. Kirby, J.R. Lund, and R.E. Howitt, 2003: Economic-481 

engineering optimization for California water management. J. Water Resour. Plan. 482 

Manage., 129, 155-164. 483 

Enfield, D.B., A.M. Mestas-Nuñez, and P.J. Trimble, 2001: The Atlantic multidecadal 484 

oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. 485 

Res. Lett., 28 (10), 2077-2080. 486 

Findell, K.L., T.R. Knutson, and P.C.D. Milly, 2006: Weak simulated extratropical 487 

responses to complete tropical deforestation. J. Climate, 19, 2835-2850. 488 



  23

Gandu, A.W., J.C.P. Cohen, and J.R.S. Souza, 2004: Simulation of deforestation in 489 

eastern Amazonia using a high-resolution model.  Theor. Appl. Climatol., 78, 123-490 

135. 491 

Gash, J.H.C., and C.A. Nobre, 1997: Climatic effects of Amazonian deforestation: some 492 

results from ABRACOS.  Bull. Amer. Meteor. Soc., 78, 823-830. 493 

Gedney, N., and P.J. Valdes, 2000: The effect of Amazonian deforestation on the 494 

northern hemisphere circulation and climate.  Geophys. Res. Lett., 27, 3053-3056. 495 

Hahmann, A.N., and R.E. Dickinson, 1997: RCCM2-BATS model over tropical South 496 

America: Applications to tropical deforestation.  J. Climate, 10, 1944-1964. 497 

Harrison, D.E., and N.K. Larkin, 1998: Seasonal U.S. temperature and precipitation 498 

anomalies associated with El Nino: Historical results and comparison with 1997-98. 499 

Geophys. Res. Lett., 25 (21), 3959-3962. 500 

Hasler, N., D. Werth, and R. Avissar, 2009: Effects of tropical deforestation on global 501 

hydroclimate: a multimodel ensemble analysis.  J. Climate, 22, 1124-1141. 502 

Held, I., and A.Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly 503 

inviscid atmosphere. J. Atmos. Sci., 37, 515-533. 504 

Held, I.M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: theory and 505 

modeling. J. Climate, 15, 2125-2144. 506 

Henderson-Sellers, A., R.E. Dickinson, T.B. Durbidge, P.J. Kennedy, K. McGuffie, and 507 

A.J. Pitman, 1993: Tropical deforestation – modeling local-scale to regional-scale 508 

climate change.  J. Geophys. Res., 98, 7289-7315. 509 

Hoerling, M.P., and M. Ting, 1994: Organization of extratropical transients during El 510 

Niño. J. Climate, 7, 745-766. 511 



  24

Hollander, M., and D.A. Wolfe, 1999: Nonparametric Statistical Methods. John Wiley 512 

and Sons, 787 pp. 513 

Hoskins, B.J., and D.J. Karoly, 1981: The steady linear response of a spherical 514 

atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179-1196. 515 

Howat, I.M., and S. Tulaczyk, 2005: Climate sensitivity of spring snowpack in the Sierra 516 

Nevada. J. Geophys. Res., 110, F04021, doi:10.1029/2005JF000356. 517 

Jin, F., and B.J. Hoskins, 1995: The direct response to tropical heating in a baroclinic 518 

atmosphere. J. Atmos. Sci., 52, 307-319. 519 

Kain, J.S., 2004: The Kain-Fritsch convective parameterization. J. Appl. Meteorol., 43, 520 

170-181. 521 

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project.  Bull. 522 

Am. Meteorol. Soc., 77, 437-470. 523 

Kim, J., T.K. Kim, R.W. Arritt, and N.L. Miller, 2002: Impacts of increased CO2 on the 524 

hydroclimate of the western United States. J. Climate, 15, 1926-1943. 525 

Kim, S.H. D.H. Stack, J. Kim, A.K. Prasad, H.M. El-Askary, N. Hatzopoulos, D. 526 

Medvigy, C. Tremback, R.L. Walko, G. Asrar, and M. Kafatos. Impact of the Gulf of 527 

California SST on simulating precipitation and crop productivity in the Southwestern 528 

United States. To be submitted to J. Geophys. Res., Fall 2012. 529 

Lean, J., and P.R. Rowntree, 1993: A GCM simulation of the impact of Amazonian 530 

deforestation on climate using an improved canopy representation.  Quart. J. Roy. 531 

Meteor. Soc., 119, 509-530. 532 

Lettenmaier, D.P., and T.Y. Gan, 1990: Hydrologic sensitivities of the Sacramento-San 533 

Joaquin River basin, California, to global warming. Water Resour. Res., 26, 69-86. 534 



  25

Leung, L.R., and Y. Qian, 2003: The sensitivity of precipitation and snowpack 535 

simulations to model resolution via nesting in regions of complex terrain. J. 536 

Hydrometeorol., 4, 1025-1043. 537 

Leung, L.R., Qian, Y., and X. Bian, 2003a: Hydroclimate of the western United States 538 

based on observations and regional climate simulation of 1981-2000. Part I: Seasonal 539 

statistics. J. Climate, 16, 1892-1911. 540 

Leung, L.R., Qian, Y., Bian, X., and A. Hunt, 2003b: Hydroclimate of the western United 541 

States based on observations and regional climate simulation of 1981-2000. Part II: 542 

Mesoscale ENSO anomalies. J. Climate, 16, 1912-1928. 543 

Ljung, G.M., and G.E.P. Box, 1978: On a measure of lack of fit in time series models. 544 

Biometrika, 65, 297-303. 545 

Lu, J., G. Chen, and D.M.W. Frierson, 2008: Response of the zonal mean atmospheric 546 

circulation to El Niño versus global warming. J. Climate, 21, 5835-5851. 547 

Maurer, E.P., 2007: Uncertainty in hydrologic impacts of climate change in the Sierra 548 

Nevada, California, under two emissions scenarios. Climatic Change, 82, 309-325. 549 

McCabe, G.J., and M.D. Dettinger, 2002: Primary models and predictability of year-to-550 

year snowpack variations in the western United States from teleconnections with 551 

Pacific Ocean climate. J. Hydrometeorol., 3, 13-25. 552 

McCabe, G.J., M.A. Palecki, and J.L. Betancourt, 2004: Pacific and Atlantic Ocean 553 

influences on the multidecadal drought frequency in the United States. Proc. Natl. 554 

Acad. Sci. USA, 101, 4136-4141. 555 



  26

Medvigy, D., R.L. Walko, and R. Avissar, 2008: Modeling interannual variability of the 556 

Amazon hydroclimate.  Geophys. Res. Lett., 35, L15817, 557 

doi:10.1029/2008GL034941. 558 

Medvigy, D., R.W. Walko, M.J. Otte, and R. Avissar, 2010: The Ocean-Land-559 

Atmosphere Model (OLAM): optimization and evaluation of simulated radiative 560 

fluxes and precipitation.  Mon. Weather Rev., 138, 1923-1939. 561 

Medvigy, D., R.L. Walko, and R. Avissar, 2011: Effects of deforestation on 562 

spatiotemporal distributions of precipitation in South America. J. Climate, 24, 2147-563 

2163. 564 

Medvigy, D., R.L. Walko, and R. Avissar, 2012: Simulated links between deforestation 565 

and extreme cold events in South America. J. Climate, 25, 3851-3866.  566 

Mote, P.W., and Coauthors, 2003: Preparing for climatic change: the water, salmon, and 567 

forests of the Pacific Northwest. Climatic Change, 61, 45-88. 568 

Myers, N., R.A. Mittermeier, C.G. Mittermeyer, G.A.B. da Fonseca, and J. Kent, 2000: 569 

Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. 570 

Olson, J.S., 1994a: Global ecosystem framework-definitions: USGS EROS Data Center 571 

Internal Report, Sioux Falls, SD, 37 p.  572 

Olson, J.S., 1994b: Global ecosystem framework-translation strategy: USGS EROS Data 573 

Center Internal Report, Sioux Falls, SD, 39 p.  574 

R Development Core Team, 2008: R: A language and environment for statistical 575 

computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-576 

900051-07-0, URL http://www.R-project.org.  577 



  27

Ramos da Silva, R., D. Werth, and R. Avissar, 2008: Regional impacts of future land-578 

cover changes on the Amazon basin wet-season climate.  J. Climate, 21, 1153-1170. 579 

Randall, D.A., and Coauthors, 2007: Climate models and their evaluation. In: Climate 580 

Change 2007: The Physical Science Basis. Contribution of Working Group I to the 581 

Fourth Assessment Report of the Intergovernmental Panel on Climate Change 582 

[Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, 583 

and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom, 584 

New York, NY, USA. 585 

Redmond, K.T., and R.W. Koch, 1991: Surface climate and streamflow variability in the 586 

western United States and their relationship to large-scale circulation indices. Water 587 

Resour. Res., 27, 2381-2399. 588 

Reynolds, R.W., N.A. Rayner, T.M. Smith, T.C. Stokes, and W. Wang, 2002: An 589 

improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625. 590 

Ropelewski, C.F., and M.S. Halpert, 1987: Global and regional scale precipitation 591 

patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 592 

1606-1626. 593 

Ropelewski, C.F., and M.S. Halpert, 1989: Precipitation patterns associated with the high 594 

index phase of the Southern Oscillation. J. Climate, 2, 268-284. 595 

Royston, P, 1982: An extension of Shapiro and Wilk’s W test for normality to large 596 

samples.  Appl. Statist., 31, 115-124. 597 

Sampaio, G., C. Nobre, M.H. Costa, P. Satyamurty, B.S. Soares-Filho, and M. Cardoso, 598 

2007: Regional climate change over eastern Amazonia caused by pasture and soybean 599 

cropland expansion.  Geophys. Res. Lett., 34, L17709, doi:10.1029/2007GL030612. 600 



  28

Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of 601 

hemispherically symmetric climate variability. J. Climate, 16, 2960-2978. 602 

Seager, R., N. Narnik, W.A. Robinson, Y. Kushnir, M. Ting, H.-P. Huang, and J. Velez, 603 

2005: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation 604 

variability. Q. J. R. Meteorol. Soc., 131, 1501-1527. 605 

Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik, 2010: Northern hemisphere 606 

winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett., 607 

37, L14703, doi:10.1029/2010GL043830. 608 

Sheffield, J., G. Goteti, and E.F. Wood, 2006: Development of a 50-year high-resolution 609 

global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 610 

3088-3111. 611 

Soares-Filho, B.S., and Coauthors, 2006: Modelling conservation in the Amazon basin.  612 

Nature, 440, 520-523. 613 

Walker, R., N.J. Moore, E. Arima, S. Perz, C. Simmons, M. Caldas, D. Vergara, and C. 614 

Bohrer, 2009: Protecting the Amazon with protected areas. Proc. Natl. Acad. Sci. 615 

USA, 106, 10582-10586. 616 

Walko, R. L., and R. Avissar, 2008a: The Ocean-Land-Atmosphere Model (OLAM): 617 

Shallow Water Tests. Mon. Wea. Rev., 136, 4033-4044. 618 

Walko, R. L., and R. Avissar, 2008b: The Ocean-Land-Atmosphere Model (OLAM): 619 

Formulation and Tests of the Nonhydrostatic Dynamic Core. Mon. Wea. Rev., 136, 620 

4045-4062. 621 



  29

Walko, R.L, and R. Avissar, 2011: A direct method for constructing refined regions in 622 

unstructured conforming triangular-hexagonal computational grids: application to 623 

OLAM. Mon. Wea. Rev., 139, 3923-3937. 624 

Wallace, J.M., Smith, C., and C.S. Bretherton, 1992: Singular value decomposition of 625 

wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 14, 626 

2659-2674. 627 

Werth, D., and R. Avissar, 2002: The local and global effects of Amazon deforestation.  628 

J. Geophys. Res., 107, 8087, doi:/10.1029/2001JD000717. 629 

Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: 630 

Implications for cloud electrification. J. Geophys. Res., 107, 8082, 631 

doi:10.1029/2001JD000380. 632 

Zhang, Y., Qian, Y., Dulière, V., Salathé Jr, E.P., and L.R. Leung, 2012: ENSO 633 

anomalies over the western United States: present and future patterns in regional 634 

climate simulations. Climatic Change, 110: 315-346. 635 

 636 

637 



  30

Tables 638 

 639 

Table 1: Description of the numerical simulations used in this study.  “CLS” is the 640 

characteristic length scale of the grid mesh. 641 

Simulation CLS (Andes 

and Amazon) 

CLS (United 

States) 

Maximum 

vertical 

resolution 

Amazon land cover 

FINE-FOR 50 km 50 km 200 m From the 1990s 

FINE-DEF 50 km 50 km 200 m Complete 

deforestation 

FINEV-FOR 50 km 50 km 100 m From the 1990s 

FINEV-DEF 50 km 50 km 100 m Complete 

deforestation 

XFINE-FOR 50 km 25 km 200 m From the 1990s 

XFINE-DEF 50 km 25 km 200 m Complete 

deforestation 

COARSE-

FOR 

200 km 200 km 200 m From the 1990s 

COARSE-

DEF 

200 km 200 km 200 m Complete 

deforestation 

 642 

643 
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Figure Captions 644 

(For now, I’ve only included captions below the figures.  When it is time for submission, 645 

I will copy and paste the final versions of the captions here.) 646 

647 
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 663 

FIGURE 1: OLAM grid mesh and topography (m) for the different simulations.  Panel a: 664 

FINE pair, global.  Panel b: FINE pair, Americas.  Panel c: XFINE pair, Americas.  Panel 665 

d: COARSE pair, Americas.  Away from the Americas, the XFINE and COARSE meshes 666 

are very similar to panel a.  The boxes over South America denote the deforested region. 667 
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 690 

FIGURE 2: December-January-February mean daily precipitation (mm day-1) as 691 

represented in the Princeton Global Forcings (PGF) dataset (panel a) and as simulated by 692 
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the OLAM model.  Panel b: results from FINE-FOR, which has 50 km characteristic 693 

length scale (CLS) over the US.  Panel c: results from FINEV-FOR, which has enhanced 694 

vertical resolution. Panel d: results from XFINE-FOR, which has enhanced horizontal 695 

CLS.  Panel e: results from COARSE-FOR, which has coarse horizontal CLS. 696 
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FIGURE 3: Like Figure 2, but for daily mean near-surface temperature (°C). 720 
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(a)    (b)    (c)  723 
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(d)    (e)    (f) 732 
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 737 
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 740 

 741 

FIGURE 4:  Average April 1st snow water equivalent (cm) as simulated in the XFINE-742 

FOR (panel a), FINEV-FOR (panel b), FINE-FOR (panel c), COARSE-FOR (panel d), 743 

XFINE-DEF (panel e), and FINEV-DEF (panel f) simulations. 744 

745 
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(a)      (b) 746 
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 752 

 753 

(c)      (d) 754 
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 761 

FIGURE 5: Simulated changes in daily mean precipitation (mm day-1) from the FINE 762 

(panel a), XFINE (panel b), combined FINE, FINEV, and XFINE (panel c), and 763 

COARSE (panel d) simulation pairs. Areas with statistically significant changes are 764 

hatched. 765 
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(a)      (b) 767 

 768 
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(c)      (d) 775 

 776 

 777 
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 779 

 780 

 781 

 782 

FIGURE 6: Impacts of deforestation on hyroclimatic variables.  Panel a: change in 783 

moisture convergence (mm day-1) in the FINE simulation pair. Panel b: change in 784 

evapotranspiration (mm day-1) in the FINE simulation pair. Panel c: change in near-785 

surface temperature (°C) in the FINE simulation pair. Panel d: change in near-surface 786 

temperature (°C) in the XFINE simulation pair.  In panels c and d only, areas with 787 

statistically significant changes are hatched. 788 
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(a)      (b) 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

FIGURE 7: 250 hPa zonal wind and zonal wind anomalies over North America.  The 800 

arrows show the zonal winds from FINE-FOR (panel a) and XFINE-FOR (panel b).  801 

Colors show the changes in 250 hPa zonal winds (m s-1) resulting from deforestation 802 

from the FINE simulation pair (panel a) and the XFINE simulation pair (panel b). 803 
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(a)      (b) 814 

 815 

 816 
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 818 

 819 

 820 

 821 

FIGURE 8: Changes in heating resulting from deforestation in the FINE simulation pair.  822 

Panel a: change in near-surface temperature (°C).  The region of Amazon deforestation is 823 

boxed.  Panel b: change in 850-300 hPa thickness (dam). 824 
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(a)       (b) 827 
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(c)      (d) 836 
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 844 

FIGURE 9: Deforestation-induced changes in the winds.  The arrows show the changes 845 

in the wind vector and the colors show the changes in the meridional component of the 846 

wind (m s-1).  Panel a: changes at 250 hPa, FINE simulations.  Panel b: changes at 850 847 

hPa, FINE simulations.  Panel c: changes at 250 hPa, XFINE simulations.  Panel d: 848 

changes at 850 hPa, XFINE simulations. 849 

850 
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FIGURE 10: Deforestation-induced changes in the winds in the COARSE simulation 861 

pair.  The arrows show the changes in the wind vector and the colors show the changes in 862 

the meridional component of the wind (m s-1).  Panel a: changes at 250 hPa. Panel b: 863 

changes at 850 hPa. 864 
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