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ABSTRACT 
 

This study presents an evaluation of summertime ozone concentrations over North America 

(NA) and Europe (EU) using the database generated from Phase 1 of the Air Quality Model 

Evaluation International Initiative (AQMEII). The analysis focuses on identifying temporal and 

spatial features that can be used to stratify operational model evaluation metrics and to test the 

extent to which the various modeling systems can replicate the features seen in the observations. 

Using a synoptic map typing approach, it is demonstrated that model performance varies with 

meteorological conditions associated with specific synoptic-scale flow patterns over both eastern 

NA and EU. For example, the root mean square error of simulated daily maximum 8-hr ozone 

was twice as high when cloud fractions were high compared to when cloud fractions were low 

over eastern NA.  Furthermore, results show that over both NA and EU the regional models 

participating in AQMEII were able to better reproduce the observed variance in ambient ozone 

levels than the global model used to specify chemical boundary conditions, although the variance 

simulated by almost all regional models is still less that the observed variance on all spatio-

temporal scales. In addition, all modeling systems showed poor correlations with observed 

fluctuations on the intra-day time scale over both NA and EU. Furthermore, we introduce a 

methodology to distinguish between locally-influenced and regionally-representative sites for the 

purpose of model evaluation. Results reveal that all models have worse model performance at 

locally-influenced sites. Overall, the analyses presented in this paper show how observed 

temporal and spatial information can be used to stratify operational model performance statistics 

and to test the modeling systems’ ability to replicate observed temporal and spatial features, 

especially at scales the modeling systems are designed to capture.  



INTRODUCTION 
 

In both North America and Europe, regional-scale air quality modeling systems are being used to 

help guide emission control policies aimed at meeting and maintaining the relevant air quality 

standards and to address issues related to the transport of air pollution across state and national 

boundaries. However, despite the fact that the science issues facing the regional-scale modeling 

communities on both continents are similar, there has been only limited collaboration on defining 

and applying a comprehensive approach for model evaluation aimed at critically assessing the 

strengths and limitations of the models being used in a policy setting. Recognizing this gap, 

scientists from both continents launched the Air Quality Model Evaluation International 

Initiative (AQMEII) as a long-term forum to monitor the state-of-the-science in regional-scale 

air-quality models and model evaluation methodologies (Rao et al. 2011).  The objective of 

AQMEII is to help build a coordinated international effort on regional air quality model 

evaluation methodologies using the framework defined in Dennis et al. (2010). This framework 

identifies operational, diagnostic, dynamic, and probabilistic types of model evaluation. As 

described in Dennis et al. (2010), operational evaluation is aimed at determining whether model 

estimates are in agreement with the observations in an overall sense, diagnostic evaluation 

focuses on process-oriented analyses, dynamic evaluation assesses the ability of the air quality 

model to simulate changes in air quality stemming from changes in source emissions and/or 

meteorology, and probabilistic evaluation attempts to assess the confidence hat can be placed in 

model predictions. In its first phase, AQMEII organized annual model simulations that were 

conducted for the year 2006 over both continents using specified input datasets. Outputs from 

these simulations were used to conduct a number of operational and probabilistic model 

evaluation analyses (Galmarini et al. 2012a).  

Recognizing the uniqueness of the data set generated in AQMEII Phase 1, Galmarini and Rao 

(2011) called for the community to utilize these data to develop new approaches for performing 

model evaluation. This study follows this call and aims at introducing and applying techniques 

that can highlight common aspects as well as differences between the performances of different 

modeling systems. Specifically, the proposed techniques aim at identifying temporal and spatial 

subsets of data that can be used to discern the associations between meteorological conditions 



and air quality model performance and to better quantify model performance by relying on the 

observational data that are representative of the scales that air quality models were designed to 

capture. Given the enormity of the AQMEII Phase 1 database, any individual analysis is 

necessarily limited in scope, and in this paper, we focus on summertime ozone concentrations to 

illustrate and apply the proposed model evaluation approaches.  

DATABASE  

 

This study utilized observations and model predictions of daily maximum 8-hr average (DM8A) 

ozone concentrations for May 1 – September 30 2006 over North America (NA) and Europe 

(EU). Both observations and corresponding model predictions were extracted from the AQMEII 

database of the ENSEMBLE system (Galmarini et al. 2004a; 2004b; 2012b). Table 1 lists the 

modeling systems utilized in this study. As part of the AQMEII activity, the modeling systems 

listed in Table 1 have been extensively evaluated against available observations, both in terms of 

single model performance (Appel et al. 2012; Brandt et al. 2012; Ferreira et al. 2012; Forkel et 

al. 2012; Gilliam et al. 2012; Nopmongcol et al. 2012; Pirovano et al. 2012; Sartelet et al. 2012) 

and in terms of multi-model ensemble performance (Solazzo et al. 2012a; 2012b; Vautard et al. 

2012). Most modeling systems used the common set of emissions and boundary condition 

prepared for AQMEII as described in Pouliot et al. (2012) and Schere et al. (2012), respectively. 

The horizontal grid spacing of the individual simulations ranged from 12 km to 50 km. 

Rather than performing diagnostic model evaluation and identifying causes behind model-to-

model differences, the goal of this manuscript is to introduce several model evaluation 

approaches aimed at establishing which space and time scales the models participating in 

AQMEII Phase 1 are better at simulating and for which ones they exhibit lower skill. Thus, all 

model results are presented anonymously in all Figures and Tables. In these Figures and Tables, 

“NA1” through “NA8” refer to the eight NA models listed in Table 1, and “EU1”-“EU11” refer 

to the eleven EU models. The ordering of the models is consistent between the Tables and 

Figures but is different from the order in which the individual models are identified in Table 1 to 

preserve anonymity.  



METHODS AND RESULTS 

Use of Map Typing to Stratify Operational Model Evaluation 

 

To investigate the associations between atmospheric circulation patterns (i.e., prevailing 

meteorological conditions) and DM8A ozone concentrations, we categorized atmospheric 

circulation patterns through a map typing approach based on daily gridded mean sea level 

pressure (MSLP). For NA, we used daily MSLP fields obtained from the NCAR/DOE 

Reanalysis 2 (Kanamitsu et al. 2002). For EU, we used daily MSLP fields obtained from the 

ECMWF interim ERA reanalysis dataset (Dee et al. 2011).  The map typing approach used here 

was introduced by Lund (1963) and Kirchhofer (1973), and details on its implementation can be 

found in Yarnal (1993), McKendry et al. (1995), and Hegarty et al. (2007). This approach has 

been used in several previous studies to represent ozone climatology in the northeastern U.S. 

(Hegarty et al. 2007; Hogrefe et al. 2004). As described in Yarnal (1993), McKendry et al. 

(1995), and Hegarty et al. (2007), the amount of intra-pattern variability as well as the total 

number of identified patterns are controlled by two parameters, i.e. the critical correlation 

coefficient and the minimum group size. After performing several initial trials aimed at 

maintaining pattern separation as well as keeping the number of patterns to a manageable size, in 

the current study the critical correlation coefficient was set to 0.5 for all map typing domains and 

the minimum group size was set to 4 days for NA and 7 days for EU. Using a minimum group 

size of 4 days for the EU domain would have resulted in several additional relatively infrequent 

patterns that did not add value to the current analysis. For the NA domain, map typing was 

performed separately for the western part (west of -100°W) and the eastern part (east of -100°W) 

of the domain due to the differences in prevailing meteorological conditions; separating the EU 

domain was not deemed necessary for map typing purposes. Application of the map typing 

methodology using these parameters resulted in the selection of six representative patterns for 

the eastern NA domain, four for the western NA domain, and six for the EU domain. Figures S1 

– S3 in the supplemental material show maps of the representative MSLP patterns along with 

their specific dates for each of the analysis domains. Table 2 presents the frequency of 

occurrence of each of the patterns as well as the percentage of unassigned days for all three map 

typing domains. 



The representative circulation patterns identified through the MSLP map typing procedure 

represent specific synoptic-scale situations affecting both meteorological and air quality 

variables. To elucidate these conditions, we calculated composite maps of temperature, winds, 

cloudiness, short-wave radiation and ozone concentrations by averaging these variables over all 

days that were associated with a given pattern. Meteorological fields were obtained from the 

reanalysis data sets described in Section 2. To eliminate the confounding influence of latitudinal 

gradients on the temperature and short-wave radiation, the seasonal mean values for these 

variables at each grid point were subtracted from the daily values to create daily anomalies prior 

to calculating the composite maps. The resulting composite maps for each pattern for each of the 

three analysis domain are shown in Figures S4 – S19 in the supplemental material. While it is 

beyond the scope of this study to provide a detailed discussion of the meteorological features of 

each of these patterns, these maps are provided for reference purposes, and the subsequent 

discussions of model performance under different synoptic regimes will refer to some of the 

features depicted in these composite maps.   

To quantify the dependence of model performance on synoptic conditions, we calculated the 

mean bias error (MBE) and root mean square error (RMSE) of the DM8A ozone concentrations 

for each model for each synoptic regime for the following eight analysis subregions in the 

modeling domain: Northeastern (NE), Midwest (MW), Southeast (SE), Northwest (NW), 

California (CA), Southwest (SW), Northern Europe (N. EU), Southern Europe (S. EU). The first 

three of these analysis subregions are located in the eastern NA map typing domain, the next 

three in the western NA map typing domain, and the last two in the Europe map typing domain. 

Table 3 contains a definition of each of these analysis domains. Segregating the analysis within 

each map typing region into smaller areas is necessary because a given synoptic regime 

influences different parts of the map typing domain differently. For each analysis subregion, we 

also computed “all pattern” MBE and RMSE values by combining data from all days assigned to 

any pattern. 

Figures 1a-d present results of this analysis for the NE and N. EU domains. Within each analysis 

domain, model MBE and RMSE were calculated at each site for the May – September analysis 

time period; the box-whisker diagrams in Figures 1a-d depict the distribution of these metrics 

across all sites within these analysis domains. For the NE region, Figures 1a-b show that all eight 



model simulations tend to have the lowest absolute MBE and lowest RMSE for pattern number 

six while they tend to have larger MBE (mostly negative) and larger RMSE for synoptic patterns 

one, four and five. Consultation of the composite maps in the supplemental material (Figures S4-

S9) indicates that pattern six is characterized by a high pressure system centered over the 

Midwestern U.S. Winds over the NE region (as defined in Table 3) for this pressure pattern were 

northerly except northern New England, Quebec, Nova Scotia, and New Brunswick where 

westerly winds prevailed. In addition, over the NE region this pressure pattern is associated with 

slightly above normal temperatures, clear skies, and below average DM8A ozone concentrations. 

Patterns four and five are characterized by a high pressure system situated off the New England 

coast and low pressure to the west and south. The center of the low pressure system is situated 

over Florida and Georgia for Pattern four and over Michigan and Ontario for Pattern five. Over 

the NE region, both patterns are associated with easterly to southerly winds, high cloud fractions, 

below average temperature and shortwave radiation, and below average DM8A ozone 

concentrations. Pattern one is characterized by a high pressure system centered over the Bahamas 

and a low pressure system centered over Ontario. Over the NE analysis domain, this pattern is 

associated with above average temperatures, southwesterly winds, relatively low cloud fractions, 

and above average DM8A ozone concentrations.  

For the N. EU region, Figures 1c-d show that most of the eleven model simulations tend to have 

the smallest absolute MBE and RMSE for patterns one and five and the largest absolute MBE 

(mostly positive) and RMSE for pattern 4. Consultation of the composite maps in the 

supplemental material (Figures S14-S19) shows that Pattern 1 is characterized by a high pressure 

system centered over Western France and Northern Spain and a low pressure system centered 

over Finland and Sweden, while Pattern 5 is characterized by a high pressure system centered 

west of Ireland and a low pressure system centered over Western Russia. For the N. EU analysis 

domain, these patterns one and five are associated with mostly westerly and northerly winds, 

below average temperatures and shortwave radiation, high cloud cover, and below average 

DM8A ozone concentrations. Pattern four is characterized by a low pressure pattern located 

northwest of Ireland and high pressure over most of Europe. For the N. EU analysis domain, this 

pattern is associated with while mostly easterly and southerly winds, above average temperatures 

and shortwave radiation, low cloud cover, and above average DM8A ozone concentrations.  



Because the variability in the illustrative examples depicted in Figures 1a-d is dominated by 

between-model differences for any given pattern, it can be hard to discern the between-pattern 

differences for any given model. Therefore, we performed ANOVA to determine whether, for 

any given model, the differences in mean MBE/RMSE between different patterns were 

statistically significant. The results of this analysis show that for any given model, differences 

between the pattern specific MBE/RMSE and the all-pattern MBE/RMSE were statistically 

significant at the 95% level for at least one pattern in both the NE and N. EU analysis domains. 

For most models, especially over the N. EU analysis domain, differences between the metrics for 

a given pattern and the all-pattern metrics were significant at the 95% level for at least three 

patterns and often five or all six patterns. In other words, for any given model, the use of the 

synoptic classification approach can help to distinguish significant differences in model 

performance. 

The results shown in Figures 1a-d illustrate the use of map typing to stratify operational model 

evaluation over two of the eight analysis domains. Summary results for all eight analysis 

domains are shown in Tables 4-6. For display in these tables, RMSE and MBE values for a given 

synoptic pattern were calculated separately for each model at each monitoring site within the 

analysis domain, the median value across all sites was then calculated for each model, and finally 

the results were averaged over all models. The last column shows the range of the model-average 

RMSE across all synoptic patterns to illustrate the impact of different synoptic patterns on model 

performance.  For the three analysis regions within the Eastern NA map typing domain (NE, 

MW, and SE, Table 4), the MW region shows the largest range of model performance both 

across synoptic patterns and across different models. In the SE region, the impact of different 

synoptic regimes on RMSE and MBE is least pronounced. In all three analysis regions, pattern 

six is characterized by a low average RMSE and absolute MBE. The pattern with the largest 

average RMSE is Pattern 1 in the NE, pattern 5 in the MW, and pattern 3 in the SE.  

The three analysis regions within the Western NA map typing domain (NW, CA, and SW; Table 

5) generally show less impact of different synoptic patterns on model performance compared to 

the regions within the Eastern NA map typing domain. In particular, in the SW region there is 

only a difference of 0.7 ppb (1.2 ppb) between the synoptic patterns with the lowest and highest 

average RMSE (MBE). This indicates that synoptic influences play a relatively small role in 



governing summertime ozone air quality in this region, consistent with Figures S10-S13 

(supplemental material) that show relatively small DM8A ozone anomalies for the four different 

synoptic patterns in the SW region. In addition, a unique feature of the SW analysis domain is 

that the model-average MBE is positive for all patterns, future analyses may be aimed at 

investigating the reasons for this behavior. For the NW region, Pattern 1 is associated with the 

lowest average RMSE while Pattern 2 is associated with the largest average RMSE. For CA, 

Pattern 4 is associated with the lowest average RMSE while Pattern 2 again is associated with 

the largest average RMSE.  

For the two analysis regions in the EU map typing domain (N. EU and S. EU), different synoptic 

patterns cause a wider spread in both average RMSE and MBE in the N.EU than the S. EU 

region (Table 6). For both N. EU and S. EU, the lowest RMSE is associated with Pattern 1 that is 

characterized by below average temperature and solar radiation, above average cloud fraction, 

strong westerly winds and below average observed DM8A ozone concentrations over much of 

Europe. For N. EU, the highest RMSE is associated with Pattern 4 while the highest RMSE is 

associated with Pattern 3 for S. EU. Both patterns are characterized by above-average observed 

DM8A ozone concentrations in these respective regions (Figures S14-S19, supplemental 

material). 

In an attempt to better link the underlying meteorological characteristics of each pattern with air 

quality model performance, we plotted the DM8A ozone RMSE and MBE for a given pattern at 

each site against the meteorological parameters for this pattern at the same site. For easy display, 

we then created bins of ranges of the different meteorological parameters and computed the 

average model performance metric (RMSE or MBE) for all values (sites/patterns) within this bin. 

The results for the eastern NA map typing domain are provided in Figures 2-3, and the results for 

the EU map typing domain are shown in Figures 4-5. Analysis was also performed for the 

western NA map typing domain, but results showed little dependence of model performance on 

meteorological parameters associated with the different synoptic patterns, consistent with the 

discussion of Table 5 above. Therefore, no results are shown for the western NA map typing 

domain. 

 For NA, Figures 2-3 reveal that the performance of all modeling systems participating in this 

international model intercomparison study is strongly linked with cloud cover and short-wave 



radiation anomalies while there was little dependence on temperature anomalies and wind speed. 

In particular, all modeling systems showed a large positive MBE and a large RMSE when the 

cloud fraction was high and the short-wave solar radiation anomalies were negative. Conversely, 

RMSE was lowest and the MBE was close to zero for most models when the cloud fraction was 

low and the short-wave solar radiation anomalies were positive. Note that the results shown in 

Figures 2-3 include stations in all three analysis regions of the eastern NA map typing domain; 

separate analysis (not shown here) revealed that performing this analysis separately for each 

analysis region had only a minor impact on the results. 

The behavior in the EU map typing domain (Figures 4-5) is different from that in the eastern NA 

map typing domain. Almost all modeling systems showed deteriorating performance (larger 

RMSE and more negative MBE) with increasingly positive short-wave radiation anomalies. In 

terms of cloud fraction, the model performance was generally worst for intermediate cloud 

conditions (cloud fractions 30-50%) which were characterized by the largest RMSE and most 

negative MBE. Further analysis showed slight differences in this behavior between N. EU and S. 

EU, with modeling systems generally showing a more monotonous decrease in RMSE with 

increasing cloud cover in N.EU while showing a maximum RMSE at intermediate cloud 

fractions in S. EU. In further contrast to Eastern NA, model performance for EU also showed an 

association with both temperature anomalies and wind speeds, with lower temperatures and 

higher winds generally leading to better model performance for DM8A ozone and higher 

temperature and lower winds generally leading to worse model performance. The contrast in 

model behavior between the Eastern NA and EU domains will be the subject of future diagnostic 

model evaluation studies. Potentially contributing factors include differences in the types of 

prevalent cloud types (stratiform vs. convective) over both domains and systematic differences in 

the agreement between modeled emissions and actual emissions that would confound the 

interpretation of model performance solely in terms of meteorological forcing. 

In summary, the results presented in this section demonstrate that meteorological conditions 

associated with specific synoptic patterns had a distinct impact on model performance over both 

the eastern NA and EU map typing domains for almost all modeling systems participating in 

AQMEII. For example, RMSE of DM8A ozone typically was twice as high when cloud fractions 

were high than when cloud fractions were low in Eastern NA. Results also showed map typing to 



be more useful to discriminate model behavior in some regions than others, depending on 

atmospheric dynamics and the relative effects of synoptic-scale vs. local forcings on pollutant 

concentrations.  

Observed and Modeled Temporal Features 
 

The above analysis used observed synoptic conditions to stratify operational model performance 

and to determine associations between different meteorological parameters and model 

performance for DM8A ozone. A related question is how well the different modeling systems 

performed in replicating observed forcings on the synoptic as well as other time scales. To this 

end, we applied the framework of scale analysis described in Rao et al. (1997) and Hogrefe et al. 

(2000) to observed and simulated hourly time series of ozone. As a starting point, Figures 6a-b 

depict the power spectra of observed and modeled ozone over both NA and EU. The spectra 

were calculated separately at each site and then averaged over all sites to highlight the key 

features. These figures show two curves with model-predicted spectra: the “regional models” 

curve was calculated by averaging over the spectra calculated for each of the individual models 

listed in Table 1, while the “GEMS” curve represents the power spectrum estimated from the 

coarse grid global fields which were used to derive boundary conditions for many of the regional 

AQMEII simulations (Schere et al. 2012). Note that these global fields were only available every 

three hours, thus the “GEMS” spectrum starts at a larger period than the observed and the 

regional model spectra calculated from hourly data. These figures indicate that over both NA and 

EU, the average regional model spectrum is closer to that of the observations than the “GEMS” 

spectrum for all periods, indicating that the regional models were able to better simulate some of 

the variance that was missing from the global fields. Moreover, Figures 6a-b also show that over 

both continents the regional models underestimate the observed variability for fluctuations with 

periods lasting to about two days, though less so than the global fields. For longer periods, there 

is relatively close agreement between the observed and average regional model spectra over NA 

while over EU, the observed variability continues to be underestimated by the regional models, 

though to a lesser extent than for the higher frequencies. 

To further investigate the modeling systems’ ability to reproduce observed variance on different 

time scales, Figures 7 - 8 show the observed and modeled variances for each model and each of 



the four frequency bands defined in Hogrefe et al. (2000) and delineated in Figure 6. As 

discussed in Hogrefe et al. (2000), the intra-day component represents fast-acting, local-level 

processes, the diurnal component is dominated by the 24-h periodicity, the synoptic component 

contains fluctuations related to changing weather patterns, and the baseline component reflects 

the low-frequency part of the signal representing temporal fluctuations that are largely 

determined by boundary conditions and seasonal variations in emissions and photochemical 

activity. The variances in Figures 7-8 were derived by summing the spectral densities shown in 

Figure 6 for each of the four frequency bands; this calculation was performed separately at each 

site and results were then averaged spatially for display. The results confirm the “regional 

model” results from the discussion above that was based on averaging all power spectra 

calculated from individual models. These analyses also show that the largest component of the 

observed and modeled variance occurs on the diurnal scale, followed by the synoptic, baseline, 

and intra-day scale, both over NA and EU. The modeling systems generally capture this time 

scale dependence of the variance. 

In addition, Figures 7-8 also show substantial model-to-model differences. For example, the 

variances of the baseline components differ by more than a factor of two between the different 

model simulations. Several features are noteworthy in Figure 8 displaying results for EU. First, 

the observed and simulated variances on the diurnal and synoptic scale tend to be lower than 

those over NA despite the fact that the mean ozone levels are similar over both continents (not 

shown). A potential explanation for this behavior may be that a greater portion of monitors in the 

EU domain are affected by nearby water bodies which would tend to suppress diurnal and 

synoptic forcings. Second, model-to-model variability is more pronounced in EU than in NA, 

especially on the diurnal and baseline scales. And finally, Figures 7 and 8 confirm that almost all 

models underestimate the observed variance on all scales, including the synoptic and baseline 

scale, although the agreement between observed and modeled variance for these two scales is 

better over NA than EU. The most notable exception to the general underestimation of observed 

component variances is the behavior of model “NA3” which shows overestimation especially for 

the diurnal component. Separate analysis showed that the treatment of vertical mixing processes 

in this simulation likely played a major role in causing these differences.  



While the analysis above measures the modeling systems’ ability to reproduce the observed 

overall variability on different time scales, it does not provide information on how well the 

modeling systems captured the temporal evolution of the observed component time series. 

Therefore, we calculated the correlation coefficient between the observed and modeled 

component time series on the intra-day, diurnal, synoptic, and baseline time scales for each 

model and at each site. The component time series were estimated with the Kolmogorov-

Zurbenko (KZ) filter as described in Hogrefe et al. (2000). Figures 9a-b depict this information 

as box/whisker plots for both NA and EU. These figures illustrate that all modeling systems had 

correlations of 0.3 or less with the observed intra-day component over both NA and EU. The 

correlations tend to be highest for the diurnal component because of the inherent 24-hr cycle 

present in both observations and model predictions. The correlations are also high for the 

baseline component over both continents, with median values of 0.6 or higher. For the synoptic 

component, the correlations tend to be higher over NA than EU. In addition, model-to-model 

differences in the correlation coefficients tend to be most pronounced for the synoptic and 

baseline components over both continents, indicating that these two components play a vital role 

in determining overall model skill in terms of capturing observed fluctuations in pollutant 

concentrations. 

 

Use of Spatial Representativeness Analysis to Stratify Operational Model Evaluation  

 

When applied to continental scale domains such as those used in AQMEII, the modeling systems 

should be expected to replicate observed regional-scale phenomena. On the other hand, such 

simulations should not be expected to reproduce more local-scale phenomena. Thus, for model 

evaluation it is often of interest to separate monitors sited to measure regional-scale phenomena 

from those influenced by local-scale phenomena (Solazzo et al. 2012b). Such separation can be 

accomplished through a variety of means, e.g. a careful review of the network design plan and 

site metadata that may contain information about land use, site location, nearby sources, etc. 

However, such an approach can be very resource-intensive for large monitoring datasets such as 

the ones used in AQMEII and the approach can also be hampered by the varying completeness 

and quality of the site metadata, in particular when observations are assembled from a variety of 



sources located in different jurisdictions.  Moreover, using meta-data as grouping criterion is 

only an indirect way of distinguishing between stations that are influenced by processes on 

different scales. An alternate approach would be to rely on an analysis of the spatial variability 

present in the observational dataset to subdivide this dataset into regionally-representative sites 

and locally-influenced sites for the purpose of model evaluation. The rationale for this approach 

is that if certain sites behave very differently from surrounding sites, they may not be 

representative of the scales the regional model simulations were designed to capture and should 

be treated separately for operational evaluation. 

To illustrate this alternate approach, at each site in a given domain (NA or EU) we first 

calculated the root mean square difference (RMSD) between the May – September 2006 time 

series of the DM8A ozone concentrations at that site and the corresponding time series at all 

other monitoring locations and also noted the distance between each pair of sites. Next, these 

RMSD values were binned into different distance-between-station intervals and an average 

RMSD value was calculated for each distance bin. Finally, this analysis was repeated for each 

station in the analysis domain so that for each distance bin there was a distribution of average 

RMSD values with the sample size of the distribution being equal to the number of stations. 

After reviewing the outcome of this step, we defined “regionally-representative sites” as those 

sites for which the RMSD at a separation distance of 50 km is at or below the 75th percentile of 

all RMSD values in that distance bin. In other words, this definition implies that 75% of all sites 

are considered to be “regionally-representative” while the remaining 25% are considered to be 

“locally-influenced”. In reality, this separation is likely a continuum rather than a constant value, 

but a fixed threshold definition was chosen here for illustration purposes. For both the NA and 

EU domains, this threshold corresponds to a 50 km RMSD value of roughly 10 ppb.   

Tables 7a-b list the RMSE and correlation coefficients for all modeling systems grouped by 

regionally-representative vs. locally-influenced sites for both NA and EU. Over NA, the average 

RMSE across all models is 12.1 ppb at regionally-representative sites and 15.0 ppb (i.e. roughly 

25% higher) at locally-influenced sites. The average correlation coefficient at the regionally- 

representative sites is 0.69 vs. 0.61 at locally-influenced sites. Moreover, the results also show a 

greater model-to-model spread of performance metrics at regionally-representative vs. locally- 

influenced sites; this spread is 7.0 ppb for RMSE and 0.2 for the correlation coefficient at the 



regionally-representative sites vs. 5.2 ppb for RMSE and 0.14 for the correlation coefficient at 

the locally-influenced sites. In other words, focusing the analysis on sites influenced by scales 

the modeling systems were designed to capture yields a better ability to distinguish performance 

between models since the comparison is less influenced by phenomena the regional models are 

not designed to simulate. Table 7b shows that results for the EU are quite similar. Here, the 

average RMSE across all models is 11.0 ppb at regionally-representative sites and 12.8 ppb (i.e. 

roughly 15% higher) at locally-influenced sites. The average correlation coefficient at the 

regionally-representative sites is 0.72 vs. 0.61 at locally-influenced sites. And as was the case for 

the NA domain, results for the EU domain also show a greater model-to-model spread of 

performance metrics at regionally-representative vs. locally-influenced sites, again indicating 

that regionally-representative sites provide a better dataset for evaluating these types of models. 

To contrast the results obtained by grouping stations based on their similarity to neighboring 

stations as proposed in this analysis with the more traditional approach of grouping stations 

based on station meta-data such as land use, Tables 8a-b present model performance results 

when stations were grouped as urban, suburban or rural based on available station meta-data. 

These results show that there are only minor differences in model performance between the three 

land-use types, both for NA (RMSE differences of 1.2 ppb and correlation coefficient differences 

of 0.01) and EU (RMSE differences of 0.3 and correlation coefficient differences of 0.01), 

indicating that station grouping based on station meta-data information is not the best approach 

to select stations best suitable for evaluating regional-scale modeling systems. 

These results illustrate that including sites influenced by local-scale phenomena for the 

evaluation of regional-scale modeling systems such as those analyzed in AQMEII increases the 

estimated RMSE, confounding the use of this metric as a measure of regional model error to be 

reduced through improvements to model inputs or model physics/chemistry, or numerical  

modeling. On the other hand, if model development and/or model applications are explicitly 

focused on smaller scales, such locally-influenced sites can provide a valuable subset to quantify 

the improvements in model performance achieved through such model development. As noted 

above, there are a number of ways to address the issue of spatial representativeness for 

operational model evaluation, the specific observation-based selection criterion for “regionally- 

representative” sites used here should only be viewed as an illustrative example and starting 



point for further analysis. It is likely that such analyses of the spatial representativeness of the 

observational data available for model evaluation need to be performed separately for each 

metric and pollutant of interest. 

Observed and Modeled Spatial Features 

 

In the analysis above, observed spatial features were used to stratify the operational model 

evaluation. In this section, we explore how well the different modeling systems reproduced 

observed spatial structures. The metric used for this analysis is the e-folding distance of synoptic 

scale ozone fluctuations that has been described and applied in previous model evaluation studies 

(Gilliland et al. 2008; Godowitch et al. 2008). As discussed in these studies, the e-folding 

distance is a measure of how well the time series of the synoptic-scale ozone component at a 

given location correlates with the synoptic scale ozone component at a different location. Typical 

e-folding distances for summertime ozone over the Northeastern U.S. range between 400 km and 

600 km, with shorter distances indicating that local processes modify synoptic-scale ozone 

fluctuations to a greater degree compared to locations with longer e-folding distances.  

Figure 10 a-d presents box-and-whisker plots of e-folding distances calculated from observations 

and model predictions for both NA and EU using two separate sets of sites, i.e. the locally-

influenced vs. regionally-representative sites defined in Section 3.3. The e-folding distances were 

calculated separately at each site; the box-and-whisker plots represent the distributions across all 

sites. The results reveal that the e-folding distances are generally shorter over EU than NA in 

both observations and model predictions for both types of sites. In addition, the e-folding 

distances are generally also shorter at locally-influenced vs. regionally-representative sites, 

corroborating the argument that this metric can be used to measure the relative influence of local 

vs. regional effects. The results of ANOVA showed that over NA, the mean e-folding distances 

were different at the 95% confidence level between the two types of sites for observations and all 

model simulations. For the EU domain, the difference in mean e-folding distances between the 

two types of sites was significant at the 95% level for the observations and eight of the eleven 

models. 



All modeling systems overestimate the observed e-folding distances over both NA and EU at 

locally influenced sites, consistent with the notion that the regional-scale modeling systems 

applied in AQMEII are not designed to fully represent local-scale effects. On the other hand, the 

model performance at regionally-representative sites is more varied: while most modeling 

systems overestimate the observed e-folding distances at these sites over both NA and EU, 

several models show a slight underestimation. Since the modeling systems applied in AQMEII 

should be expected to represent the phenomena at regionally-representative sites, future work 

should be directed at identifying and correcting the reasons for the discrepancies seen between 

SUMMARY 

This study presented a space-time evaluation of summertime DM8A ozone concentrations over 

North America and Europe using the database generated during Phase 1 of AQMEII (Galmarini 

and Rao 2011). The evaluation focused on identifying temporal and spatial features that could be 

used to stratify operational model evaluation and to test to which extent the various modeling 

systems could replicate such features present in the observations. Using map typing to perform 

temporal stratification of model performance, it was demonstrated that the meteorological 

conditions associated with specific synoptic patterns had a distinct impact on model performance 

over both eastern NA and EU for almost all modeling systems participating in AQMEII.  

In terms of observed and modeled variance on different time scales, the results show that over 

both NA and EU the regional models participating in AQMEII were able to better simulate the 

observed variance than the global model used to derive chemical boundary conditions. However, 

almost all regional models still underestimated the observed variance on all scales. All modeling 

systems showed poor correlations with observed fluctuations on the intra-day time scale over 

both NA and EU. Model-to-model differences in the correlation coefficients with the observed 

component time series tend to be most pronounced for the synoptic and baseline components 

over both continents, indicating that these two components play a key role in determining overall 

model skill in terms of capturing observed fluctuations in pollutant concentrations. 

Using observed root mean square differences of the DM8A ozone between different sites as a 

criterion, we introduced a methodology to distinguish between locally-influenced and regionally-

representative sites for the purpose of model performance evaluation. The results show that all of 



the regional-scale modeling systems analyzed in this study have worse performance at locally-

influenced sites. In other words, inclusion of sites influenced by local-scale phenomena for the 

evaluation of regional-scale modeling systems increases the estimated RMSE, confounding the 

use of this metric as a measure of model error that should be reduced through improvements to 

model inputs or the modeling system itself. On the other hand, the locally-influenced sites 

identified by this method could serve a good reference data set for evaluating model performance 

in future studies aimed at evaluating and improving model performance at small scales. 

In summary, the analyses presented in this paper demonstrated how observed temporal and 

spatial information can be used to stratify operational model performance and to test the 

modeling systems’ ability to replicate observed temporal and spatial features, especially at scales 

the modeling systems are designed to capture.  Furthermore, decisions for the improvement of 

regional air quality models should be based on the information derived from only regionally-

representative sites.  
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Figure 1. a) – d): Box/whisker plots of RMSE and MBE for NE and N.EU domains for each 
model and each pattern. The all-pattern results are also shown for each model. Boxes and 
whiskers represent the distribution of RMSE and MBE across the monitoring sites in the analysis 
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Figure 2. RMSE of DM8A ozone for a given patterns over the Eastern NA map typing domain as 
a function of a) pattern average cloud fraction, b) pattern short-wave radiation anomalies, c) 
pattern 2-m temperature anomalies, and d) pattern average wind speed 

  



Figure 3. As Figure 2, but for MBE rather than RMSE 

  



Figure 4. As Figure 2, but for the EU rather than the Eastern NA map typing domain 

  



Figure 5. As Figure 4, but for MBE rather than RMSE 

 

  



Figure 6. Power spectra of observations, regional model simulations, and global model 
simulations used as boundary conditions for most regional model simulations. The power spectra 
were calculated separately at each site and then averaged over all sites. a) NA, b) EU 

 



 

Figure 7. Bar charts of component variances, NA. 

 

  



Figure 8. Bar charts of component variances, EU. 

 

 

  



Figure 9. Box/whisker plots of correlation coefficients between observations and model 
simulations for different temporal components, a) NA, b) EU. ID stands for the intra-day 
component, DU for the diurnal component, SY for the synoptic component, and BL for the 
baseline component. On either side of the box, the whiskers extend to the most extreme data 
point or 1.5 times the interquartile range (i.e. the difference between the 25th and 75th 
percentiles), whichever is less. 

 

  



Figure 10. Box/whisker plots of observed and simulated e-folding distances at regionally 
representative and locally influenced sites as defined in the text. a) locally influenced sites, NA; 
b) regionally representative sites, NA; c) locally influenced sites, EU; d) regionally 
representative sites, EU. On either side of the box, the whiskers extend to the most extreme data 
point or 1.5 times the interquartile range (i.e. the difference between the 25th and 75th 
percentiles), whichever is less. The dashed line represents the median observed e-folding 
distance. 

 



Table 1. List of modeling systems analyzed in this study. The order of modeling systems shown 
in this table differs from the order in which results are displayed in subsequent tables and figures 
to preserve model anonymity. 

 

  

Model 
Domain 

Meteorological 
Model 

Air Quality Model Chemical Boundary 
Conditions 

Horizontal Grid 
Spacing 

NA WRF Chimere GEMS 36 km 
NA WRF Chimere LMDz-INCA 36 km 
NA MM5 DEHM Satellite Data 50 km 
NA MM5 CAMx LMDz-INCA 24 km 
NA CCLM CMAQ GEMS 24 km 
NA WRF CMAQ GEMS 12 km 
NA WRF CAMx GEMS 12 km 
NA GEM AURAMS Climatology 45 km 
EU MM5 Polair3D GEMS 24 km 
EU MM5 Chimere LMDz-INCA 25 km 
EU COSMO MUSCAT GEMS 24 km 
EU MM5 DEHM Satellite Data 50 km 
EU ECMWF SILAM GEMS 24 km 
EU PARLAM-PS EMEP EMEP 50 km 
EU ECMWF LOTOS/EUROS GEMS 25 km 
EU WRF CMAQ GEMS 18 km 
EU WRF/Chem (coupled, no 

aerosol/radiation feedbacks) 
WRF/Chem standard 
boundary conditions 

22.5 km 

EU MM5 CAMx GEMS 15 km 
EU WRF/Chem (coupled, feedbacks from 

direct  aerosol effects) 
WRF/Chem standard 
boundary conditions 

22.5 km 



Table 2. Frequency of occurrence of the different synoptic patterns for the E. NA, W. NA, and 
EU map typing domains. 

  

Map 
Typing 
domain 

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Unassigned

Eastern 
NA 

37.9% 16.3% 18.3% 7.8% 6.6% 3.3% 9.8% 

Western 
NA 

44.4% 24.8% 19.6% 6.6% NA NA 4.6% 

EU 20.9% 15.7% 12.4% 9.2% 11.1% 16.3% 14.4% 



Table 3. Definition of analysis regions for stratifying operational model performance based on 
synoptic patterns. In NA, regions were defined based on state and provincial boundaries while in 
EU, the analysis regions were defined based on longitude. 

 

Analysis Region Contained within Map 
Typing Region 

Definition of Analysis Region 

NE Eastern NA Stations in Washington, D.C, Maryland, Delaware 
Pennsylvania, New Jersey, New York, New 
Hampshire, Connecticut, Massachusetts, Rhode 
Island, Vermont, Maine, Province Quebec, Nova 
Scotia, and New Brunswick 

MW Eastern NA Stations in Ohio, Illinois, Indiana, Michigan, 
Wisconsin, Minnesota, Iowa, Missouri, Ontario 

SE Eastern NA Stations in North Carolina, South Carolina, Georgia, 
Alabama, Mississippi, Tennessee, Kentucky, Virginia, 
and West Virginia 

NW Western NA Stations in Oregon, Washington, and British Columbia 
SW Western NA Stations in Arizona, New Mexico, Colorado, Utah, 

Kentucky 
CA Western NA Stations in California 
N. EU EU Stations with latitude > 46.5°N 
S. EU EU Stations with latitude < 46.5°N 
 

  



Table 4. a) RMSE of DM8A ozone for each synoptic pattern for the three analysis regions in the 
East NA map typing domain. For display in this table, RMSE values for a given synoptic pattern 
were calculated separately for each model at each of monitoring site within the analysis domain, 
the median value across all sites was then calculated for each model, and finally the results were 
averaged over all models. The last column shows the range of the model-average RMSE across 
all synoptic patterns to illustrate the impact of different synoptic patterns on model performance. 
b) as a) but for MBE of DM8A ozone. 

 

MBE (ppb), Eastern NA Map Typing Domain 
 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Range 

Across 
Patterns 

NE Analysis 
Domain (267 
Sites)  ‐5.3  ‐2.1 ‐4.4 ‐5.8 ‐4.7  ‐0.8  5.0 

MW Analysis 
Domain (296 
Sites)  ‐5.0  ‐4.2 ‐1.5 ‐5.8 ‐6.3  2.0  8.3 

SE Analysis 
Domain (235 
Sites)  ‐6.7  ‐4.4 ‐6.3 ‐9.1 ‐4.6  ‐4.5  4.7 

 

 

  

RMSE (ppb), Eastern NA Map Typing Domain 
 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Range 

Across 
Patterns 

NE Analysis 
Domain (267 
Sites)  12.8  11.1 11.4 11.3 12.2  8.2  4.6 

MW Analysis 
Domain (296 
Sites)  12.8  12.5 10.6 12.0 14.5  9.3  5.2 

SE Analysis 
Domain (235 
Sites)  12.8  11.1 13.1 13.0 11.4  10.5  2.6 



Table 5. As Table 4 but for Western NA map typing domain.  

 

 

 

 

  

RMSE (ppb), Western NA Map Typing Domain 
 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Range 

Across 
Patterns 

NW Analysis 
Domain (58 
Sites)  8.7  11.9 9.0 10.1 3.2 

CA Analysis 
Domain (191 
Sites)  14.6  15.2 14.0 10.8 4.4 

SW Analysis 
Domain (122 
Sites)  10.9  10.3 10.2 10.9 0.7 

MBE (ppb), Western NA Map Typing Domain 
 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Range 

Across 
Patterns 

NW Analysis 
Domain (58 
Sites)  ‐2.5  ‐2.1 ‐3.3 ‐5.1 3.0 

CA Analysis 
Domain (191 
Sites)  ‐2.5  ‐3.1 ‐3.9 ‐1.9 2.0 

SW Analysis 
Domain (122 
Sites)  3.0  2.6 1.8 2.9 1.2 



Table 6. As Table 4 but for EU map typing domain. 

 

 

 

 

MBE (ppb), EU Map Typing Domain 
 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Range 

Across 
Patterns 

N.EU Analysis 
Domain (995 
Sites)  0.1  1.6 5.6 7.2 1.8  4.0  7.1 

S. EU 
Analysis 
Domain (554 
Sites)  1.2  0.2 4.0 2.8 1.5  3.1  3.8 

 

 

 

 

 

  

RMSE (ppb), EU Map Typing Domain 
 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Range 

Across 
Patterns 

N.EU Analysis 
Domain (995 
Sites)  8.0  10.5 12.1 15.1 9.3  11.2  7.1 

S. EU 
Analysis 
Domain (554 
Sites)  9.7  10.5 12.4 12.2 10.4  11.8  2.7 



Table 7 a) RMSE and correlation coefficient at regionally representative and locally influenced 

sites over NA. Regionally representative and locally influenced sites were defined as described 

in the text. b) as a) but for EU. 

a) 

 

b) 

 

  

Model RMSE Spatially 
Representative Sites 
(952 Sites) 

RMSE Locally 
Influenced Sites 
(317 Sites) 

Correlation Coefficient 
Spatially Representative 
Sites (952 Sites) 

Correlation 
Coefficient 
Locally Influenced 
Sites (317 Sites) 

NA1  13.1  15.6 0.66  0.59

NA2  9.5  13.3 0.78  0.67

NA3  16.5  18.5 0.58  0.53

NA4  12  15.1 0.66  0.56

NA5  12  15.3 0.75  0.66

NA6  11.2  13.4 0.67  0.63

NA7  12.1  15.2 0.68  0.6

NA8  10.5  13.4 0.73  0.64

Minimum  9.5  13.3 0.58  0.53

Maximum  16.5  18.5 0.78  0.67

Average  12.1  15.0 0.69  0.61

Model RMSE Spatially 
Representative Sites 
(1072 Sites) 

RMSE Locally 
Influenced 
Sites (358 
Sites) 

Correlation Coefficient 
Spatially Representative 
Sites (1072 Sites) 

Correlation 
Coefficient 
Locally Influenced 
Sites (358 Sites) 

EU1  8.0  11.3 0.83  0.71

EU2  12.3  14.5 0.77  0.66

EU3  9.9  11.8 0.74  0.64

EU4  10.3  13.0 0.71  0.56

EU5  9.7  11.9 0.78  0.68

EU6  9.1  11.9 0.79  0.67

EU7  10.2  12.6 0.71  0.58

EU8  14.6  13.9 0.63  0.5

EU9  12.8  14.3 0.64  0.54

EU10  14.4  13.4 0.58  0.52

EU11  9.7  12.3 0.78  0.63

Minimum  8.0  11.3 0.58  0.50

Maximum  14.6  14.5 0.83  0.71

Average  11.0  12.8 0.72  0.61



Table 8.a) RMSE and correlation coefficient at rural, suburban and urban sites over NA. The 

classification of rural, suburban and urban sites was based on station metadata. b) as a) but for 

EU 

 

a) 

 

b) 

 

Model 
RMSE 
Rural (607 
Sites) 

RMSE 
Suburban (557 
Sites) 

RMSE 
Urban (253 
Sites) 

Correlation 
Coefficient 
Rural (607 
Sites) 

Correlation 
Coefficient 
Suburban 
(557 Sites) 

Correlation 
Coefficient 
Urban (253 
Sites) 

NA1  12.4 13.9 13.7 0.64 0.66  0.66

NA2  9.2 10.1 10.1 0.76 0.77  0.76

NA3  15.7 17.5 17.3 0.55 0.57  0.58

NA4  11.8 12.5 12.9 0.63 0.66  0.63

NA5  11.3 12.9 12.6 0.74 0.75  0.74

NA6  11.0 11.7 11.7 0.66 0.67  0.66

NA7  11.8 12.8 12.7 0.66 0.66  0.67

NA8  10.4 11.5 11.4 0.70 0.72  0.71

Minimum  9.2 10.1 10.1 0.55 0.57  0.58

Maximum  15.7 17.5 17.3 0.76 0.77  0.76

Average  11.7 12.9 12.8 0.67 0.68  0.68

 
RMSE 
Rural (521 
Sites) 

RMSE 
Suburban (431 
Sites) 

RMSE 
Urban (572 
Sites) 

Correlation 
Coefficient 
Rural (521 
Sites) 

Correlation 
Coefficient 
Suburban 
(431 Sites) 

Correlation 
Coefficient 
Urban (572 
Sites) 

EU1  8.2 8.6 8.8 0.80 0.81  0.81

EU2  11.6 13.2 13.7 0.74 0.74  0.74

EU3  9.8 10.3 10.3 0.71 0.73  0.71

EU4  10.8 10.7 10.5 0.66 0.68  0.68

EU5  10.3 10.1 9.7 0.77 0.76  0.76

EU6  9.5 9.6 9.4 0.76 0.77  0.77

EU7  10.4 10.9 10.4 0.68 0.68  0.68

EU8  15.1 14.3 13.4 0.59 0.62  0.61

EU9  13.9 13.0 12.5 0.62 0.63  0.62

EU10  14.7 14.2 13.4 0.55 0.57  0.57

EU11  10.1 10.4 9.8 0.75 0.75  0.76

Minimum  8.2 8.6 8.8 0.55 0.57  0.57

Maximum  15.1 14.3 13.7 0.80 0.81  0.81

Average  11.3 11.4 11.1 0.69 0.70  0.70
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