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Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those

identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R

software package, vLiverPBPK. For the thousands of chemicals without in vivo TK data, all four TK models were designed to be parameterized

with high-throughput (HT) in vitro TK experiments and structure-based physico-chemical property predictions. The models make two general

types of predictions: steady-state serum concentration resulting from repeated exposures for use in reverse toxicokinetic (RTK) studies, and

prediction of TK time course metrics such as Cmax and time-integrated plasma concentration (Area Under the Curve or AUC) for evaluating model

prediction by comparison to in vivo data. In predicting the concentrations of a chemical over time, the HTTK models primarily use in vitro data for

both the fraction of chemical unbound to plasma and the hepatic clearance, as well as structure-derived physicochemical properties for the

calculation of partition coefficients and ratios of blood flows and tissue volumes to body weight for the models with multiple compartments. We

have performed simulation studies using the more sophisticated high-throughput (PBTK) model to evaluate key assumptions in the simpler three-

compartment, steady-state model used in previous RTK studies and have found that although the majority of chemicals reach steady state

within seven weeks, some never reach steady state within a typical human lifespan. We were also able to predict average steady state

concentrations resulting from discrete dosing with predictions based on the infusion dosing assumption used in previous RTK studies; many of

the chemicals that quickly reached lower steady state concentrations reached maximum concentrations of more than double the average steady

state concentration. The package can currently make predictions for 350 chemicals, including 75 pharmaceuticals and 275 ToxCast chemicals,

and we will continue adding chemicals as more data comes available. This abstract does not necessarily reflect US EPA policy.
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• We have curated sufficient HTTK data to predict human steady-

state serum concentrations (Css, in units of mg/L) equivalent to the 

activation concentrations observed in vitro for 350 chemicals1,4,7,9,10:

• 75 pharmaceuticals, 

• 275 ToxCast chemicals

• 41 NHANES chemicals

• In Wetmore et al. (2012) population variability was simulated via 

Monte Carlo method using  SimCYP2 the EPA/NCCT vLiverPBPK

package replaces SimCYP with distributions that better reflect in 

vitro measurement

Modeling Measurement Limitations

This poster does not necessarily reflect EPA policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
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• The  models at the left and right are 

included in the vLiverPBPK package 

with functions for solving for the 

concentration vs. time curve for each 

compartment , finding the steady state 

plasma concentration, simulating steady 

state and oral equivalent variability with 

Monte Carlo methods, calculating and 

listing parameters, and listing the 

chemicals and data within the package.

• There are thousands of chemicals in 

our environment to which we are 

regularly exposed, many of which with 

little information for prioritizations

• ToxCast3 in vitro assays (e.g.) 

generate bioactivity data that provide 

tools for comparing chemicals with 

minimal information to known 

toxicants

• ExpoCast8 allows high throughput 

exposure predictions for comparison 

with bioactivity data (point and

vertical bar in figure at right 

indicates median and upper 95% 

interval) Red indicates chemicals with 

some near-field (e.g. indoor, 

consumer use) sources of exposure 

while blue indicates chemicals with 

far field sources only.

• Each black circle in the figure above corresponds to the dose needed to cause 50% activity in an in vitro assay

Different chemicals have different numbers of active assays, e.g., if the assay dose-response was best described by a flat

line (no response) then no circle is plotted.

•The ratio of oral equivalent dose for activity to predicted exposures (activity:exposure ratio, AER)9 allows prioritization of 

limited  testing resources for chemicals of higher concern

• In vitro measurements of TK determinants have allowed ToxCast activities to be translated into human9 and rat10 oral

equivalent doses needed to reach steady state

• Although we have characterized the uncertainty in exposure predictions, there is a great need for characterizing the

uncertainty of in vitro predictions of toxicokinetics (HTTK)

Predicting Steady State and Equivalent Dose

• Most chemicals reach a steady state concentration (Css) in a 

manner similar to the way it is reached in the figure on the 

right.  The horizontal line represents the steady state reached 

with the constant infusion dosing assumption made in Wetmore 

et al. (2012).  

The HTPBTK model predictions for the area under 

the plasma concentration versus time curve (AUC –

shown in A) and the maximum concentration for a 

single dose (Cmax – shown in B) correlate well with 

the in vivo data taken from various literature 

sources.

C) The number of days it takes a chemical to reach 

steady state ranges from 2 days to over 100 years with 

about half taking less than a year.  The density of 

chemicals decreases as the time to steady state 

increases.

D) The maximum concentration at steady state 

does not vary significantly from the average 

concentration.  For a few of the chemicals with 

lower steady state concentrations it can be up to a 

factor of 1.35 larger at three doses per day.

The HTPBTK model assume 100% bioavailability 

for oral doses and should therefore usually over 

predict in vivo measurements, as in A and B.

• The models within vLiverPBPK provide rapid and efficient predictions of steady state and other concentrations of 

interest, allowing in vitro – in vivo extrapolation (IVIVE) of ToxCast bioactivity results

• We find the assumptions and results from Wetmore  et al. (2012) to be consistent with our own and reasonable for 

most chemicals:

• The comparison of our HTPBTK model predictions to literature values demonstrates that we can account for a 

significant amount of the variance in in vivo concentrations between chemicals.

• Our models predict that some chemicals with long half lives never reach steady state.

• These models show that the steady-state concentrations predicted with discrete and infusion dosing 

assumptions are consistent and significantly different from the peak concentration at steady state.
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• Using HTPBTK we can simulate discrete doses to better approximate discrete dosing from proximate (near-field) 

sources. We can then compare the maximum concentration with the infusion dosing results at steady state, which 

are equivalent to the average of the discrete dosing steady states.

• The steady state concentration from 1 mg/kg/day dosing is used to calculate the dose needed to reach any steady 

state for that chemical using the linear dose-concentration relationship of the model.

• The equation on the right is 

used in the Monte Carlo 

sampler and  Wetmore et al. 

(2012). The equations is equal 

to the steady state 

concentration of the liver in the 

three compartment model 

without partition coefficients, 
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