1 Supplementary Material to:

3	Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for
4	the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)
5	
6	Michael S. Breen, ¹ Janet M. Burke, ¹ Stuart A. Batterman, ² Alan F. Vette, ³ Gary A. Norris, ¹
7	Christopher Godwin, ² Carry W. Croghan, ¹ Bradley D. Schultz, ¹ Thomas C. Long ⁴
8	
9	¹ National Exposure Research Laboratory, United States Environmental Protection Agency,
10	Research Triangle Park, NC, USA
11	² Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
12	³ Immediate Office of the Assistant Administrator, United States Environmental Protection
13	Agency, Research Triangle Park, NC, USA
14	⁴ National Center for Environmental Assessment, United States Environmental Protection
15	Agency, Research Triangle Park, NC, USA
16	
17	Corresponding author: Michael Breen; 109 T.W. Alexander Drive, Mail Code: E205-02,
18	Research Triangle Park, NC 27709, USA; Tel: (919) 541-9409; Fax: (919) 541-9444; Email:
19	Breen.Michael@epa.gov
20	
21	
22	
23	

24 Supplementary Material 1. Method for calculation of jackknife estimate and confidence

25 interval. Let θ be the parameter of interest and let $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_n$ be the estimates of θ based on

26 *n* subsamples, each of size n-1. The jackknife estimate of θ is the arithmetic average given by

$$\hat{\theta}_J = \frac{1}{n} \sum_{i=1}^n \hat{\theta}_i.$$

28 The $100(1-\alpha)$ percent confidence interval (CI) of the jackknife estimate is

29
$$\operatorname{CI} = \hat{\theta}_J \pm t_{\alpha/2, n-1} \hat{\sigma}_J$$

30 where $\hat{\sigma}_{I}$ is the standard error defined as:

31
$$\hat{\sigma}_J = \left[\frac{n-1}{n}\sum_{i=1}^n \left(\hat{\theta}_i - \hat{\theta}_j\right)^2\right]^{0.5}$$

32 where $t_{\alpha/2,n-1}$ is the upper $\alpha/2$ percentage point of the t-distribution with n-1 degrees of 33 freedom. For the 95 percent confidence interval with n=17 (low-income homes), to.025,16 = 2.120, 34 and with n=6 (conventional homes), to.025,5 = 2.571.

35

36

FIGURE LEGENDS

Supporting Material, Figure S1. Year built for the 24 homes with measured AER (A) and all
213 homes (B).

39

Supporting Material, Figure S2. Comparison of absolute differences for |ε| between individual
modeled and measured AER for the LBLX model. Results are shown for parameters estimated
using one house age cluster for the leakage area model (estimated parameters), and results from
literature-reported parameters (fixed parameters). Results are separated by house age. Shown are
medians with 25th and 75th percentiles.

46	Supporting Material, Figure S3 . Comparison of signed differences for Δ (A) and ϵ (B) between
47	individual modeled and measured AER for each model. Results are separated by season, road
48	type, and across all days. Shown are medians with 25th and 75th percentiles.
49	
50	Supporting Material, Figure S4 . Comparison of signed differences for Δ (A) and ϵ (B) between
51	individual modeled and measured AER for the LBLX and LBL models. Results are separated by
52	house age and window status. Shown are medians with 25th and 75th percentiles.
53	
54	Supporting Material, Figure S5. Scatter plots of model-predicted and measured AER for each
55	home. The points are average AER values for each home. Points above and below the 1:1 line
56	indicate model overestimation and underestimation, respectively.
57	
58	
59	

Table S1. Stack coefficie	ent $k_{s}\left[\left(\mathrm{L/s}\right)^{2}/\left(\mathrm{cm}^{4}\cdot\mathrm{K}\right)\right]$
	House height (stories)

	One	Two	Three						
Stack coefficient	0.000145	0.000290	0.000435						

Table S2. Wind coefficient $k_w \left[\left(L/s \right)^2 / \left(cm^4 \cdot (m/s)^2 \right) \right]$											
	Hous	se height (s	tories)								
Shelter class	One	Two	Three								
1	0.000319	0.000420	0.000494								
2	0.000246	0.000325	0.000382								
3	0.000174	0.000231	0.000271								
4	0.000104	0.000137	0.000161								
5	0.000032	0.000042	0.000049								

Table S3. Local sheltering

Table S3. Loca	ii sheitering	
Shelter class for LBL and LBLX models ¹	Shelter class for SF model ²	Description ¹
1	Exposed	No obstructions or local shielding
2	Normal	Typical shelter for an isolated rural house
3	Normal	Typical shelter caused by other buildings across street from building under study
4	Normal	Typical shelter for urban buildings on larger lots where sheltering obstacles are more than one building height away
5	Well-shielded	Typical shelter produced by buildings or other structures immediately adjacent (closer than one building height): e.g., neighboring houses on same side of street, trees, bushes, etc.

¹ ASHRAE Handbook-Fundamentals, 2009

² US EPA, Energy Star Home Sealing Specification, 2001

			Value (Year built, Floor area)							
Model input	Number of homes	Mean	SD	Min	p25	p50	p75	Max		
Year built	24	1939	20	1900	1927	1942	1948	1997		
Floor area (m ²)	24	139	40	63	115	133	175	230		
Housing-type										
Low-income	18									
Conventional	6									
Number of stories										
One-story	2									
Two-story	21									
Three-story	1									
Local sheltering										
Class 2	1									
Class 3	3									
Class 4	4									
Class 5	16									

Table S4. Summary statistics for building characteristics of 24 homes with AER measurements

Table S5. Summary statistics for building characteristics of all 213 homes

			Value (Year built, Floor area)										
Model input	Number of homes	Mean	SD	Min	p25	p50	p75	Max					
Year built	213	1938	24	1888	1924	1938	1949	2007					
Floor area (m ²)	213	117	44	36	81	112	139	307					
Housing-type													
Low-income	185												
Conventional	28												
Number of stories													
One-story	30												
Two-story	178												
Three-story	5												
Local sheltering													
Class 2	1												
Class 3	13												
Class 4	106												
Class 5	93												

Season:year ¹ or		Number of days					Air	Exchar	ige Rate	es (h ⁻¹)				
road type classification of home	Number of homes	windows opened ²	Sampl size	e Mean	SD	Min	p5	p10	p25	p50	p75	p90	p95	Max
Fall:2010	24	19 (16%)	119	0.72	0.43	0.15	0.26	0.28	0.42	0.60	0.97	1.35	1.41	2.39
Spring:2011	17	9 (12%)	78	0.85	0.45	0.39	0.40	0.42	0.46	0.72	1.11	1.44	1.83	2.37
HTHD ³	7	12 (22%)	55	0.78	0.38	0.26	0.28	0.29	0.44	0.74	1.14	1.35	1.39	1.46
HTLD ³	5	2 (5%)	44	0.80	0.46	0.25	0.27	0.29	0.39	0.69	1.17	1.39	1.61	1.92
LTLD ³	12	14 (14%)	98	0.75	0.47	0.15	0.29	0.40	0.46	0.65	0.87	1.35	2.07	2.39
All	24	28 (14%)	197	0.77	0.44	0.15	0.27	0.33	0.45	0.65	0.99	1.36	1.55	2.39

Table S6. Summary statistics of LBLX modeled air exchange rates (24 h average) for 24 homes with AER measurements

¹ Fall: September, October, and November; spring: March, April, and May

² Percentage of days windows opened relative to corresponding sample size are shown in parentheses

³ HTHD: high traffic high diesel, HTLD: high traffic low diesel, LTLD: low traffic low diesel

Season:year ¹ or		Number of days					Air	Exchar	ige Rate	es (h ⁻¹)				
road type classification of home	Number of homes	windows opened ²	Sampl size	e Mean	SD	Min	p5	p10	p25	p50	p75	p90	p95	Max
Fall:2010	24	19 (16%)	119	0.69	0.42	0.15	0.24	0.27	0.40	0.59	0.90	1.30	1.38	2.39
Spring:2011	17	9 (12%)	78	0.83	0.45	0.39	0.40	0.42	0.46	0.71	1.08	1.40	1.83	2.37
HTHD ³	7	12 (22%)	55	0.74	0.38	0.24	0.26	0.28	0.42	0.67	1.12	1.32	1.35	1.46
HTLD ³	5	2 (5%)	44	0.80	0.46	0.25	0.27	0.29	0.39	0.69	1.17	1.39	1.61	1.92
LTLD ³	12	14 (14%)	98	0.72	0.46	0.15	0.23	0.40	0.46	0.62	0.78	1.25	2.06	2.39
All	24	28 (14%)	197	0.75	0.44	0.15	0.26	0.31	0.43	0.64	0.97	1.32	1.55	2.39

¹ Fall: September, October, and November; spring: March, April, and May

² Percentage of days windows opened relative to corresponding sample size are shown in parentheses

³ HTHD: high traffic high diesel, HTLD: high traffic low diesel, LTLD: low traffic low diesel

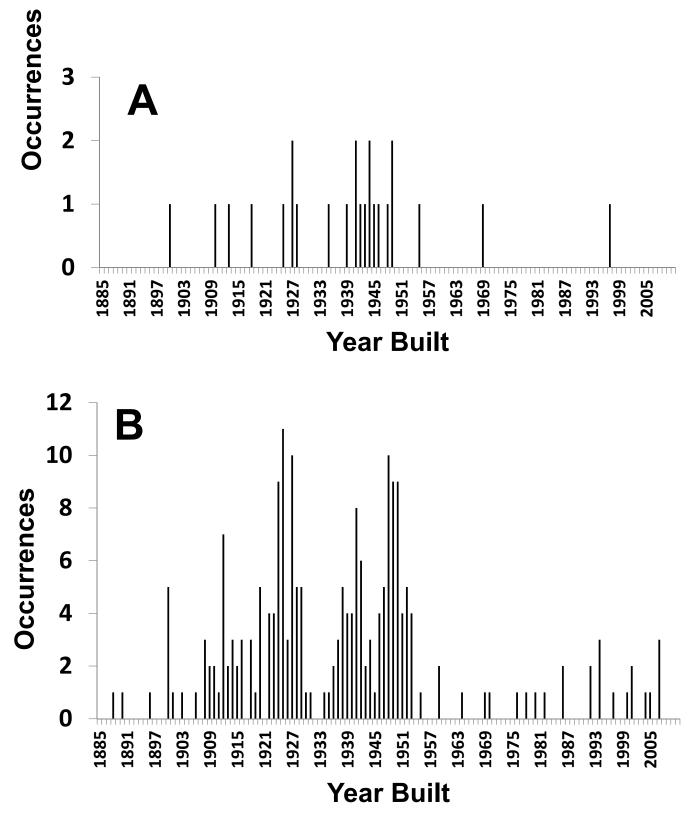
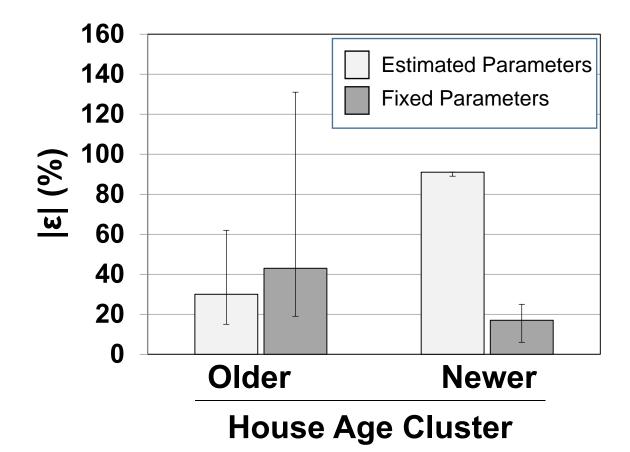



Figure S1

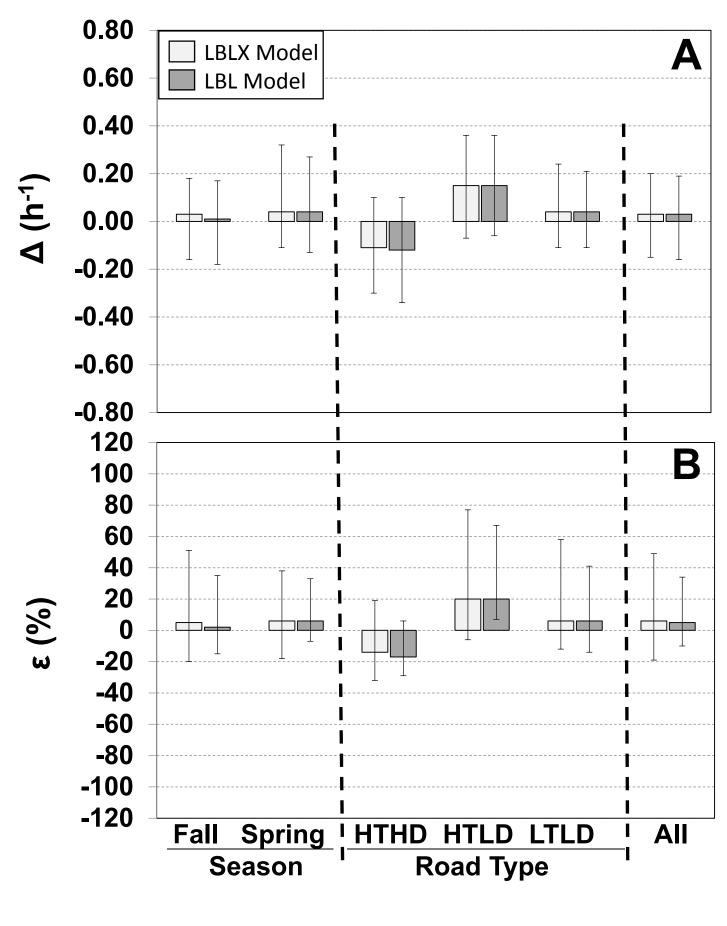
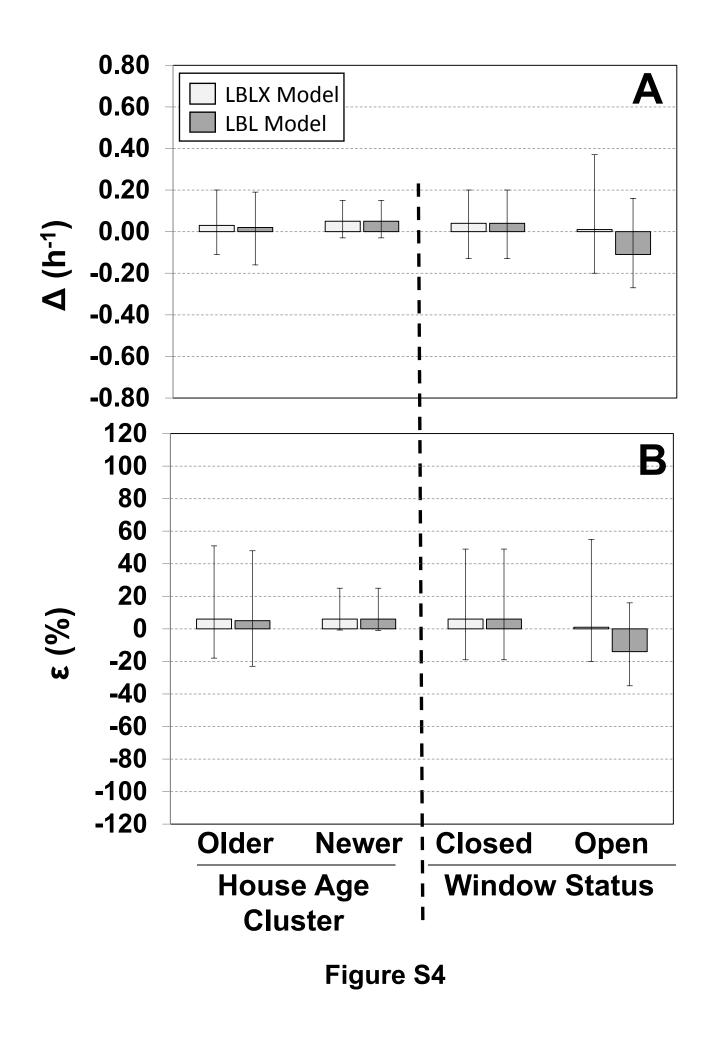



Figure S3

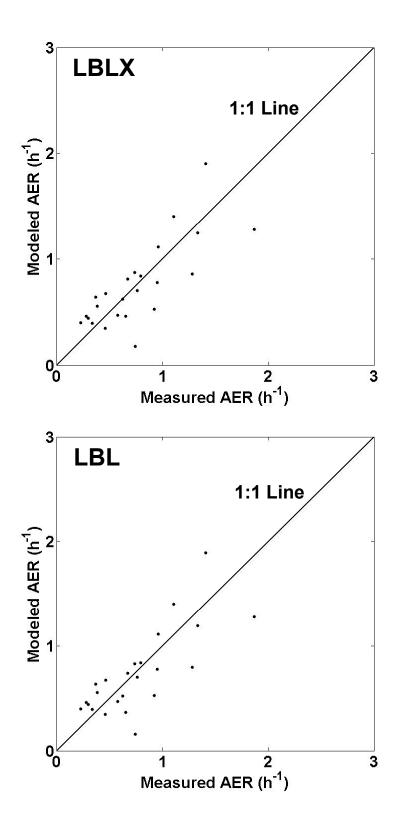


Figure S5