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Executive Summary 

Over the past 40 years, the U.S. Environmental Protection Agency (EPA) has made significant 

progress in protecting human health and the environment from the adverse effects of chemical 

exposures. The tens of thousands of chemicals in the environment, however, are overwhelming our 

ability to evaluate their safety using traditional approaches. Traditional methods also are not 

adequately addressing complex, risk assessment issues such as co-exposures from many different 

environmental stressors or the potential effects of chemicals on people who might be more 

sensitive or susceptible. This report, Next Generation Risk Assessment: Recent Advances in Molecular, 

Computational, and Systems Biology (NexGen), explores new, more efficient approaches to 

evaluating chemical safety and to addressing key issues. Applications range from screening and 

prioritizing thousands of chemicals for further evaluation to augmenting traditional, data-rich 

chemical assessments in support of national regulations. This report presents the results from a 

multiyear, multi-organization effort designed to summarize the state of the science and to provide a 

scientific foundation for modernizing risk assessment methodology. The target audience for this 

report is scientists and risk assessors already familiar with many of the technical terms, concepts, 

and practices discussed. This executive summary, however, offers a less technical overview of the 

contents of this report. Additional general information is available at the NexGen website (EPA 

2013a). 

Eight case studies, or prototypes, were developed to illustrate how new science might be used to 

support a variety of Agency decisions. Areas of interest include the following: Can new types of data 

produce results comparable to the results of traditional risk assessments? What types of 

information appear most valuable for specific purposes? And what are the decision rules needed 

during the selection and evaluation of new data types to ensure consistent, scientifically sound 

assessments? The prototypes are not intended to evaluate all the available new data and methods 

or all situations risk managers face. Rather, the intent is to provide concrete examples of some 

analyses and uses, to encourage further dialogue, and to promote broader understanding of these 

new risk assessment approaches. 

Based on the lessons learned from developing the prototypes, several near-term and long-term 

implications for risk assessment can be highlighted as follows: 

1.	 Significant progress has been made in implementing the vision presented in the National 

Research Council’s (NRC) report, Toxicity Testing in the 21st Century, and in EPA’s report, 

Strategic Plan for the Future of Toxicity Testing and Risk Assessment at the U.S. Environmental 

Protection Agency. 

2.	 New tools and data types are facilitating, on an unprecedented scale, the testing and evaluation 

of chemicals that previously could not be evaluated due to limited or no traditional toxicity data. 

3.	 New data are dramatically improving our understanding of the causes of disease, the effects 

from low levels of exposures, and why certain people might be more susceptible to chemical 

effects (e.g., due to differences in age, health status, or genetics). 

4.	 These new data types are being organized, curated, stored, and made publicly available in 

massive data warehouses. 
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5.	 Advanced, automated approaches are being developed to analyze these large data sets rapidly 

and comprehensively. 

6.	 This new knowledge provides powerful insights into the contribution of environmental risk 

factors to adverse health outcomes and can be used to better inform risk assessment. 

Substantial scientific challenges and uncertainties, however, remain. Specific challenges include: 

(1) developing reliable, predictive molecular indicators or biomarkers of exposure and effects for a 

wide variety of chemicals; (2) understanding the key pathways in the network of interactions 

among genes, cells, tissues, and organs that is needed to conduct predictive toxicology; (3) further 

characterizing human variability and how genetic makeup, preexisting backgrounds of disease and 

exposure, and adaptive or compensatory processes combine to influence population risks; 

(4) accounting for variables in test systems that can influence observed associations between 

molecular perturbations and disease outcomes (e.g., experimental design, metabolism, genomic 

variants, target cell type(s), cell and tissue interactions, species, and lifestage); (5) understanding 

the role of epigenomics in risks; and (6) characterizing, in the best way possible, the uncertainties 

and confidence in risk assessments informed by new data types. 

As the above challenges are addressed, we anticipate that the new approaches discussed in this 

report will provide a variety of applications to risk managers within EPA, and the risk assessment 

community at large, including identifying safer chemicals and processes, reducing hazardous 

chemicals in the environment, and improving our ability to protect public health and the 

environment. The scientific community and the public should anticipate transitions to new types of 

risk assessments over several years, particularly for screening and prioritization of large numbers 

of chemicals and support of nonregulatory decision-making. A variety of new tools with various 

associated uncertainties will be evaluated in differing applications, externally reviewed, and 

refined. Near-term progress will include case-by-case development of additional examples for peer 

and public review and workshops to help inform critical issues/ EPA’s Chemical Safety for 

Sustainability (CSS) and Human Health Risk Assessment (HHRA) research program plans and the 

National Institute of Environmental Health Sciences’ (NIEHS) Strategic Plan address many of the 

research implications discussed in this report. 

Careful evidence integration will continue to be required for NexGen-informed assessments, as has 

been the case for traditional assessments. Traditional approaches for systematic review and 

evaluation of evidence are being adapted and applied to the new types of data, to ensure data 

quality, transparency, and confidence in the overall evidence. The hurdles to providing convincing 

evidence that a chemical causes or contributes to an adverse outcome, however, are substantial. 

Thus, for the foreseeable future, major risk assessments used to support national regulation will 

continue to be based on traditional data, although increasingly augmented by new data as 

confidence increases in the predictive capability of these new approaches. 

Lastly, significant outreach, education and interaction with our stakeholders will continue to be a 

priority for EPA to ensure the transparency of new science, and to improve our understanding of 

how best to apply these advances to environmental health risk assessment. 
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1 Introduction 

Over the past 40 years, the U.S. Environmental Protection Agency (EPA) has made significant 

progress in protecting public health and the environment from the adverse effects of chemical 

exposures. The tens of thousands of chemicals in the environment, however, are overwhelming our 

ability to evaluate their safety using traditional approaches. Traditional methods also are not 

adequately addressing complex, risk assessment issues such as co-exposures from many different 

environmental stressors, or the potential effects of chemicals on people who might be more 

sensitive or susceptible. This report, Next Generation Risk Assessment: Recent Advances in Molecular, 

Computational, and Systems Biology (NexGen), explores new approaches that are faster and less 

resource intensive than traditional approaches and hold great promise in addressing these 

problems. This report is the culmination of a multiyear, multi-organization effort involving five U.S. 

federal agencies and three European agencies, 

Health Canada, California Environmental 

Protection Agency, Hamner Institutes for 

Health Sciences, scientists from 12 universities, 

and several other organizations that provided 

staff, data, advice, and review.1,2 Specific aims 

for the NexGen effort are noted in Box 1. 

Box 1. Specific Aims of NexGen 

 Consider how new risk assessment approaches 
might inform particular risk management situations 
(decision context) to create “fit for purpose” 
assessments. 

 Develop prototypes that illustrate uses of new data 
types and methods to better inform risk assessment. 

 Understand what data types are most informative 
for a given situation (value of information). 

 Adapt existing decision rules for use with new data 
types and approaches, thus ensuring consistent, 
scientifically defensible assessments 

 Identify issues, challenges, and next steps. 

Recent scientific and technological advances 

are providing unprecedented opportunities to 

understand human environmental risks. 

Massive amounts of new data are being 

generated, often using robotics (Derry et al. 

2012; Friend 2013; Sturla et al. 2014).3 These 

data are stored, managed, curated and made publicly available in several data warehouses, such as 

those in the National Institutes of Health National Library of Medicine (Chadwick 2012; Collins 

2009; Kleinberg and Hripcsak 2011; Mechanic et al. 2012; NCBI 2014b, d) and the EPA Aggregated 

Computational Toxicology Resource (Dix et al. 2007; EPA 2014d, l; Judson et al. 2012). 

Concomitantly, powerful new bioinformatic methods are being developed to identify, organize, and 

analyze these data. Profound insights are beginning to emerge into the causes of disease, the 

contributions of environmental factors, and what might make individuals and subpopulations 

1Appendix A summarizes ongoing work at several government agencies to advance the next generation of 

toxicity testing and risk assessment.
 
2The government participants in this effort also are working through the Office of Economic Cooperation and 

Development and the World Health Organization (WHO) to redesign toxicity testing and risk assessment of 

chemicals in the environment and to harmonize approaches worldwide (EC 2013; JRC 2014; Meek et al. 2014; 

NIEHS 2014a; OECD 2010, 2014d; Sturla et al. 2014; Thomas, R. S. et al. 2013b; Tice et al. 2013).
 
3Approximately 1.8 zettabytes (1021) of new data from tens of thousands of new papers are generated every 

year, roughly doubling the world’s information every two years (Dearry 2013).
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susceptible (Bhattacharya et al. 2011; Chiu et al. 

2010). Two examples of new types of data 

collection, integration, and interpretation are: 

Tox21/ToxCastTM,4 which is developing new 

assays for chemical safety and testing
 
10,000 chemicals (Figure 1) (Attene-Ramos 

et al. 2013; EPA 2014l; Jacobs 2011; Judson 

et al. 2014; Tice et al. 2013).
 

The continuing characterization of 

genomes, epigenomes, and environment- Figure 1. Toxicology Testing in the 21st Century 
(Tox21) Robot Conducts Bioassays on 10,000 wide associations with disease in tens of 
Chemicals. 

thousands of humans (ENCODE Project A robot arm (foreground) retrieves assay plates 
Consortium 2012; Friend 2013; Mechanic et from incubators and places them at compound 

transfer stations or hands them off to another al. 2012; The 1000 Genomes Project 
robot arm (background) that services liquid 

Consortium 2010). dispensers or plate readers. Photo by Maggie 
Bartlett (NHGRI 2014b). 

Such large-scale knowledge creation was 

unimaginable 15 years ago. 

This report is not an exhaustive survey of all data relevant to the prototypes or of all new 

approaches in this rapidly developing area of science. Rather, it highlights some of the most 

interesting and promising approaches and identifies challenges to their use in risk assessment. 

Forty papers and reports were developed specifically for this effort (see list on pages xiv-xvi) and 

more than 450 references provide additional scientific technical details. 

This effort represents an important step in the implementation of the National Research Council’s 
(NRC) Toxicity Testing in the 21st Century and Science and Decisions: Advancing Risk Assessment, and 

EPA’s Strategic Plan for the Future of Toxicity Testing and Risk Assessment at the U.S. Environmental 

Protection Agency. Importantly, the NexGen provides a scientific basis for modernizing risk 

assessment. Responses to both peer-review comments and public comments on the September 

2013 draft report are incorporated in this final report. 

This NexGen program report is organized as follows: 

Section 1: Introduction. 

Section 2: Preparation for Prototype Development – describes preliminary work, including 

planning for “fit-for-purpose” assessments (decision context); reports on an overarching 

framework, describes interactions with experts and stakeholders, and develops key 

questions to be addressed, and considers systematic review and evidence integration. 

4Tox21 stands for the Toxicology in the 21st Century program, and ToxCast stands for Toxicity Forecaster. 
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Section 3: The Prototypes – presents detailed examples of using various advanced methods 

and data to consider the questions developed in Section 2. The prototypes are matched to 

three categories of decision contexts (also discussed in Section 2), starting with the in vitro 

and in vivo data-rich chemicals (Tier 3), proceeding to chemicals with robust in vitro and 

limited in vivo data (Tier 2), followed by chemicals that have robust in vitro data but very 

limited or no in vivo data to support traditional risk assessment (Tier 1). 

Section 4: Advanced Approaches to Recurring Issues in Risk Assessment – discusses how 

advanced methods can be used to address ongoing challenging issues, such as human 

population variability and sensitivity, cumulative risk, and responses at environmental 

levels. 

Section 5: Lessons Learned from Developing the Prototypes – reviews and summarizes 

what the prototype development process taught us. 

Section 6: Challenges and Research Directions – looks to challenges that must be met to 

further new testing and risk assessment, and planned research. 

Section 7: References 

Appendix A summarizes ongoing activities at several government agencies in the United 

States and Europe that are providing additional data and analyses related to advancing 

NexGen. 

Appendix B provides details of interactions with the scientific community and stakeholders. 

Appendix C lists recommended principles and methods for uncertainty and variability 

analysis. 

Appendix D provides a glossary of terms used throughout this report. 
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2 Preparation for Prototype Development 

2.1 Planning for Fit-for-purpose Assessments 

EPA needs various types of risk assessments to address different situations or decision contexts.5 

We designed the prototypes around broad categories of potential end uses and with the intent of 

developing “fit-for-purpose” assessments/ Fit-for-purpose simply means that a product meets the 

needs of the end user. The categories we chose greatly oversimplify the types of decisions risk 

managers face, but hopefully they will illustrate how new approaches could be used. In reality, 

these approaches represent a set of tools that can be used to support a variety of decisions (EPA 

2014i). The illustrative categories used in this report are: 

major-scope decision-making – generally regulatory decisions; 

limited-scope decision-making – usually nonregulatory decisions; and 

prioritization and screening decisions – ranking chemicals for additional evaluation, and 

urgent response. 

These categories reflect a range of environmental challenges—from the need to screen many 

untested chemicals in the environment to the need to implement national regulations for high-

profile chemicals. Figure 2 presents characteristics of the three decision categories and examples of 

potential prototype applications. These decision context categories were developed during 

discussions among EPA risk assessors and managers (EPA 2011b). Three factors integral to the 

decision context for risk managers are the (1) magnitude and prevalence of potential exposures, 

(2) numbers of chemicals to be considered, and (3) weight of scientific evidence required for 

specific types of decision-making. Both legislative mandates and historical precedence are 

important influences on the decision context and specific regulatory actions. 

Three examples of previous decisions that used new data types, and that could be considered major 

scope, limited scope, and prioritization and screening are the (1) International Agency for Research 

on Cancer’s determination on a likely causal link between benzene exposures and lymphoma based 

on molecular mechanisms data (IARC 2012); (2) examination of cumulative risk potential from 

relatively uncharacterized conazole fungicides based on molecular mechanisms data (EPA 2011d; 

Hester et al. 2011); and (3) Deep Water Horizon/Gulf of Mexico oil spill dispersants using in vitro 

high-throughput data (Judson et al. 2010). 

5“Decision context” is defined as the circumstances that form the setting for decision-making, and in terms of 
which the decision can be assessed and understood. More simply put, to characterize the decision context, 
one asks the questions, “What decision options are being considered?” and “What products or information are 
needed to support those decisions?” (NRC 2009). 
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Tier 1 Prioritization and 
Screening 

Tier 2 Limited scope 
Decision making 

Tier 3 Major scope 

Decision making 

 Exposures assumed due to use in 
commerce 
 Very limited or no traditional hazard 

data 
 10,000s of chemicals of interest 

 Some specific inventory of 
chemicals, monitored or modeled 
exposure data 
 Potentially some limited traditional 

data 
 1000s of chemicals of interest 

 Generally widespread, 
demonstrated exposures 
 Extensive traditional data; 

unresolved issues could remain 
 100s of chemicals of interest 

 Situations where large numbers of 
chemicals require sorting for further 
action 
 Lifecycles, sustainable chemical and 

process evaluations 
 Emerging issues evaluation 
 New assessment queuing 
 Urgent or emergency response 
 Research or testing priority setting 

 Superfund remediation/ 
hazardous waste disposal 
 Water contaminants identification 
 Urban air toxins assessment 
 Chemical mixture evaluations 
 New assessment queuing 
 Urgent or emergency response 
 Research or testing priority setting 

 High-profile, nationally important 
assessments 
 Community assessments 
 Research or testing priority setting 

 
 

 

 

 

 

  

 

  

  

  

 

      

    

 

   

     

   

 

  

 

  

EXAMPLE DECISION  CONTEXT  CATEGORIES FOR WHICH  ILLUSTRATIVE  

“FIT -FOR -PURPOSE ” NEXGEN ASSESSMENT  PROTOTYPES WERE DEVELOPED  
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Increasing: exposure potential, weight of scientific evidence required for decision-making, resources required for assessment.  

Decreasing numbers of chemicals evaluated or assessed. 

 Figure 2. Description of General Decision Context Categories Suggested by EPA Program Offices. 

2.2 A Framework 

The second task in planning the NexGen prototypes was to develop an assessment framework. The 

NexGen framework incorporated several essential elements of earlier risk assessment frameworks 

and provided guiding principles for the NexGen effort. A draft version of this framework was 

presented and discussed in a November 2010 meeting with scientific experts (EPA 2010) and again 

in a February 2011 public meeting with stakeholders (EPA 2011a). Feedback from scientific experts 

and the public helped refine the framework. The final version represents a continued evolution and 

is described in detail in Krewski et al. (2014). This section is adapted from Krewski et al. (2014). 

Key elements of risk science and population health are combined in the NexGen framework to 

provide a multidisciplinary approach to assessing and managing health risk issues (Krewski et al. 

2007). The framework presented in Figure 3 is built on three cornerstones: (1) new risk 

assessment methodologies that consider new data types and inform risk management decision-

making; (2) new data types from advances in molecular, computational, and systems biology aimed 

at understanding perturbations in biological pathways that lead to adverse effects; and (3) a 

population health perspective that recognizes that most adverse health outcomes involve multiple 

determinants (i.e., multiple causal or contributing factors). 



   

 
 

 
 

  
 

  
  

   
  

  
 

  
 

  
 

Figure 3. The Next Generation Framework for Risk Science. 
Phase I: objectives—problem formulation and scoping takes into consideration the risk context, decision-making 
options, and value of information. Phase II: risk assessment: health determinants and interactions—incorporates a 
population health approach that takes into account multiple health determinants that interact with the risk factor(s) 
of interest. Hazard identification, dose–response assessment, and exposure assessment make use of new scientific 
tools and technologies, based on high throughput screening assays and computational methods in biology and 
toxicology for hazard identification and dose–response assessment; in vitro to in vivo extrapolation methods for 
calibration of in vitro and human dosimetry; molecular and genetic epidemiology to identify toxicity pathway 
perturbations in population-based studies; and high-performance mass spectrometry to generate human exposure 
data, to assess risk characterization of risk and uncertainty applies new risk assessment methodologies to develop 
human exposure guidelines. Phase III: risk management—risk-based decision-making considers fundamental risk 
management principles, economic analysis, sociopolitical consideration and risk perception to select one or more 
risk management interventions of a regulatory, economic, advisory, community-based, or technological nature for 
risk management. (The center section on hazard identification, dose–response assessment, and exposure assessment 
is adapted from Figure 2 of Krewski et al. 2011.) 
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2.3 Science Community and Stakeholder Engagement 

The third task was to reach out to the science community and stakeholder groups to communicate 

our plans and to benefit from their input. Outreach is an essential principle of the framework 

described in Section 2.2. Our outreach involved many efforts. We (1) convened an experts 

workshop to review the prototype concepts (2010); (2) sponsored a public dialogue conference to 

communicate our plans and elicit 

feedback from the public (see 

Figure 4)(2011); (3) evaluated and 

incorporated results from academic 

surveys of the business community 

and the environmental communities 

(2011 and 2012); (4) hosted a 

NexGen website to communicate 

activities and progress (EPA 2013a); 

(5) participated in a National 

Academy of Sciences – Emerging 

Science workshop (2012); 

(6) participated in Advisory 

Board/Board of Scientific Counselors 

meetings (2012, 2014); and 

(7) elicited and responded to external 

peer-review and public comment on 

the draft document. (See Appendix B for more details on interactions with the scientific community 

and stakeholders.) 

Comments from the scientific community and stakeholders on advancing new methods in risk 

assessment were generally positive, although substantial and various concerns were expressed. 

Experts in molecular, computational, and systems biology were generally very optimistic that new 

data types could inform risk assessment. The public-interest groups and the business community 

recognized the potential to evaluate chemicals more efficiently, and were guardedly optimistic, yet 

had concerns about the specifics of application and interpretation. Their concerns included an 

interest in demonstrations on the value of new approaches, caution about the potential to overstate 

the utility and efficiency of NexGen approaches, questions about how NexGen prototypes will 

address key methodological issues, the need for transparency and meaningful public engagement; 

how the results would be used in risk management, and if timely and effective communications 

would occur. Some in the business community expressed concern over whether EPA could develop 

the necessary expertise to guide the program to a successful conclusion. EPA, experts, and 

stakeholder groups all recognize the challenges ahead and the need for continued interactions. 

Winning over a larger community less familiar with the complex science associated with new 

approaches, and potentially more skeptical, will likely be challenging, but such challenges are 

considered surmountable if EPA can build capacity and communicate effectively how the 

approaches can be used in risk assessment. 

Figure 4. Categories of Stakeholders that Attended the February 
2011 NexGen Public Dialogue Conference (EPA 2011a) 
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2.4 Recurring Issues in Risk Assessment 

The fourth task that preceded the actual prototype development was to identify recurring issues 

that new methods and data might substantively inform. The issues identified included problem 

formulation, evidence integration for hazard (formerly termed weight-of-evidence6) and dose-

response (including internal dosimetry) estimation, characterizing variability in human response, 

interspecies extrapolation, cumulative risk assessment, and uncertainty characterization. The 

prototypes were evaluated in this context, and Section 4 discusses the insights gained from this 

exercise. 

2.5 Key Questions and Evidence Integration 

Through the efforts described above, a set of questions (Table 1) was developed to guide the 

prototype development and evaluation. 

For an activity as critical as risk assessment, studies selected for consideration should be well 

designed, carefully conducted, and transparently reported, in accordance with traditional practices 

(EPA 2005, 2013c; NRC 2014; U.S. DHHS 2014). Systematic review of available data and evidence 

integration was considered in advance of the prototype development. Evidence from selected 

studies was integrated and used to evaluate causality. The evidence for causality is increased by 

consistency of the data across multiple, independent studies, the coherence of the data across 

different data types, and the biological plausibility of the association between cause and effect. 

Chance, bias, and confounding should be ruled out or minimized with reasonable confidence to 

infer a causal or likely causal relationship. When chance, bias, or confounding cannot be minimized, 

data are “suggestive” or “insufficient.” Adaptations of the Bradford-Hill “criteria” continue to prove 

useful in evaluating data (EPA 2005, 2013e; Hill 1965; Meek et al. 2014; U.S. DHHS 2014). Kleinberg 

and Hripcsak (2011) provide additional discussion on systematic review and evidence integration 

as it specifically applies to new data types. Examples of the types of evaluations that could provide 

sufficient evidence to infer causal or likely causal relationships among exposure, molecular events, 

and adverse outcome include: 

	 meta-analyses of multiple well-conducted studies that provide consistent findings of 

significant associations among exposures, intermediate effects, and outcomes; and 

	 experimental studies that identify pollutant-induced modification in specific pathways or 

networks coupled showing that these modifications alter adverse outcomes, for example, 

6In the recent NRC review (2014) of the EPA’s Integrated Risk Assessment System (IRIS) process “the 
committee found that the phrase weight of evidence has become far too vague as used in practice today and 
thus is of little scientific use0The present committee found the phrase evidence integration to be more useful 
and more descriptive of what is done” in EPA’s major assessments0/that is, “assessments must come to a 
judgment about whether a chemical is hazardous to human health and must do so by integrating a variety of 
evidence (see Figure 6-1 of the NRC report for more details). 
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pharmacological interventions that block exposure-dependent pathway alterations and, 

concomitantly, block or mitigate adverse outcomes; 

 traditional data (e.g., whole animal bioassay data) augmented by molecular biology, such as 

mechanistic information; 

	 identification of idiopathic gene variants that alter the risks of adverse outcomes and 

provide evidence linking pathways to outcomes; and (Q)SAR comparisons of the molecular 

data from sufficiently similar chemicals to infer associations among exposures, molecular 

pathway alterations and adverse outcomes. 

Table 1. Questions Posed in Regard to the Prototypes 

 Tier Hazard Identification  
Questions  

Exposure Dose -Response 
Questions  

Potential   
Applications  

  How can adverse outcome pathway 
(AOP)  networks be used to 
characterize  environmentally 
related  human disease or disorder?  

  Can an AOP network or  
components of a network be used 
as biomarker of exposure or dose 
and/or effect?  

 To use AOPs developed from 
human data to screen relatively 
unstudied chemicals.  

  3 

   To use human-derived AOPs to 
verify AOPs developed in 
nonhumans, short-duration in vivo  
or in vitro  exposure studies  

  Can AOP networks also be used to 
identify chemicals and nonchemical 
stressors that operate by the  same 
mechanism and, thus, should be 
considered together?  

  Can AOP networks be used to 
characterize the  combined risks  
from chemicals or nonchemical 
stressors?   To address key traditional 

unresolved data gaps, such as low 
exposure-dose response or species  
to species extrapolation  

 
  Can differential sensitivity of 

subpopulation to chemical 
exposures be characterized?  

  Can gene variants be identified that 
are hallmarks for susceptible 
subpopulations?    How can this information be 

extended  to the evaluation of  
relatively unstudied chemicals?  

   To increase the evidence for cause  
and effect through mechanistic  
knowledge  

  How can this information be 
extended  to the evaluation of  
relatively unstudied chemicals?  

  Can knowledge  mining or short-
term in vivo  approaches  efficiently 
identify potential  hazard?  

  Can potency be  reliably estimated  
for  human risks?   

  To screen hundreds to thousands of 
relatively unstudied chemicals for 
hazard and relative or absolute 
potency  

 2 

  Is the estimated toxicity value an 
absolute or relative potency?    Can  these  new medium-throughput 

approaches help describe  AOPs or 
AOP networks?  

  What models, methods,  and data 
are  needed to estimate human 
equivalent dose?  

 

  To maximize use of very large  
existing data sets (potentially all  
published data)    How could this medium-throughput 

based information be used in risk  
assessment?  

  To screen for cumulative risk 
potential  

  How can  in vitro  approaches be  
used  effectively  to  screen many  
thousands of  chemicals  for 
potential hazard?  

  What endpoints can be used 
reliably to evaluate potential 
toxicity?  

  To screen thousands to tens of 
thousands of relatively unstudied 
chemicals for hazard and relative or 
absolute potency  

 1 

  Is the toxicity value  absolute or 
relative potency?    Can new high throughput 

approaches help identify AOPs or 
AOP networks?  

  To maximize use of very large  
existing data sets (potentially all  
published data)  

  What is needed  to estimate human 
equivalent dose?  

  How can this high-throughput 
based  AOP information be used in 
risk assessment?  

  What is needed  to extrapolate to 
human population risks?  

  To screen for cumulative risk 
potential  

 

  

   

   

     

Lastly, due to the complexities of biology, linking disruption of normal biological processes to a 

specific disease or disease risk is challenging. Ranking chemicals based on their potency to alter 

biological processes, however, appears possible without knowing how or if such disruptions will be 

reflected in terms of disease risks. Characterizing potency, without the clear identification of 
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hazard, is a reversal of the traditional risk assessment approach (i.e., hazard identification followed 

by dose-response assessment). High- and medium- throughput methods are being developed to 

evaluate chemical potencies in this way, particularly for sorting large numbers of chemicals based 

on potential concern. The Tox21 and ToxCast programs are examples of such efforts. As our 

mechanistic understanding of the links between molecular events and human disease and disorder 

improves, these data and their predictive capability will become increasingly useful. 
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3 The Prototypes 

In their 21st Century toxicity testing and risk assessment strategy documents, both the National 

Academy of Sciences and EPA recommended prototype development and identified key issues to 

consider (EPA 2009b; NRC 2007a, 2009). These recommendations were used as a starting point for 

the NexGen program. The scope of the prototypes 

and key questions considered were developed from 

discussions with EPA Program Offices, the partner 

organizations, and science experts; these 

discussions led to the prototype selection criteria 

shown in Box 2. 

Eight case studies or prototypes were developed to 

illustrate potential uses of new science in 

supporting a variety of Agency decisions. The 

prototypes explored the following: whether new 

types of data can produce results comparable to the 

results of traditional risk assessments; what types 

of information appear most valuable for specific 

purposes; what decision rules are needed when 

selecting and evaluating new data types to ensure 

consistent, scientifically sound assessments; and what the challenges are to interpreting and using 

new data in risk assessment. The prototypes do not consider all data and methods, or situations 

faced by risk managers. Rather, the intent is to provide illustrative, concrete examples of analyses 

that encourage further dialogue and that advance our understanding of new risk assessment data 

and methods. The eight prototype assessments developed for this report,7 categorized by decision 

context, are: 

Box 2. Selection Criteria for Prototypes 

 Decision context applicability (i.e., illustrative 
of fit for purpose” assessments). 

 Multiple, high quality molecular biology 
studies available. 

 Robust traditional data available to compare 
with conclusions drawn from NexGen data. 

 Overall, consistent, coherent, and biologically 
plausible data available. 

 Active collaborations with investigators to 
benefit from their knowledge, ability to 
execute additional experiments and analyses 
as needed. 

 Cross organizational and sectors of the risk 
assessment community collaborations 
fostered. 

Tier 3: major-scope decision-making prototypes that developed proof of concept and 

explored augmentation of very traditional data-rich chemical assessments 

Hematotoxicity and leukemia: benzene and other leukemogens 

Lung inflammation and injury: ozone 

Lung and liver cancer: benzo[a]pyrene (B[a]P)/polycyclic aromatic hydrocarbons 

(PAHs) 

Tier 2: limited-scope decision-making prototypes that explored approaches to assessing 

hundreds to a few thousand chemicals 

Diabetes and obesity: knowledge mining and meta-analyses of published literature 

Thyroid disruption: short-duration, in vivo assays—alternative species 

Cancer- and noncancer-related effects: short-duration, in vivo assays—rodent 

7Different groups, selected for their expertise, developed the various prototypes; consequently, the 
presentation styles differ somewhat. 
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	 Tier 1: prioritization and screening prototypes that explored approaches to assessing 

thousands to tens of thousands of chemicals 

o	 Various environmental contaminants: quantitative structure activity relationship 

(QSAR) models 

o	 Various environmental contaminants: high-throughput and high-content in vitro 

assays. 

Understanding mechanisms of action8 in a systems biology context is considered important to 

understanding new information and fostering new risk assessment applications (Califano et al. 

2012; Edwards and Preston 2008; Ideker and Krogan 2012; Mitra et al. 2013; Molinelli et al. 2013; 

Sturla et al. 2014). To the extent possible, the prototypes were organized around putative 

Box 3. International Coordination of AOP and 
MOA Development 

Under the auspices of the Organization for Economic 
Cooperation and Development (OECD), an international 
program began in 2012 to develop, review, agree on, 
publish, and endorse adverse outcome pathway constructs. 
EPA and the European Commission Joint Research Center 
(JRC) jointly lead this effort, coordinating with the World 
Health Organization (WHO) s International Programme on 
Chemical Safety. The effort will foster international 
consistency, quality, and acceptability of AOPs used for 
chemical risk assessment (OECD 2014d). While some 
discussion continues in the science community about 
potential differences between AOP and MOA, WHO and 
OECD consider the terms interchangeable (Meek et al. 
2014). Nonetheless, WHO, OECD, JRC and EPA have come 
to an agreement to move toward AOP and AOP network as 
the preferred terminology. 

mechanisms of disease or disorder. In 

toxicology, simplified mechanistic models 

are often termed either modes of action 

(MOAs) or adverse outcome pathways 

(AOPs). Models that are somewhat more 

complex are often termed AOP networks to 

convey the interconnectedness of AOPs that 

generally underlie disease. The term AOP 

sometimes erroneously conveys that 

toxicity results from novel events rather 

than perturbations of normal biology. To 

date, the terminology to discuss mechanistic 

concepts is not uniform. In particular, the 

fields of medicine and toxicology use 

different terminology for similar concepts 

(e.g., BioSystems versus AOP networks). For 

consistency, the term AOP network is used 

throughput this report except in discussions of published works that use other terms. A substantial 

effort in toxicology is underway to unify descriptions of mechanisms in the context of AOP 

networks (see Box 3). 

8Mechanism of action, mode of action (MOA), adverse outcome pathway (AOP) and AOP network are 
defined as follows: (1) mechanism of action is the complete sequence of biological events that must occur to 
produce an adverse effect- (2) MOA is defined as a “sequence of key events and processes, starting with 
interaction of an agent with a cell, proceeding through operational and anatomical changes, and resulting in 
an adverse health effect”- and (3) AOP describes a “sequential chain of causally linked events at different 
levels of biological organization that lead to an adverse health or ecotoxicological effect” (OECD 2013, 
2014d); and 4) an AOP network is the interrelated AOPs that represent the combination of events and 
pathways that underlie disease or disorder The term MOA has been in widespread use for several years and 
was used extensively in the 2009 EPA Cancer Guidelines. In 2012, the Organization for Economic Cooperation 
and Development launched a new program on the development of AOPs. AOP was chosen as a new term to 
emphasize use in population risk assessment (Ankley et al. 2010). 
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Two basic approaches are used to develop systems level understanding: bottom up and top down. 

The bottom-up approach focuses on molecular and cellular components, and seeks to understand 

how these components are networked, and how normal network function is altered following 

exposure to chemicals or stressors. The bottom-up approach generally uses information from new 

types of in vitro testing and some in vivo alternative animal testing. This information is used to 

predict how perturbations at the molecular and cellular levels might propagate. The bottom-up 

approach is addressed most extensively in Tiers 1 and 2 for chemicals having little or no traditional 

in vivo data, and takes advantage of new, large data sets, such as ToxCast and Tox21. The top-down 

approach focuses on network interactions and disease indicators at the whole-body or population 

level, based often on human clinical and epidemiological data, and associations between disease 

states and environmental factors (Friend 2013). This information is used to identify associated 

factors at the organ, cell, or molecular level with the potential for a causal relationship with the 

disease state. This approach is addressed most extensively in Tiers 2 and 3, and often takes 

advantage of human “big data” sets developed by the National Institutes of Health (NIH) and others, 

such as BioSystems and the 1000 Genomes Project. Both the bottom-up and top-down approaches 

are informative, and are best used together to develop integrated and comprehensive knowledge. 

A broad array of methods was evaluated in the NexGen prototypes. Tools and techniques used are 

summarized in Table 2 (Krewski et al. 2014). The assignments of particular methods to decision-

context categories in Table 2 are neither fixed nor exclusive. For example, high-content screening 

(HCS)9 assays are used primarily in the Tier 2 examples, but they also might be used in Tier 1 

screening or in major-scope assessments. As noted earlier, the numbers of chemicals that require 

evaluation and the decision context are the main considerations in determining the appropriate 

data and methods to use to design fit-for-purpose assessments (NRC 2009). 

An important element of this report is the discussion of the promises and limitations of various 

approaches being considered and the lessons learned during prototype development. 

3.1 Tier 3: Major-scope Assessments 

The Tier 3 prototypes focused on chemicals with known public health effects at environmental 

exposure levels (EPA 2013c, d; IARC 2012). Of particular interest was the examination of causal 

evidence linking molecular-level data from epidemiological, clinical, or in vivo animal exposure 

studies to the results from traditional in vivo assays. The purpose was to test the hypothesis that 

AOP networks (1) can be identified that are strongly associated with the adverse effects known to 

result from exposure to the chemicals under study, (2) are exposure-dose dependent within the 

range of environmental exposures, and (3) can be shown to vary with risk factors such as genomic 

variants, mixture, and nonchemical stressor exposures. If true, AOP networks could improve our 

ability to characterize hazards, dose-response, and risk potentially posed by data-limited chemicals, 

9A high-content screening (HCS) assay is defined as any method with multiple simultaneous readouts used 
to analyze system dynamics at any specified level of organization, but generally referring to the whole body, 
whole cell, or subcellular level of organization. 
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Table 2. Prototype  Use of New Scientific Tools  and Techniques  (adapted from Krewski et al. 2014)  

 Decision Context Tier 1: Prioritization -  Tier 2: Limited scope -Tier 3: Major scope 
 Category  & Screening  Assessments  Assessments 

-   Hazard Identification and Dose response Assessment Methods 

-Quantitative structure 
 ■  ■ 

 activity models 
 

Toxicity pathways analysis   ■  ■  ■ 

-  High throughput in vitro 
 ■  ■  ■ 

assays  

-High content omics assays    ■  ■ 

Biomarkers of effect    ■  ■ 

Molecular and genetic 
-population based studies  

   ■ 

Dosimetry and Exposure Assessment Methods  

- -  In vitro to in vivo 
 extrapolation 

 ■  ■  

Pharmacokinetic models 
 and dosimetry 

 ■  ■  ■ 

 Biomarkers of exposure   ■  ■ 

-  Cross cutting Assessment Methods 

Adverse outcome pathways  ■   ■  ■ 

Bioinformatics and 
computational biology  

■   ■  ■ 

 Systems biology ■   ■  ■ 

Functional genomics    ■  ■ 

 

as well  as  provide new insights into many  historically challenging risk assessment issues, such as 

identifying human susceptibility and  estimating cumulative risks. The  most robust data sets 

identified for this proof of concept exercise were benzene and  hematotoxicity/leukemia, ozone and 

inflammation/lung injury, and tobacco smoke/PAHs/BaP and lung cancer.  

Table 3 summarizes the approaches  used in the Tier 3 prototypes, and some of the advantages and 

disadvantages  of each approach.  Data from a variety of  new technologies were evaluated, including 

deoxyribonucleic acid (DNA) transcription (transcriptomics),  protein expression (proteomics), and 

genome-wide analyses of susceptibility genes (genomic analyses of human gene variants).  

Bioinformatic analyses (computer-assisted data identification, organization, and synthesis) were 

used to identify AOP networks and to interpret the molecular data in the context of adverse health 

outcomes and disease from traditional studies. This integration of new and traditional  data 

provided a relatively detailed picture of causal events from molecular initiation events (MIEs) to 

intermediate biochemical events to adverse outcomes.  Implications for risk assessment identified 

by the Tier 3 prototypes are discussed at the end of this section and are integrated with other 

lessons learned in Section 5.  Due to the uncertainties associated with new approaches,  we  
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anticipate that  major  regulatory risk  assessment  will be based  primarily on traditional data for the 

foreseeable  future, albeit augmented  by new data types.  

Table 3. Summary of Tier 3 NexGen Prototype  Approaches,  Including Strengths and Weaknesses   

 -   TIER 3: MAJOR SCOPE ASSESSMENT PROTOTYPES 

  Benzene and Ozone Tobacco Smoke, BaP/PAHs  
1 

  Meta-analyses  of multiple epidemiological and clinical  Approaches:   Measurements of chemically induced, dose-
dependent alterations in transcriptomics in studies using molecular patterns associated with lung 

 humans, using specific and sensitive assays  cancer in smokers, absent in nonsmokers 

  Comparison of molecular epidemiological and   Marginal characterization of exposures and exposure-

clinical studies with concomitantly collected dose; for PAHs, human exposure was characterized by 

well-characterized adverse health effects   self-reported numbers of cigarettes smoked 

  Transcriptomic alterations occurring in genes    Experimental measurement of dose-dependent, 

and pathways correlated with traditional chemically induced alterations in transcriptomics in 

upstream events and adverse effects in same   humans, using specific and sensitive assays 

 individuals    Variability of exposure-dose and response less well 

  Well-described human exposures at  characterized 

environmentally relevant concentrations    Evaluation of multiple BaP studies attempted in rodents, 

  Measurements of exposure-dose relationships  but study quality was inadequate 
18using urinary biomarkers or   O2 dosimetry 

  Adverse effects can be blocked, partially 
ameliorated by alterations of implicated genes 

 and pathways 
   Variability of exposure-dose and response well 

 characterized 
  Contributions of mixtures, other environmental 

 stressors, genetic variability in response and 
 low-dose-response enabled 

 Strengths:   Augment characterization of hazard and exposure-dose-response using molecular patterns   
   Better characterize associated or causal mechanisms of health effects from chemical exposures  
   Better describe population variability  
   Enable characterization of less well-studied chemicals with similar mechanisms 

2 
  Data mining methods    to survey the literature for BaP/PAHs are significantly faster and less expensive than 

 other approaches; evaluate most existing data 

 Weaknesses:    Currently, traditional data needed to anchor molecular estimates of risk 
  Currently, molecular epidemiology and clinical studies are neither faster nor less expensive than traditional 
approaches but are improvements over traditional data alone  
   Nonhuman data with nonconcordant tissue responses are challenging to extrapolate to humans 
    Much published molecular biology data is inadequate for risk assessment due to limitations in use of best 
practices, analyses, and reporting  
  Many sources of variability can lead to false associations  

1Meta-analysis  methods that combine data or results from multiple independent studies that seek to test similar hypotheses 

(Ramasamy et al. 2008).
  
2Data mining  attempts to discover useful patterns or relationships in large amounts of data using  advanced  statistical methods, 
 
such as cluster analysis, artificial  intelligence, or neural network techniques.
  

3.1.1  Benzene-induced Leukemia  

Benzene is among the 20 most widely  used chemicals in the United States and one of   the  most 

common environmental  contaminants.  A component  of crude oil and gasoline, benzene also is used 

as an intermediate in the manufacture of resins, dyes, chemical  solvents, waxes, paints, glues, 

plastics, and synthetic rubber. The major sources of benzen e exposure are  anthropogenic and 



   

  

  

    

  

  

 

    

 

   

    

 

   

 

  

   

 

 

 

  

    

  

 

  

     

 

 

  

   

    

 

     

                                                             

   
  

  
   

include fixed industrial sources, fuel evaporation from gasoline filling stations, and automobile 

exhaust. Benzene has been measured in outdoor air at various locations in the United States at 

concentrations ranging from 0/02 ppb (0/06 μg/m3) in a rural area to 112 ppb (356 μg/m3) in an 

urban area (IARC 2012). Personal monitoring of benzene exposure in Detroit, Michigan reported a 

mean of 1.72 ppb (5.5 µg/m3) (George et al. 2011). The maximum contaminant level in drinking 

water is 5.0 µg/L or 5 ppb (EPA 2013b). The Occupational Safety and Health Administration 

permissible exposure limit for benzene workers in the United States is 1 ppm (OSHA 2014). 

Benzene is a known human hematotoxicant and carcinogen (ATSDR 2007; EPA 2000; IARC 2012; 

NIOSH 1992). Epidemiological studies have associated benzene exposure with an increased risk of 

acute myeloid leukemia (AML), myelodysplastic syndrome, hematotoxicity (toxicity to the blood), 

and other blood disorders (EPA 2000; Goldstein 1988; IARC 2012; Schnatter et al. 2012). AML is 

characterized by uncontrolled proliferation of clonal neoplastic cells and accumulation in the bone 

marrow, with an impaired differentiation program. AML accounts for about 30 percent of all adult 

leukemias and is the most common cause of leukemia death (Howlader et al. 2013). Studies indicate 

that benzene also might cause lymphoma and childhood leukemia (Smith, M. T. et al. 2011). The 

extensive molecular epidemiological and clinical data sets for benzene-induced hematotoxicity and 

leukemia are ideal for exploring how new data types might be used to inform risk assessments. The 

work described in this section focuses on studies in which traditional and molecular data were 

collected simultaneously using a variety of methods, including genome-wide analyses of 

susceptibility genes (using genomic methods), protein expression (proteomics), and epigenetic 

modification (epigenomics). The studies also were conducted over a range of environmental 

exposure levels (<0/1 ppm to ≤10 ppm). A systems biology analysis of benzene-induced 

hematotoxicity and leukemia is summarized in McHale et al. (2012) and Smith et al. (2011). The 

information presented in these reports was developed primarily by Martyn Smith and colleagues at 

the University of California, Berkeley. 

3.1.1.1 Systems Biology of Benzene-induced Disease 

Benzene is among the most well-studied environmental chemicals, yet our understanding of the 

molecular mechanisms underlying hematopoietic cancer is somewhat recent (see Box 4 for a brief 

description). In 2009, McHale et al. identified exposure-dependent alterations in the genes and 

pathways of peripheral blood mononuclear cells (using transcriptomics) and hematotoxicity 

associated with benzene exposure (>10 ppm) in occupationally exposed Chinese workers (McHale 

et al. 2009). McHale et al. (2010) extended these findings to lower exposure levels of <1 ppm to 

≤10 ppm.10 R. Thomas et al. subsequently demonstrated changes in gene expression in Chinese 

workers exposed to levels <0.1 ppm, that is, below current U.S. urban levels (Thomas, R. et al. 

2014). The exposure-response models used in these analyses were not selected a priori; instead, 

10The McHale et al. (2010) study included 250 benzene-exposed workers and 140 unexposed age- and sex-
matched controls who worked in 3 clothes-manufacturing factories in the same region of China. 
Transcriptomic profiles for exposed and unexposed individuals and among four exposure groups were 
compared. Exposure groups were based on occupational surveys and individual urinary benzene biomarkers. 
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their selection was driven by the best fit of the 

data. Results are consistent with supralinear 

exposure-responses, which also have been 

reported in some traditional epidemiology 

studies (Lan et al. 2004). 

Based on these and other studies, the systems 

biology of benzene-induced early effects has 

been summarized by McHale et al. (2012) and 

others (Smith, M. T. et al. 2011; Zhang, L. et al. 

2010a). Benzene-induced hematotoxicity and 

leukemia are thought to be initiated when 

metabolites of benzene interact with genes or 

pathways in hematopoietic stem cells that are 

critical to hematopoiesis. Interactions among 

various cell types within the bone marrow 

and among various tissues also play a role in 

leukemia (e.g., immunosurveillance). 

Mechanisms of benzene-induced 

hematotoxicity and leukemia (shown in 

Figures 5 and 6, below) center on exposure-

dependent pathway alterations comprising 

147 significant genes altered in peripheral 

blood mononuclear cells from humans 

exposed to benzene (cross validated on two 

microarray test platforms [Illumina and 

Affymetrix] and ribonucleic acid [RNA] 

sequencing) (see below). The benzene-related 

gene expression profiles change with dose, 

with some genes (and related biological 

processes) expressed at all levels and others 

expressed only at higher concentrations. Of 

the 147 genes, the expression of 16 was significantly altered at all exposure levels. These 16 

signature genes are involved in immune response, inflammatory response, cell adhesion, cell matrix 

adhesion, and blood coagulation, and are most strongly associated with AML pathways (McHale et 

al. 2010). This set of 16 genes can be used collectively as a biomarker11 (or “gene signature”) for 

chemical exposure to benzene-associated hematotoxicity. Given the strong evidence linking 

hematotoxicity in benzene-exposed populations to leukemia, this gene signature also is anticipated 

Box 4. Molecular Mechanism of 
Acute Myeloid Leukemia (AML) 

The probable mechanism by which benzene induces 
leukemia involves the “targeting of critical genes and 
pathways” (McHale et al. 2012). Benzene can induce 
abnormalities in the genes, chromosomes, or epigenetic 
mechanisms of hematopoietic stem cells (HSCs). Benzene 
also can disrupt the normal cell cycle, leading to apoptosis, 
increased cell proliferation, and altered differentiation of 
the HSCs. Benzene causes these effects and ultimately 
leukemia by inducing oxidative stress, dysregulating 
proteins that control normal functioning of HSCs, and 
reducing the body s ability to detect and destroy cancer 
cells (McHale et al. 2012). 

Two events that are important for leukemic transformation 
have been identified. The first event is uncontrolled cell 
growth, which is mediated by upregulation of cell survival 
genes. The second is alteration of transcription factors that 
control HSC differentiation. That is, the genes that encode 
transcription factor proteins can be mutated or can target 
the expression of certain genes in a way that interferes 
with the appropriate differentiation of HSCs. 

For AML specifically, two major types of genetic events 
have been described that are crucial for leukemic 
transformation. A proposed necessary first event is 
disordered cell growth and upregulation of cell survival 
genes. The most common of these activating events was 
observed in the receptor tyrosine kinase (RTK) Flt3, in the 
genes N Ras, K Ras, and Kit, and sporadically in other RTKs. 
Alterations in myeloid transcription factors governing 
hematopoietic differentiation provide the second 
necessary event for leukemogenesis. Transcription factor 
fusion proteins such as AML ETO, PML RAR alpha, or PLZF 
RAR alpha block myeloid cell differentiation by repressing 
target genes. In other cases, the genes encoding the 
transcription factors themselves are mutated. (Kanehisa 
Laboratories 2014a; Wang, I. et al. 2012a). 

11Biomarkers are characteristics that are measured and evaluated objectively as indicators of normal 
biological processes, pathogenic processes, toxicological response to an environmental exposure, or 
pharmacological responses to an intervention. Adapted from Institute of Medicine (2010). 
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to be predictive of future leukemias in benzene exposed populations, and potentially for exposure 

to leukemogens in general. In a subsequent study, Thomas R. et al. (2013a) also evaluated benzene-

related molecular changes using a different technology, RNA sequencing, and observed results 

generally consistent with the microarray results regarding benzene-induced changes.12 The work of 

R. Thomas et al. (2014) and 

Figure 5. Multiple Modes of Action (MOAs) (also called Adverse Outcome Pathway (AOP) Network) for 
Benzene-induced Leukemogenesis. 

The legend depicts potential key events, modifying factors, and toxicological effects. Stem cells can be either HSCs 
(hematopoietic stem cells) or LSCs (leukemic stem cells) (Smith, M. T. et al. 2011). The figure also highlights mechanistic 
commonalities with other chemical leukemogens and idiopathic leukemia (i.e., unknown or spontaneous origin). 
Reproduced with permission from Elsevier. 

12“The Pearson correlation between the two technical replicates for the RNA-seq experiments was 0.98 and 
the correlation between RNA-seq and microarray signals for the 20 subjects was around 0.6. Sixty percent of 
the transcripts with detected reads from the RNA-seq experiments did not have corresponding probes on the 
microarrays. Fifty-three percent of the transcripts detected by RNA-seq and 99% of those with probes on the 
microarray were protein-coding. There was a significant overlap (P < 0.05) in transcripts declared 
differentially expressed due to benzene exposure using the two technologies. About 20% of the transcripts 
declared differentially expressed using the RNA-seq data were noncoding transcripts. Six transcripts were 
determined (false-discovery rate <0.05) to be alternatively spliced as a result of benzene exposure. Overall, 
this pilot study shows that RNA-seq can complement the information obtained by microarray in the analysis 
of changes in transcript expression from chemical exposures” (2013a). 
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McHale et al. (2010) exemplifies how such biomarkers could be used, particularly in augmenting 

traditional epidemiology studies and enabling new types of molecular epidemiology studies at 

lower concentrations. 

Exposure to benzene also induces a distinct lymphoma disease signature (McHale et al. 2010; 

McHale et al. 2012; Smith, M. T. et al. 2011). The traditional epidemiological data on lymphoma are 

inconclusive. Characterization of a benzene-induced molecular mechanism for lymphoma adds 

considerably to the evidence for benzene-induced lymphoma. This characterization is a good 

example of using molecular mechanistic data to support the MOA and to strengthen the evidence 

determinations (IARC 2012). 

One important caveat regarding individual epidemiology studies is that they provide evidence of 

association not causality. Establishing causality requires meta-analyses of multiple, well-conducted 

epidemiology studies, experimental data from clinical or animal studies, or mechanistic 

understanding (EPA 2005, 2009a; U.S. DHHS 2014). For the benzene prototype, data from multiple 

epidemiological studies and mechanistic information from multiple sources (Kanehisa Laboratories 

2014b) were used. The causal relationships between specific gene/pathway alterations and 

leukemia are best supported by clinical studies using chemotherapeutic agents that alter 

expression of specific genes in the critical pathways with results that demonstrate either the 

blocking or amelioration of idiopathic disease (i.e., unknown or spontaneous origin) outcomes 

(Hatzimichael and Crook 2013). 

3.1.1.2 Idiopathic and Other Chemical Leukemogen-induced Disease 

Molecular mechanisms for benzene-induced leukemia appear similar to idiopathic AML, as well as 

AML induced by other environmental agents (e.g., alkylating agents, topoisomerase II inhibitors) 

(IARC 2012; McHale et al. 2012; Pedersen-Bjergaard et al. 2008). Figure 613 shows a network of 

genes and pathways thought to be causally related to both idiopathic and chemically induced 

leukemia (NIH BioSystems, Kyoto Encyclopedia of Genes and Genomes (KEGG); Kanehisa 

Laboratories 2014a). Note that this diagram illustrates only a subset of the complete set of 

processes involved in AML (see NIH BioSystems; Kanehisa Laboratories 2014b; McHale et al. 2010; 

2011; Thomas, R. et al. 2014). The circles in the figure indicate some of the specific genes and 

pathways affected by leukemogenic agents and environmental modifiers (IARC 2012; Kanehisa 

Laboratories 2014a; McHale et al. 2010; Pedersen-Bjergaard et al. 2008). Additional evidence for 

the causal role of these genes and pathways in AML is provided by the study of human genetic 

variants associated with altered risks and chemotherapeutics that reverse adverse alterations in 

some of these same genes and pathways (discussed below). Although mechanistically similar, 

different agents can display specific characteristics such as origins in cells at different stages of 

13The basic AML network figure used in Figures 6 and 7 is from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG; Kanehisa Laboratories 2014a); also reported in National Institutes of Health BioSystems 
database. The added circles are the work of the report authors. 
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hematopoiesis, distinct cytogenetic subtypes, and different latencies (Irons et al. 2013; McHale et al. 

2012). 

Figure 6 highlights how a network of related events can be modified at different points but still lead 

to a common disease outcome. These mechanistic commonalities and differences among idiopathic 

and chemically induced health effects can be used to characterize chemicals with limited data. In 

other words, data-limited chemicals would be of elevated concern if they alter pathways similar to 

what is observed in idiopathic disease or with well-studied leukemogens. For example, R. Thomas 

et al. (2012a) used existing information on gene and protein targets of 29 known leukemia-causing 

chemicals and 11 carcinogens that are not known to cause leukemia. The authors were able to 

develop a classification scheme that could distinguish a random leukemia-causing/nonleukemia

causing carcinogen pair with 76 percent probability. Later in this section, additional support for the 

similarity of mechanisms for chemical-related and idiopathic diseases is provided (see the ozone 

and B[a]P prototypes). These examples highlight how mechanistic information improves our ability 

to understand and assess cumulative risks. 

3.1.1.3 Cumulative Risks from Environmental Factors 

New approaches can help characterize cumulative contributions to potential risks for disease from 

various environmental factors, including exposure to chemicals. Evidence suggests that, in addition 

to environmental exposures, genetic variations and lifestyle factors such as smoking, obesity, diet, 

and alcohol use are risk factors for leukemia (Belson et al. 2007; Ilhan et al. 2006; Pedersen-

Bjergaard et al. 2008; Smith, M. T. et al. 2011). Figure 6 shows how multiple environmental factors 

can alter various molecular events in a way that is likely to alter risks for a specific disease. The 

figure also illustrates how chemicals might be included or excluded based on a common mechanism 

and potential contribution to cumulative risks. Evaluating exposures to the developing organism as 

a potential risk factor for disease later in life also is important, especially because of the potential of 

benzene and other environmental agents to alter epigenetics in the developing organism (which is 

highly sensitive to epigenomic changes), as well as the association between environmental 

exposures to benzene and childhood leukemias (Boekelheide et al. 2012). 

Individuals exposed to known environmental and lifestyle risk factors account for only 

approximately 20 percent of the acute leukemia incidences, indicating that host genetic 

susceptibility might be a key factor in onset of disease (Smith, M. T. et al. 2011). These new 

approaches could dramatically improve our ability to characterize the potential disease 

susceptibility of subpopulations by distinguishing the extent to which chemicals, nonchemical 

stressors, and intrinsic genetic variations14 contribute to alterations in the same genes and 

biological pathways. Genetic variation is discussed more specifically below, and an example of 

altered subpopulation risks based on genetic variations is provided. 

14Human genetic variation is evaluated by identifying genetic differences among subpopulations. Multiple 
variants of any given gene can occur in the population. These differing DNA codings determine distinct traits 
or polymorphisms that can influence risks. 
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3.1.1.4 Genetic Variation and Susceptibility in the Human Population 

New approaches are improving our ability to characterize genetic variation and susceptibility to 

both idiopathic and chemically induced disease. For example, several genetic variations appear to 

increase risks for developing AML, while at least one decreases risks (Garte et al. 2008; North et al. 

2011; Shen et al. 2011; Smith, M. T. et al. 2011; Zhuo et al. 2012). Sillé et al. (2012) reported 12 

independent risk loci with the potential to alter gene expression related to AML. Independent risk 

loci are specific regions within the genome, which can be a single base, as in this case, or an entire 

gene. A significant number of variants (i.e., single nucleotide polymorphisms [SNPs] related to a 

tumor suppressor gene, signaling pathways, or residing in putative regulatory elements)15 have 

been linked to different types of multiple hematological cancers. Figure 7 highlights genes that vary 

in the human population and are associated with altered leukemia risk. Chemotherapeutic agents 

that change these “implicated” genes to a more normal state also decrease the incidence of 

leukemia, providing supporting evidence that these genes and pathways are involved in the disease 

process (Kanehisa Laboratories 2014a). Figure 8 presents the results of a meta-analysis of 

epidemiological data on the differential risks for acute leukemia associated with one human variant. 

The individual epidemiological study results and the pooled results are shown. In this case, a SNP 

leads to a substitution of isoleucine with valine at codon 462 in exon7 (Ile462Val or CYP1A1*2C 

polymorphism, rs1048943). This exon7 polymorphism results in three genotypes: a predominant 

homozygous Ile/Ile, the heterozygote Ile/Val, and a rare homozygous Val/Val. The overall risk was 

42 percent greater (95% CI = 1.11–1.98) for the Val/Val plus Val/Ile genotypes versus the Ile/Ile 

CYP1A1 genotype (Zhuo et al. 2012). An alternative hypothesis is that this SNP is not causative but 

rather is linked to a causative SNP not identified in the epidemiological study. 

Characterizing the potential susceptibility of subpopulations to disease incidence due to individual 

genes, combinations of genes, and gene variants can be very challenging, as many genes can interact 

to alter susceptibility. Although subpopulations can be categorized according to variant profile and 

susceptibility, individual risk is likely influenced by a variety of factors including individual 

genomics and epigenomics. Section 4 details NexGen approaches that might substantially improve 

our ability to characterize human susceptibility and estimate the contribution of various risk 

factors (e.g., lifestyle, genetic variability, exposure to chemicals) to overall risk. 

3.1.1.5 Benzene In Vitro Evaluation of Toxicogenomic Signatures 

How well in vitro assays predict in vivo outcomes or otherwise inform our understanding of 

chemical risks is a topic of great interest and the subject of much active research. Godderis et al. 

(2012) conducted an in vitro study of benzene in a human lymphoblastoid cell line (TK6) to detect 

gene signatures and biological pathway perturbations. The global gene expression resulting from 

exposure to 15 genotoxic carcinogens, including benzene and its metabolites, was evaluated. The 

goal was to determine if well-characterized chemicals could be used to characterize data-limited 

15Putative regulatory elements are areas of the gene that do not code for proteins but rather regulate DNA 
expression via transcription into proteins. 
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Alterations by Leukemia  and 
Hematotoxicity Risk Factors

• Blue = benzene
• Red = alkylating agents
• Purple = topoisomerases II inhibitors 
• Yellow = diet
• Green = stress

Red text indicates genetic alterations

Oncogenes: c-KIT, FLT3, N- or K-Ras, AML1-ETO, 

PML-RARα, PLZF-RARα

Tumor suppressors: AML1, C/EBPα, PU.1

Figure 6. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Diagram with Chemical and Lifestyle-induced Alterations Shown. 
Some of the currently understood molecular pathways involved in acute myeloid leukemia (AML). Altered oncogenes and tumor suppressor genes are noted in red type 
(Kanehisa Laboratories 2014a). The circles (added by authors) note specific genes and pathways that are modified by benzene, other chemical leukemogens, and other 
risk factors. The solid vertical lines indicate the cell membrane and the dashed vertical line indicates the nuclear membrane. This diagram is intended to be illustrative 
rather than comprehensive, but it shows how single or combinations of environmental factors could modify risks for leukemia, and how such knowledge could be used to 
evaluate joint effects of environmental factors (IARC 2012; McHale et al. 2012; Pedersen-Bjergaard et al. 2008; Smith, M. T. et al. 2011). 
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Figure 7. The Same Kyoto Encyclopedia of Genes and Genomes (KEGG) Diagram for Acute Myeloid Leukemia (AML) as Shown in Figure 6, with 
Human Gene Variants Circled. 

In this version, the circles indicate the locations of naturally occurring human genomic variants that increase the risk of AML (Hatzimichael and Crook 
2013; Sille et al. 2012). Characterizing genomic variant subpopulations and associated risks can help better describe human variability and susceptibility 
for specific diseases. Circles added by authors. 



   

 
   

    
 

 

    

  

        

       

    

     

     

     

  

   

    

      

    

 

 

Figure 8. Meta-analysis for the Association of Acute Leukemia Risk with CYP1A1 Ile462Val Polymorphism. 

(OR = odds ratio). The overall risk was 42 percent greater (95% CI = 1.11–1.98) for Val/Val + Val/Ile versus 

Ile/Ile (Zhuo et al. 2012). Reproduced with permission from PLoS One.
 

chemicals by comparing gene signatures. Although results on pathways altered by exposure to 

benzene and its metabolites were in general agreement with those shown in previous in vivo 

studies, this was not generally true for most of the chemicals evaluated. The authors pointed out 

that several factors could complicate comparison of in vivo and in vitro data. For example, 

metabolism is limited in the in vitro systems, and the addition of metabolic enzymes (e.g., S9) had 

confounding effects. Responses also can differ depending on cell type, confounding comparisons 

between outcomes for various in vitro cell lines and in vivo results. The authors supported the use 

of toxicogenomic signatures for evaluating data-limited chemicals, but for the carcinogens in this 

study, they were unable to determine discriminatory mechanisms based on in vitro data alone. This 

suggests that developing putative mechanisms of action based on meta-analyses of human disease 

combined with mapping in vitro data against this information might prove more successful than 

attempting to understand mechanisms of action based solely on in vitro data. Considerable 

additional work will be necessary to develop the most efficient and appropriate mix of in vitro and 

in vivo data and methods for application of this approach to large numbers of chemicals and 

diseases. 
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3.1.1.6 Risk Assessment Implications Based on the Benzene Prototype: Use of New Data 

The benzene prototype demonstrated the feasibility of using molecular biology data, particularly 

mechanistic signatures, in hazard identification and exposure-dose-response assessment. 

Hazard Identification 

Genes and pathways altered by benzene exposures are strongly associated with a network of 

pathways thought to be causative for known (hematotoxicity and AML) and likely (lymphoma) 

outcomes. The benzene results have been reproduced in multiple experiments using two different 

microarray assay platforms and an alternative technology, RNA sequencing. Evidence for a causal 

relationship between alterations in specific gene pathways, hematotoxicity, and leukemia risks is 

provided by observed similarities in pathway disruptions caused by other chemical leukemogens or 

observed in leukemia of unknown origins. A decreased incidence or severity of the disease by 

certain leukemia chemotherapeutic agents that reverse these adverse pathway changes provides 

further support. This ability to alter pathways biochemically and change the risk or attributes of the 

disease provides strong experimental evidence of the causal nature of gene/pathway alteration in 

leukemia. The molecular epidemiology and molecular clinical study data provide further evidence 

that gene signatures can be used to predict specific diseases with some confidence. Thus, well-

defined pathway and network disruptions, strongly associated with a specific disease, could be 

informative in risk assessment for hazard identification and for low-dose response 

characterization. A well-characterized AOP also might provide context to interpret high-throughput 

data for many chemicals that do not have traditional data, assuming that chemicals that induce 

comparable effects on sufficiently understood pathway mechanisms likely would increase risks for 

the same disease outcome. 

Exposure-Dose-Response Assessment 

Increasing the benzene dose resulted in significant dose-dependent alterations in gene 

transcription. Some genes that were associated with cytotoxicity and cell death were transcribed 

only at higher exposures. A specific 16-gene signature, observed at all environmental exposure 

concentrations measured (<0.1 to >10 ppm), was identified and was associated generally with 

altered immune function, hematotoxicity, and leukemia. This signature can serve as an indicator (or 

biomarker) of both exposure and effect. The exposure-response models used to describe the data 

were not specified in advance, rather they represented the best fit from among multiple models. 

Hence, the model was “agnostic” on the issues of threshold/no threshold and nonlinear/linear. For 

the 16-gene signature, the statistical best fit for the exposure-dose-response relationship at 

environmental concentrations was linear. No threshold was observed (Thomas, R. et al. 2014). 

The above discussion highlights several ways these data and approaches can improve exposure

dose-response assessment by: 

 providing tools to study the complex interactions among pathways that help organisms 

adapt to insults or increased risks; 

 identifying dose-dependent molecular biomarkers that can be used to characterize 

exposure-dose-response relationships in the range of environmental exposures, replacing 
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estimates based on extrapolating from higher dose empirical data (assuming the more 

traditional studies have demonstrated the power to detect potential responses); and 

 using models that best fit the relevant empirical data to reduce uncertainty concerning 

model choice for extrapolations. 

Molecular-based signatures (or biomarkers) are anticipated to become more common in the future. 

Such biomarkers can be used to develop data on more environmentally relevant exposure levels 

than currently available from traditional epidemiological studies and to reduce measurement error. 

When calibrated to known outcomes, molecular-based signatures could be used to measure the 

exposure-response relationship directly in the human population, similar to how simpler 

biomarkers are currently used to quantify lead exposures and effects (Mendrick 2011). 

Cumulative Risk Assessments 

Interpreting chemically induced events within the context of an already characterized disease 

mechanism illustrates how chemicals can affect a network of related pathways at multiple points. 

Chemicals that increase risks for the same disease might not have the same molecular target(s). An 

illustration of how known chemical leukemogens and risk factors for leukemia alter different 

pathways in a network of events associated with hematotoxicity and leukemia was presented in 

Figure 6 (in Section 3.1.1.4). Integrating chemical effects at this network level demonstrates how 

one might account for the contribution that various chemicals or other environmental stressors and 

factors might have to an overall cumulative risk. The benzene prototype is a good example of how 

sufficient mechanistic knowledge can facilitate cumulative risk assessment. It also demonstrates 

how caution is warranted for the predictive capability of overly simplified descriptions of an AOP 

network that do not support accurate estimates of the cumulative risks from chemical exposure and 

other critical disease factors. 

Intraspecies Variability and Population Response Distributions 

The benzene prototype demonstrates improvements in characterizing subpopulation responses 

due to genetic variability. Specific genes were identified for which variants in the human population 

are associated with altered incidence of, and prognosis for, leukemia. An example is also provided 

of how variants of a single gene are associated with altered relative risks for the variant 

subpopulations, although a comprehensive analysis of the mechanistic linkage for this association is 

still needed. As additional research and data evolve from personalized medicine, our understanding 

of human variability in disease response to chemical exposure could be significantly improved. 

Data-driven characterization of human variability and population response distributions would 

improve both cancer and noncancer risk assessments, and lead to a more harmonized approach.16 

In summary, the benzene prototype exemplifies how toxicogenomic data from environmental 

exposure in humans can be used to improve our mechanistic understanding of the onset of disease, 

16Current methods to estimate risks and account for human variability differ for cancer versus noncancer 
responses because of a lack of empirical data characterizing targets and the mechanisms leading to disease. 
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the ability to better estimate cumulative risks and identify susceptible subpopulations, and 

characterization and estimates of the low dose-response relationship; all of these are historically 

challenging issues in risk assessment. 

3.1.2 Ozone-induced Lung Inflammation and Injury 

Hundreds of controlled human exposure studies have described biological changes in volunteers 

exposed acutely (usually for 2–6 hours) to ozone concentrations ranging from 0.06 to 0.4 ppm and 

have documented the relationship between ozone exposure and inflammation (EPA 2013c).17 These 

studies demonstrate that exposure to ozone causes decrements in lung function, increases in 

markers of pulmonary inflammation and lung injury, and alters host defenses against inhaled 

pathogens. The data on ozone represent the single largest human clinical database of any pollutant 

EPA has studied. Inflammatory responses resulting from acute exposures are of public health 

concern. As a consequence, and because the mechanisms are well understood, this in vivo database 

provides an ideal opportunity to demonstrate proof of concept for using molecular biology and in 

vitro data to develop faster, more efficient approaches to assessing human health risks, following 

exposure to a toxicant (ozone) that induces oxidative stress (lung inflammation) and causes an 

inflammatory response. 

Chronic inflammation is implicated in the etiology of several diseases, including atherosclerosis, 

heart disease, obesity, diabetes, arthritis, cancer, and lung diseases (asthma, emphysema, 

pulmonary fibrosis). Both common and disease-specific inflammatory molecular patterns have 

been reported to underlie these diseases (Wang, I. et al. 2012a). Why a particular disease is 

expressed in an individual or a subpopulation as the result of chronically induced inflammation 

likely depends on several factors, including the injury site, co-activation of other networks, genetic 

variation, or other environmental exposures. Such complicating factors highlight several challenges 

in predicting disease risks based on patterns of molecular changes. Nonetheless, observing an 

inflammatory signature for a chemical that has not been well studied likely would raise concerns 

for potential inflammatory disease risks. The specific inflammatory disease in question likely would 

be difficult to predict, however, if the systems biology context were limited. Any given network also 

might be involved in multiple disease outcomes. Conversely, a specific disease outcome could 

involve multiple interactive pathways and networks. If, however, chemicals with an inflammatory 

molecular signature were inhaled, it would be reasonable to assume that these chemicals could 

cause lung inflammation and injury. 

3.1.2.1 Systems Biology Approach for Ozone-induced Lung Inflammation and Injury 

The perturbation of a biological pathway initiates events that cause an adverse outcome associated 

with an environmental stressor. These perturbations must be evaluated for severity and 

distinguished from adaptive or associative pathway alterations. The proposed physiological and 

17The current ozone standard calls for limitation of the fourth highest daily maximal 8-hour ozone 
concentration in a year to 0.075 ppm, based on a 3-year average. 
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cellular pathways by which ozone causes pathophysiological changes in the human respiratory 

tract are illustrated in Figure 9. The data and methods exemplified in this prototype focus on the 

pathways that lead to inflammation, which are shown in the open boxes in Figure 9 (see Box 5 for a 

description of inflammation). Alveolar macrophages and epithelial cells lining the respiratory tract 

are thought to be the primary lung cells responsible for inducing an inflammatory response. Lung 

epithelial cells are at least 100 times more abundant 
Box 5. Inflammation  

Inflammation is the immune system’s 
response to cell and organ  damage  by 
pathogens, chemicals, or physical insult. 
Initially, various inflammatory cells (e.g.,  
neutrophils, lymphocytes) accumulate at 
the injury  site. Cell debris resulting  from  
the lung injury or pathogens is  removed as  
tissues begin to repair. If the balance  
between inflammation and resolution of 
the events leading to the inflammation is 
dysregulated, or tissue insult continues,  
inflammation can lead to disease  
pathology (Medzhitov 2008; Wang, I. et al. 
2012a).  

than alveolar macrophages and produce pro-

inflammatory cytokines such as interleukin-8 (IL-8), 

which is a potential neutrophil chemoattractant. This 

project therefore focused on the response of epithelial 

cells to ozone. Pathways based on neurological 

responses to ozone exposure (e.g., lung function	 
decrements) might be more difficult to characterize 

using in vitro approaches. An extensive review of the 

MOA (termed AOP network in this report) for ozone is 

found in the Integrated Science Assessment for Ozone 

and Related Photochemical Oxidants (EPA 2013c). 

Understanding adverse in vivo outcomes in terms of 

perturbations to normal biological pathways identified with a set of in vitro assays would enable 

the results of these assays to be used to build qualitative or quantitative models of chemical-

biological activity relationships that could predict in vivo responses based on in vitro data. For 

in vitro pathway information to be used quantitatively in risk assessment, the relationship between 

perturbation of a pathway following in vitro exposure and downstream endpoints (i.e., 

pathophysiological changes at the tissue or organism level following in vivo exposure to animals or 

humans) must be established. Establishing such a quantitative relationship currently is not possible 

for most toxicants that EPA is responsible for regulating because of insufficient in vivo and in vitro 

data (Crump et al. 2010a). Because several human studies characterize inflammation at multiple 

ozone concentrations and times after exposure, this rich data set of human in vivo responses can be 

used to investigate associations with in vitro assay results within the context of an AOP. 

3.1.2.2	 Primary Molecular Events in the AOP Network for Ozone-induced Inflammation 
(Step 1 in Figure 9) 

Many pollutants induce intracellular oxidative stress, which can affect signaling pathways and 

ultimately lead to activation of pro-inflammatory genes.18 Until recently, whether ozone induced 

intracellular reactive oxygen species (ROS) was unknown. Figure 10 shows that ozone can induce a 

rapid dose- and time-dependent increase in cytosolic intracellular glutathione redox potential, a 

measure of ROS (Gibbs-Flournoy et al. 2013). 

18Differences in pollutant specific outcomes, among pollutants which act via ROS, can arise from differences in 
delivered dose, site of ROS production, cell and tissues specific differences, and/or interaction with other 
pathways that contributed to health outcomes. 
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Figure ϵ/ Proposed Key Events in Ozone’s Modes of !ction (MO!) In Vivo. 

The data and methods exemplified in this prototype focus on the pathways that lead to inflammation (open 

boxes). Numbers in boxes tie boxes to descriptive text below.
 

3.1.2.3 Downstream Signaling Pathways Induced by Ozone (Step 2 in Figure 9) 

Figure 11 shows potential signaling pathways by which ozone could activate pro-inflammatory 

genes. Previous studies have reported that the production of pro-inflammatory mediators by lung 

epithelial cells is mediated by the NF-B signaling pathway, shown on the right side of Figure 11 

(Jaspers et al. 1997; Wu et al. 2011). These experiments were conducted, however, using 

transformed or immortalized cell lines. A significant potential limitation of using in vitro 

approaches to predict in vivo responses is whether cell lines, which are the most common cells used 

for in vitro studies, respond to toxicants in the same way as primary cells removed directly from a 

host. Indeed, a recent study (McCullough et al. in press) shows that ozone-induced inflammation is 

not induced by NF-B pathways in primary human airway epithelial cells (Figure 12). Rather it is 

induced by ERK and p38 pathways (Figure 13). (Pathways are shown on the right and middle 

portions of the AOP network diagram in Figure 11). These data underscore the importance of 

choosing appropriate cells for in vitro studies because, in this case, something as basic as how a cell 

regulates its ability to produce inflammatory mediators differs between primary cells and cell lines. 

September 2014 29 



   

 

 

  

Figure 10. Exposure to Ozone Induces a Rapid  Increase in  Intracellular Reactive Oxygen Species  (ROS).  
Addition of 0.1 mM H2O2  at the end of the ozone exposure produced a maximal  response, which was fully 
reversible with the addition of 10 mM dithiothreitol, a strong reducing agent (Gibbs-Flournoy et al. 2013). 
Reproduced with permission from Environmental Health Perspectives.  

Figure 11. Potential Pathways by which Ozone Causes Production of Pro-inflammatory 
Mediators in Epithelial Cells. 
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Figure 12. Ozone-induced Production of Pro-inflammatory Cytokines Interleukin 8 and Interleukin 6 Is Not 

Diminished When the NF-B Pathway Is Inhibited by Bay11. . (McCullough et al. in press)
(Adapted with permission from the American Thoracic Society. Copyright © 2014 American Thoracic Society. 
Official Journal of the American Thoracic Society.) 

 

 

Figure 13. Ozone-induced Production of Pro-inflammatory Cytokines IL8 and IL6 Is Greatly Reduced When the 
ERK (Orange Bars) and p38 (Blue Bars) Are Inhibited (McCullough et al. in press). 
Using small molecule kinase inhibitors, ERK and IL-ϴ are inhibited by ϭμM !G-1478 (Orange Bars), p38, IL-8 and 
IL-ϲ are inhibited by ϭϬμM S�ϮϬϯϱϴϬ (�lue �ars), and ERK and pϯϴ, along with IL-8 and IL-6, are inhibited by a 
combination of ϭμM !G-ϭϰϳϴ and ϭϬμM SB203580 (Red Bars). Also shown are clean air (Light Blue Bar) or 
0.5ppm O3 (Green Bar) both with dimethyl sulfoxide (DMSO) vehicle. (Adapted with permission from the 
American Thoracic Society. Copyright © 2014 American Thoracic Society. Official Journal of the American 
Thoracic Society.) 
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3.1.2.4	 Characterization of Inflammatory Pathways Following In Vivo and In Vitro Exposure 
to Ozone (Step 3 in Figure 9) 

Defining upstream events that control expression of inflammation is essential to characterizing the 

AOP by which ozone induces inflammation. Equally important is whether downstream events, such 

as the expression of pro-inflammatory genes following in vitro exposure to ozone, are consistent 

with the expression of those genes following in vivo exposure. To address the latter, a study was 

performed as outlined in Figure 14. Young, healthy volunteers were exposed to filtered air and a 

concentration of ozone (0.30 ppm) previously shown to induce a robust inflammatory response in 

the lung, including the production of pro-inflammatory cytokines such as IL-8 and IL-6. 

Bronchoscopy was used to obtain cells and lung fluid at 1 and 24 hours after each exposure. To 

ensure that pathophysiological effects observed in this study were comparable to those reported in 

earlier studies, downstream biomarkers of inflammation, such as the influx of neutrophils and 

production of pro-inflammatory cytokines (e.g., IL-8, IL-6) were measured (Devlin et al. 2012). 

Markers of cell injury (lactate dehydrogenase) and leakage of plasma components across the 

damaged epithelial cell barrier (albumin) into the lung airways were also measured. Bronchial 

airway epithelial cells were obtained by brush scraping, and microarray technology was used to 

define pathways affected by in vivo ozone exposure. In addition, quantitative proteomics was used 

to correlate changes in messenger ribonucleic acid (mRNA) measured by microarray with changes 

in their protein counterparts. 

A subset of airway epithelial cells, collected from volunteers following exposure to filtered air, was 

cultured at an air-liquid interface. These cells were exposed to a tenfold range in ozone 

concentration and material collected for analysis at four time points after exposure. Similar to the 

in vivo studies, microarray and proteomics were used to identify and define pathways affected by 

ozone in these cells. Using cells from individuals exposed in vivo for in vitro exposures makes 

comparisons of in vitro and in vivo response from the same person possible. To identify an in vitro 

ozone concentration that is comparable to the in vivo concentration used, ozone with the heavy 

oxygen isotope (18O) was used for both exposures. When ozone interacts with a target, the 18O tag is 

deposited and can be measured by mass spectrometry. This ensures that cells are exposed to 

comparable in vitro and in vivo ozone doses. These experiments are described in Hatch et al. (in 

press). 

Analysis of in vitro microarray data showed a concentration-dependent increase in the number of 

genes for which ozone altered the expression. At the lower concentrations, nearly all differential 

gene expression was upregulated, but at the highest concentration (1.0 ppm), many genes also were 

downregulated. Using gene ontology search terms, the highest scoring pathways that were altered 

at the lower concentrations were associated with inflammation and mitogen-activated protein 

kinase signaling (which controls inflammation). At the higher concentrations, stress response and 

apoptosis pathways were altered. Inflammatory pathways were activated within the first 2 hours 

following exposure and returned to baseline by 24 hours. In contrast, pathways involved in 

apoptosis and cell proliferation were not altered until the 24-hour time point. 
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Figure 14. Ozone In Vivo and In Vitro Comparison (Devlin 2014)
 
This figure diagrams a study to determine whether downstream events, such as the expression of pro-inflammatory genes following in vitro exposure to ozone, are 

consistent with the expression of those genes following in vivo exposure. Cells from the in vivo exposure individuals were used in the in vitro studies to minimize 

interindividual variation.
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Analysis of in vivo microarray data showed that more genes were activated 1 hour after exposure 

than 24 hours after exposure. Using Ingenuity Pathway Analysis to compare pathways altered by in 

vitro exposure with those altered by in vivo exposure revealed several pathways that were altered 

in both instances, including pathways involved in inflammation and tissue repair (cellular 

movement, cell-to-cell signaling and interaction, cellular growth and differentiation). These results 

are consistent with the published data in both animals and humans showing that ozone exposure 

causes cell injury, particularly of ciliated cells, and that inflammation is induced to help resolve the 

injury. New cells are then grown and differentiated to complete the repair of damaged tissue. 

Because similar pathways were altered following both in vitro and in vivo exposures, the in vitro 

response likely predicted the in vivo response accurately. At this time, however, these comparisons 

are only qualitative. Current efforts focus on developing quantitative comparisons based on the 

data. 

3.1.2.5 Use of In Vitro Data to Predict Susceptibility 

That individuals vary considerably in their response to ozone is well known. Controlled exposure 

studies in which nearly 300 healthy young individuals were exposed to multiple concentrations of 

ozone showed a tenfold range in lung function decrement. Individuals who returned several 

months later for another ozone exposure 

tended to retain their hierarchy on the 

response curve, implying that long-lived 

intrinsic factors could drive ozone 

responsiveness (McDonnell 1996). For in vitro 

toxicology to reflect in vivo responses 

accurately, cultured cells must be able to retain 

susceptibility factors present in live systems. 

Animal studies have identified several genes 

that are involved in ozone-induced 

inflammation (Bauer et al. 2010). Humans 

carrying the null allele of the glutathione S 

transferase M1 gene (GSTM1), a phase 2 

antioxidant gene, have been shown to have 

increased ozone-induced pulmonary 

inflammation compared with individuals 

carrying the wild type allele (Wu et al. 2012). 

Cultured lung epithelial cells obtained from 

individuals carrying the GSTM1 null allele have 

been shown to be more responsive to ozone 

than cells obtained from individuals carrying 

the wild-type GSTM1 allele (Figure 15). Wu et 

al. (2011) indicated that at least some of these 

susceptibility factors can be studied using in 

vitro approaches. 
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Figure 15. GSTM1  Modulation from Bronchial Epithelial 
Cells Exposed  to Ozone.  
Top panel: GSMT1  activity cells derived from null or 
wildtype individuals. Bottom panel: IL-8 activity 
following air and ozone exposure in null and wildtype  
individuals.  



   

   

  

  

 

   

 

 

      

      

 

    

 

    

 

    

   

  

 

   

  

  

   

    

          

    

    

   

    

 

 

   

  

  

  

   

3.1.2.6 Risk Assessment Implications Based on the Ozone Prototype: Use of New Data 

Hazard Identification 

In controlled human and in vitro experiments, the likely causal nature of gene/pathway changes in 

the induction of lung inflammation in response to ozone has been described (McCullough et al. in 

press). Similar pathways are induced in epithelial cells exposed to ozone in vitro and in epithelial 

cells removed from humans after ozone exposure. These pathways include those involved in 

inflammation and tissue repair. The pathway information, coupled with in vitro data about ozone-

induced changes in upstream signaling pathways and generation of ROS, provides a better 

characterization of the AOP network and increases confidence in predictions based on in vitro data 

for downstream in vivo pathophysiological changes. The in vitro airway epithelial cell model used 

here might be further developed and validated for use in predicting the potential for similar inhaled 

chemicals (e.g., those that cause oxidative stress) to induce in vivo inflammation. A high-throughput 

screening assay based on this cell model is currently under development, and could greatly improve 

our ability to provide rapid hazard identification for a much larger domain of chemicals. 

Exposure-Dose-Response Assessment 

The analysis of transcriptional changes across a range of doses and time points for the in vitro 

experiments was not feasible for the human in vivo experiments reported here because of the time 

required to perform controlled human exposure studies. Differences in gene expression were 

observed that were both dose and time dependent, indicating the importance of characterizing 

these variables when extrapolating from in vitro to in vivo effects. 

Cumulative Risk Assessment 

Many air pollutants appear to induce cardiopulmonary inflammation, which likely plays a role in 

risks for asthma, emphysema, and pulmonary fibrosis. Developing the ozone AOP network (also 

called MOA) provided useful insights into the molecular network leading to lung inflammation and 

disease and into how air pollutant exposures cause inflammation. Using in vivo approaches is not 

feasible to evaluate cumulative risks from exposures to the numerous potential mixtures of inhaled 

toxicants to which people are exposed. High-throughput in vitro approaches, however, could screen 

hundreds of different combinations for potential disruption to the AOP and identify a small number 

of especially relevant mixture combinations for further in vivo approaches. 

Variability and Susceptibility in Human Response 

Not all individuals are equally responsive to toxicants; some are much more responsive because of 

age, gender, race, disease, lifestyle (e.g., smoking, obesity), or genetic/epigenetic factors). If in vitro 

assays are to predict in vivo responses, they must account for differential responsiveness. The 

experiments with GSTM1 null and wildtype individuals suggest that at least some of these factors 

can be modeled using in vitro approaches. Asthmatics have an enhanced inflammatory response to 

ozone (Bosson et al. 2003; Peden et al. 1997). A recent study shows airway epithelial cells obtained 
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from asthmatics appear to retain an asthma phenotype19 in culture and are more responsive to 

pollutants than cells obtained from nonasthmatics (Duncan et al. 2012). These results suggest that 

both genetic and disease susceptibility might be modeled using in vitro approaches 

Some investigators might have difficulty obtaining primary airway epithelial cells for in vitro 

toxicology. Recent advances have been made, however, in the use of inducible pluripotent stem 

cells derived from adult skin or blood cells to generate cells of different phenotypes, including lung 

epithelial cells (Wong and Rossant 2013). Such advances offer the promise of obtaining unlimited 

cells from large numbers of individuals with different types of pollutant susceptibility. 

Ozone is one of the few pollutants for which an extensive animal and human health effects database 

is available. Coupled with in vitro pathway data, this prototype pollutant can be used to illustrate 

how a systems biology approach can be used to estimate low-exposure responses in humans, to 

extrapolate between in vivo and in vitro human data, and perhaps to account for various 

susceptibility factors. Additionally, this prototype illustrates how genomics data can be used in the 

risk assessment of inhaled pollutants. 

Quantitative systems biology models are translational, and their development is data driven. Model 

structure and dynamics are parameterized using data on basic biology, how that biology is 

perturbed by toxicants, and how and when adaptive or adverse responses develop. Systems biology 

models that are sufficiently well developed and well validated can be used to predict dose-response 

and time-course behaviors for pathway perturbations, adaptive responses, and adverse health 

effects. The accuracy and usefulness of those predictions, however, greatly depend on the extent 

and quality of the data used as inputs, and on the technical quality of the model itself. Time-course 

and dose-response pathway data from in vitro exposure studies paired with pathway data from 

in vivo exposure studies are needed to model ozone toxicity pathways responsible for downstream 

pathophysiological changes such as inflammation. Such data provide the detailed information 

needed to develop models that can predict key events like those illustrated in Figure 9. 

Challenges in the Development of HT Assay Development 

Using information based on in vitro pathways to predict human in vivo responses to toxicants for 

risk assessment purposes presents certain challenges. A major hurdle relates to extrapolation from 

in vitro to in vivo effects. Many in vitro approaches use animal cells or transformed cell lines derived 

from humans, which might not accurately reflect cell interactions or events in the pathway for 

human in vivo effects. The data shown above demonstrate that the response of a primary cell to a 

toxicant can significantly differ from the response of a transformed or immortalized cell line. A 

parent toxicant might also need to be biologically transformed into a more active form by cells that 

are not represented in the in vitro system (e.g., liver cells) before interacting with the target cells 

represented in the assay. In the lung, however, epithelial cells that line the human airways are the 

first and primary targets of inhaled toxicants and are believed to be the cells that initiate lung 

19Phenotypes are the observable physical and biochemical characteristics of gene expressions; the clinical 
presentation of an individual with a particular genotype. 
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inflammation. Biomarkers produced by cultured cells exposed to air pollutants are also found in the 

lung following in vivo exposure to the same pollutant (Selgrade et al. 1995). This ability to show 

concordance between pathway perturbations in vitro following exposure and pathway 

perturbations in vivo is critical, and a major advantage of the model lung system discussed here. 

A second challenge associated with in vitro approaches is ensuring that the dose of toxicant 

delivered in vitro to cultured cells can be extrapolated to estimate a comparable dose to target cells 

from an in vivo exposure. In most in vitro studies, cultured cells are exposed to toxicant levels that 

might be orders of magnitude greater than would be experienced in vivo. This disparity raises the 

uncertainty as to whether the same biological pathways are adversely affected in both situations. In 

the ozone prototype, 18O2 was used to deliver an in vitro dose relevant to the concentration used in 

the in vivo studies. This approach has been used previously to normalize the dose of ozone 

delivered to rats and humans (Hatch et al. 1994). The approach increases confidence in estimates of 

the animal-to-human extrapolation of target tissue doses, that is, that target tissue doses in rats 

exposed to 2.0 ppm ozone are comparable to target tissue doses in humans exposed to 0.4 ppm 

ozone. This same approach can be used to normalize the dose of ozone delivered to cultured cells 

and humans. 

In summary, the results of the ozone prototype model support the use of toxicogenomic data to 

identify relevant molecular pathways and network disruptions associated with adverse outcomes 

following exposure to a specific toxicant. Anchoring molecular patterns to adverse health effects 

requires considerable high-quality data and systems biology knowledge. In the case of ozone, the 

new approaches provide sufficient knowledge about the pathways in the network for air pollutant-

induced inflammation to develop high-throughput screening (HTS) assays that can screen 

chemicals for potential in vivo effects. 

3.1.3 Tobacco Smoke-, PAH-, and B[a]P-induced Cancer 

PAHs are a group of over 100 different chemicals that share the feature of being neutral, nonpolar 

hydrocarbons with structures composed of different numbers of fused aromatic rings (rings of 

alternating double and single carbon atom bonds). They are formed during the incomplete burning 

of carbon-containing materials like coal, oil, and gas. They are also found in other organic 

substances that have incomplete combustion (due to insufficient oxygen or other factors) such as 

tobacco smoke and some foods (charbroiled meat). PAHs exist in the environment almost 

exclusively as complex mixtures, and are a major component of urban air pollution. Solubility in 

water is low, but PAHs can contaminate drinking water (e.g., from oil spills) and be taken up in the 

food chain. 

PAHs generally have a low degree of acute toxicity in humans. The most significant adverse effect 

from chronic exposure to PAHs is cancer. Several PAH-containing complex mixtures such as coke 

oven emissions, diesel exhaust, and tobacco smoke are considered carcinogenic in humans. Most of 

the experimental data come from animal studies, however, increased incidences of lung, skin, and 

bladder cancers have been associated with occupational exposures to PAHs. Data for other sites are 

much less persuasive (ATSDR 1995; IARC 2010). 
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Ascribing observed health effects in epidemiological studies to specific PAHs is difficult because 

most exposures to PAHs are in mixtures. Many individual PAHs have sufficient experimental 

evidence to be considered carcinogenic in humans, and these vary in potency (IARC 2010). Given 

the universe of PAHs and potential PAH-containing mixtures, testing all of the varieties and 

potential mixtures with traditional approaches is not feasible. Compounding the challenge is the 

fact that many PAHs are only slightly mutagenic or even nonmutagenic in vitro, but their 

metabolites or derivatives can be potent mutagens. Accounting for metabolic capability and 

variability in assessing risk to PAHs is therefore also important. 

Newer methods and data to assist in this effort include pathway mining and computational models. 

The prototypes presented in this section demonstrate pathway mining techniques to assist risk 

assessor or assessment teams in systematically searching existing toxicogenomic data, re-analyzing 

the data, and interpreting the data for use in risk assessment. An example is provided of pathway 

mining to identify whether human transcriptomics data from cigarette smoke (a complex mixture 

of chemicals that includes PAHs) could be associated with lung cancer. The point is not to 

demonstrate that cigarette smoke is causally associated with lung cancer, but rather to demonstrate 

how associations between chemical exposures and defined diseases could be identified for 

chemicals with limited or no traditional data but with molecular data using this methodology. 

A second prototype is presented for B[a]P. B[a]P is one of the most studied PAHs, and the available 

data are sufficient to develop hypotheses about molecular pathways, and to simulate the pathway 

dynamics with a computational model, in this case, a Boolean model. Model runs then can be used 

to test hypotheses for pathway dynamics or to estimate how potent a PAH might be based on how 

much it perturbs key nodes in the simulated network. Both approaches could provide new tools for 

evaluation of complex mixtures. 

3.1.3.1 Systems Biology Approach to the Assessment of Tobacco Smoke (a Complex Mixture 
of PAHs and Other Chemicals) 

A prototype was developed that compared the toxicogenomic data from smokers and nonsmokers 

to determine if smokers have more similar gene expression changes than nonsmokers to the gene 

expression changes seen in lung cancer phenotypes. The prototype was designed to address two 

questions: (1) Can toxicogenomics data be used to support causal inference about a hazard? and (2) 

Can toxicogenomics data be used to test an MOA hypothesis? 

The null hypothesis is that smokers do not have more similar gene expression changes in the 

hypothesized pathways for the MOA for lung cancer compared to nonsmokers. Toxicogenomics 

data from smokers is used to test the alternative hypothesis that smokers do have more similar 

gene expression changes. The hypothesized MOA is based on existing disease pathway gene 

expression data (i.e., pathways that are perturbed in support of a disease state) for lung cancer. The 

general scheme for the hypothesized toxicity pathways leading to cancer from tobacco smoke is 

illustrated in Figure 16. Loss of normal growth control is generally thought to result from increased 

inflammation and DNA damage. 
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Figure 16. Adverse Outcome  Pathway  (AOP)  for Cigarette Smoking-induced Cancer (2010).  
 

If the null hypothesis (i.e., smokers have more similar gene expression changes with the expression 

changes in the disease pathways than nonsmokers) is rejected, this information is still inadequate 

to assert the MOA; however, it does provide limited support. In combination with additional MOA-

focused studies, this information will help inform the MOA. 

Pathway Mining Method To Test for the Association Between Smoking and Cancer 

We first determined that human transcriptomics data from cigarette smoke (a complex mixture of 

PAHs and other chemicals) could be associated with lung cancer.20 To resolve key components of 

the tobacco smoke-cancer AOP network, the Gene Expression Omnibus (GEO) and ArrayExpress 

gene expression data repositories were systematically searched for existing data using the 

following key word queries and the following results: 

 “Cigarette smoke lung cancer” – 47 entries 

 “Cigarette smoke” – 444 entries 

 “Lung cancer” – 5,046 entries 

 “Small cell lung carcinoma” – 166 entries 

20An overview of this work was presented at the National Academy of Science’s Emerging Science for 
Environmental Health Decisions Meeting on Mixtures and Cumulative Risk Assessment (Burgoon 2011). 
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For use in risk assessment, access to the raw data is needed (i.e., for transparency), and the data 

must be peer-reviewed. If the raw data were not available, the study results were excluded from 

further consideration. To determine whether a study was peer reviewed, the study listed in GEO or 

ArrayExpress needed to have an accession number.21 If GEO or ArrayExpress did not list the study, 

we performed PubMed and Google searches using the author names to identify whether the GEO or 

ArrayExpress accessions were listed in the paper(s). Studies that were not associated with a peer-

reviewed paper were excluded from further consideration. 

Two studies from GEO met the above criteria: GSE10072 and GSE5060. Both are studies of human 

lung tissues. GSE10072 provided data on smokers and nonsmokers who were positive or negative 

for adenocarcinomas; this was used to derive the disease pathway. GSE5060 provided data on 

phenotypically normal smokers and nonsmokers; this study was used to test the hypothesis that 

lung cancer pathways could be detected in phenotypically normal smokers (i.e., smokers who have 

not yet developed lung adenocarcinomas). 

Correlation-based networks (networks where probes22 or genes are connected based on expression 

similarity) were built from the lung tumor data and the smoking data. Four expression networks 

were generated, one each for smokers, nonsmokers, lung tumors, and normal phenotype. Networks 

specific for smokers and lung tumors were identified by first subtracting out the network for 

nonsmokers from the smoker network, and subtracting out the network for normal phenotype 

from the lung tumor network/ This resulted in two “difference networks,” one for smokers and one 
for lung tumors. The lung tumor and smoker networks then were intersected, resulting in a 

subnetwork of only those probes that are connected to each other in both networks. In other words, 

the probes in the intersected network are connected to the same probes in both the lung tumor and 

smoker networks. 

The data mining and subnetwork (i.e., intersected network) approach discussed above identified 

probes associated with both exposure and disease, and provides more insight into the MOA for a 

disease than the typical toxicogenomic study results. For example, in the intersected network, 

several communities or regions are more highly connected to each other than to other nodes in the 

network. The first community consists of three probes representing the pRB (retinoblastoma) gene. 

The pRB gene is a G1/S-phase cell-cycle transition checkpoint regulator. The three pRB probes are 

connected to the Pak3 gene. The Pak3 protein is activated by p21, Cdc42, and RAC1, all of which are 

involved in cell motility and proliferation associated with cell cycle progression. One of the pRB 

probes is also connected to a probe for the CDX1 gene, which is normally expressed in the intestine. 

In lung tumors, CDX1 is hypothesized to play a role in the aberrant expression of MUC6 (mucin). 

MUC6 co-expression with MUC2 is associated with poor prognosis in small adenocarcinomas. One 

of the other pRB probes is connected to PIGO (phosphatidylinositol glycan anchor biosynthesis, 

class O) and CYP4A11. These two genes are connected metabolically in glycan and phospholipid 

21An accession number is a unique identifier assigned to a particular genome or protein sequence to uniquely 

identify it in a database.
 
22Probe – a term to describe a reagent used to make a single measurement in a gene expression experiment.
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synthesis/metabolism, and are involved with metabolic production of 20-HETE (20

hydroxyeicosatetraenoic acid), which is associated with cancer cell proliferation (Alexanian and 

Sorokin 2013). 

Advantages of the Data Mining and Intersecting Network Approach 

Toxicogenomic studies, as they are typically performed today, identify potential pathways and 

modes of action. They support hypothesis generation, not hypothesis testing, and thus are 

inadequate for use in supporting a conclusion or as the basis for a decision in a risk assessment. 

Because using the same data to derive and test a hypothesis is generally poor practice, risk 

assessments relying on these typical toxicogenomics data sets to inform MOA arguments would 

require data to develop a hypothetical MOA, as well as data to test that hypothesis. The pathway 

mining and subnetwork (i.e., intersected network) approach identifies associations between 

chemical exposure and disease networks, and thus provides more insight into the likely MOA. 

Although the resulting data remain insufficient to definitively verify a chemical’s MOA, this pathway 

mining approach makes better use of the wealth of information available in the disease and 

pharmaceutical research literature, provides a more targeted evaluation of the MOA, and helps 

identify the research needed to fill data gaps. When combined with experimental data, such as 

pharmacological blocking of identified pathways that reduce disease risks, the generated 

hypotheses can be tested as shown in the benzene and ozone prototypes discussed above. 

Challenges to pathway mining of the toxicogenomic data for use in risk assessment: 

In developing this tobacco smoke/PAHs analysis, data access and experimental design challenges 

were encountered that are likely to occur in similar analyses, including: 

 difficulties in obtaining the raw data required for reanalysis of transcriptomics data, 

 lack of clear descriptions of the study design or analytical methods in the published article, 

 use of different microarray platforms that confounded attempts to identify patterns and 

replicate results across multiple studies, 

 different analytical methods being employed within the same platform, and 

 lack of a quantitative exposure estimates, which is especially common for human studies 

where the exposure durations, levels, and conditions are poorly characterized. 

3.1.3.2 Systems Biology Approach to the Assessment of B[a]P 

In this prototype, we demonstrate how the data and a network derived from pathway mining can 

be used to develop a computational model for use in testing hypotheses and in evaluating chemicals 

for toxicity potential. The test chemical used in the prototype is B[a]P. 

B[a]P is found in coal tar (from incomplete combustion). Metabolites of B[a]P are known to be 

mutagenic and highly carcinogenic, and B[a]P is frequently used as a positive control in 

carcinogenicity bioassays. Repeated B[a]P exposure has been associated with increased incidences 

of total tumors, tumors at the site of exposure (dietary, gavage, inhalation, intratracheal instillation, 

dermal and subcutaneous), and tumors at distant sites (various routes) in numerous strains and 

species of rodents, and several nonhuman primates (EPA 2013d). 
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Search Term 
Number of Microarray 

Studies Retrieved 

Coal tar 2 

Polycyclic aromatic hydrocarbons (PAHs) 13 

Diesel 11 

Smoke (NOT cigarette smoke) 16 

Benzo[a]pyrene (B[a]P) 53 

Fuel oil 1 

Cigarette smoke 63 

Tobacco smoke 16 

The Data Mining Method Used To Generate the B[a]P Network 

The data mining method (systematic meta-analysis) started with a search for published, peer-

reviewed transcriptomics data sets using B[a]P as the test substance. The GEO and ArrayExpress 

databases were searched for 

microarray transcriptomic 

studies using the search terms in 

Table 4. The search focused on 

GEO and ArrayExpress as these 

databases contain the submitted 

data as raw data. Raw data are 

critical for the meta-analyses, 

especially when different 

analytical methods might be 

used to generate the study 

results presented in the study 

report. 

The search resulted in the 

identification of 26 peer-

reviewed publications with 40 

Table 4. Search Terms and Number of Studies Retrieved from 
the Gene Expression Omnibus (GEO) and Array Express  
Microarray  Repositories  

gene expression data sets. The 

adult mouse liver was chosen for the analysis here based on the number of studies available across 

species and tissues where B[a]P was used. Only 2 of the 26 publications reported in vivo 

transcriptomic results for the mouse liver as their primary focus. One study (study number 

GSE24907) was a dose-response study where five male Muta mice (a LacZ transgenic mouse line) 

per group were gavaged with an olive oil vehicle and 25, 50, or 75 mg/kg B[a]P. The second study 

(study number GSE18789) was a time-course study where 27- to 30-day-old B6C3F1 mice were 

gavaged with 150 mg/kg B[a]P for 3 days and sacrificed at 4 or 24 hours after the final dose. 

The Systematic Omics Analysis Review (SOAR) Tool was used to document and initially evaluate 

both studies for quality. SOAR consists of 35 objective questions that help users determine if a 

study contains data of sufficient quality for use in a risk assessment context. SOAR was developed 

by toxicology and toxicogenomics experts, and based, in large part, on existing and published data 

standards such as the Minimum Information About a Microarray Experiment (MIAME) standard. 

Both studies (GSE24907 and GSE18789) met the SOAR screening threshold. In the follow-up, in-

depth scientific review, both studies were also found to be of sufficient quality for use. 

That lists of differentially expressed genes reported in the peer-reviewed literature are not 

reproducible even across similar studies is generally known among researchers (Chuang et al. 

2007; Ein-Dor et al. 2005; Fortunel et al. 2003; Lossos et al. 2004; Shi et al. 2008). In one published 

September 2014 42 



   

  

   

     

   

     

  

 

  

 

    

      

 

  

  

 

    

  

 

   

  

                                                             

      
  
   

   
 

  
  

   
 

   
   

  
  

   
 

example, three different studies designed to identify “stemness” genes23 yielded 230, 283, and 385 

active genes, respectively, yet the overlap for same genes expressed among the three studies was 

only 1 gene (Fortunel et al. 2003). A pathway-based meta-analysis uses a standardized analysis and 

ranking according to fold change, or a more formal meta-analyses of the raw data (Chuang et al. 

2007; Ramasamy et al. 2008; Shi et al. 2008). A pathway-based meta-analysis approach is 

considered to be more reproducible than published differentially expressed genes results. 

The B[a]P Network 

Both identified studies were reanalyzed independently at the feature level24 using the same pre

processing, normalization, and analytical methods. GeneGo Metacore was used to identify pathways 

representing a large number of genes from both data sets. A consensus systems model was 

synthesized based on the results from GeneGo Metacore (2013f) and Burgoon (2011) (Figure 17 

and Table 5). The core processes represented in the network are the induction of DNA adducts, 

mediation of p53 (a tumor suppressor gene) signaling, alteration of translesion synthesis,25 and 

regulation of the G1/S-phase transition and cell cycle. Based on the network interactions, DNA 

adducts are believed to be formed by reactive B[a]P metabolites generated via induction of 

cytochrome P450 (CYP) enzymes, secondary to B[a]P activation of the aryl hydrocarbon receptor 

(AhR). Others have shown AhR-independent DNA adduct formation, raising questions about other 

non-CYP1A1- and CYP1A2-mediated B[a]P metabolism and adduct formation (Kondraganti et al. 

2003; Sagredo et al. 2006). 

The consensus model in Figure 17 conceptually describes the events that might occur when B[a]P 

enters the cell. Briefly, B[a]P binds to AhR, leading to upregulation of xenobiotic metabolizing 

enzymes and Nrf2, which might lead to additional B[a]P metabolism to epoxides, and increased 

oxidative stress. B[a]P-mediated genotoxicity, evidenced by DNA adducts, occurs and activates p53. 

Although Nrf2 is upregulated transcriptionally, p53 is expected to interfere with Nrf2 signaling, 

ensuring a pro-oxidant environment, which could perpetuate further DNA adduct formation. 

Upregulation of p21 (Cdkn1a) and MDM2 are most likely a result of p53. Upregulation of ubiquitin, 

while in the presence of p53-mediated MDM2 upregulation, is expected to destabilize p53. 

23Stemness genes are those genes that are hypothesized to confer stem cell characteristics.
 
24A common misconception about microarrays is that they measure gene expression at the level of a gene. In 

reality, microarrays measure only a portion of a gene, typically anywhere from 20 to 100 nucleotide bases.
 
This portion of the gene that is actually measured is called a “feature/” Typically, only one feature exists per 
gene on a microarray. Some genes are represented more than once on a microarray, however, complicating 
downstream analyses (e.g., deciding how much a gene is expressed when the two features representing 
different parts of the same gene yield different numbers). Features also could be believed to map to a specific 
gene at one time, and the feature is later discovered to map to a completely different gene (this happens more 
frequently with lesser known or studied genes and lesser known or studied organisms where the genome 
might not be available). Thus, the gene associated with a feature can change over time, and most analysts will 
remap their feature sequences against the genome periodically to ensure they have the latest annotation. This 
might result in reproducibility issues when comparing to studies performed at different times. Generally, 
when interpreting gene expression, analysts prefer to operate at the feature level for all analyses. 
25Translesion synthesis is a mechanism that the cell uses to continue DNA replication/synthesis in the 
presence of a DNA lesion (e.g., DNA adduct). 
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Destabilization of p53, in the presence of proliferating cell nuclear antigen (PCNA), is expected to 

allow translesion synthesis, resulting in mutations and adducts that persist through DNA synthesis. 

Upregulation of Cyclin D could be sufficient to overcome p21 inhibitory competition, especially as 

p53 levels decrease, allowing for G1/S-phase transition to occur. G1/S-phase transition, combined 

with translesion synthesis, would lead to propagation of mutations and DNA adducts into daughter 

cells. This could continue as a feed-forward loop until p53 signaling is reinitiated. 

Figure 17. Consensus Outcome Pathway. 
This consensus pathway was synthesized by combining multiple pathway diagrams identified through analysis of the 
two data sets using GeneGo Metacore. The nodes (proteins or outcomes) are connected by lines. The green lines 
represent activation, while the red lines represent inhibition or repression. The thick red arrows near proteins represent 
increases in gene expression/ Hexagons with a “TR” represent a transcriptional regulation relationship (e/g/, !hR/ARNT 
complex transcriptionally regulates �YPϭ!ϭ), those with a “�” represent a case where one protein binds to another, “IE” 
represents an indirect regulation of gene expression, “�R” represents a case where proteins form a complex, while a 
question mark represents an unspecified relationship or interaction. The GeneGo map legend can be found at: 
http://pathwaymaps.com/pdf/MC_legend.pdf. 
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Table 5. Altered Genes/Functions and Their Relationship to Cancer (in this Model) 

Altered Gene or 
 Function 

  Relationship to Cancer in this Model 

  AhR/ARNT Complex  AhR regulated expression of several CYPs, including CYP1A1 and CYP1A2  

CYPs  
 (e.g., CYP1A1, CYP1A2) 

 Upregulation leads to production of oxidative radicals and B[a]P metabolites 

 NRF2  Regulates the expression of oxidative stress-protective genes 

 Ubiquitin Protein that tags other proteins for destruction  

 CUL3  Regulates the inhibition of NRF2 signaling with ubiquitin 

 p53  Stops cell cycle by preventing G1/S-phase transition; activated by DNA damage 

 MDM2   Regulates p53 through negative feedback mechanism with ubiquitin 

 Cdkn1a/p21 
 Upregulated by p53 activation; inhibits Cyclin D activation and prevents G1/S-phase 

 transition 

 Cyclin D  Activates G1/S-phase transition, works with CDK4 

 CDK4  Activates G1/S-phase transition, works with Cyclin D 

 G1/S-Phase Transition   Starts cell cycle progression by allowing for DNA synthesis 

 Translesion Synthesis 
 DNA damage tolerance mechanism; allows DNA replication fork to progress beyond  

 DNA damage sites 

 DNA Adduct 

 

 A piece of DNA covalently bound to a chemical that can modify expression of DNA 

  

 

 

       

   

  

 

    

 

 

 

   

      

   

  

 

   

    

   

 

Developing a Computational Model (Boolean Network Model) Based on the AOP Network 

Based on the gene expression changes and activating DNA adduct formation, a Boolean Network 

(BN) systems model was developed (Figures 18–20) that can be used to predict the activation of 

cell cycle progression with translesion synthesis (Figure 21). In a BN model, system dynamics are 

simulated by a series of connected nodes where each node represents a gene/protein, and the 

connections between nodes (edges) represent some type of action/inhibition relationship. The 

connections are directed. For example, p21 inhibits Cdk4, so the arrow originates at p21 and 

terminates at Cdk4. Some actual relationships are not as simple, for example, Cyclin D interacts 

with Cdk4 to activate G1/S-phase transition. To also represent the p21 relationship with Cdk4, it is 

best to represent the Cyclin D action on G1/S-phase transition in the BN model as a positive 

interaction between Cyclin D and Cdk4. 

Each node is in either an on (1) or off (0) state. The Boolean Network cycles through different 

overall system states, based on changes in the state of each node in relationship to the other nodes 

over time. To test a hypothesized outcome (e.g., that cell cycle progression and translesion 

synthesis will be sustained once initiated), the BN model was simplified to represent just the DNA 

adduct/cellular proliferation processes. Model runs were then conducted. Of interest here is the 

occurrence of stable states or attractors, that is, cycles of states that recur and self-perpetuate. As 

the BN model runs progress, states that become attractors are called the “basin.” The Boolean 

Network in Figure 18 has a single state attractor defined as a cell-cycle progression state with 
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Figure 18. Liver Carcinogenesis Boolean Network (BN) Systems Model. 
The nodes represent proteins, and the lines are directional connections meaning activation or inhibition (activation and 
inhibition are not treated differently in the graphical depiction of the model). For instance, the arrow from proliferating 
cell nuclear antigen (PCNA) to translesion synthesis means that PCNA activates translesion synthesis. The two major 
outcomes in this model are translesion synthesis and G1/S-phase transition. The major external input is 
deoxyribonucleic acid (DNA) adduct formation. DNA adducts cause structural damage to the DNA, which could become 
or lead to mutations and ultimately tumorigenesis and cancer. 

Figure 19. Default State, Single State Attractor.  
The  systems model falls into a default state, single state attractor system. This is the same as the network represented  
in Figure 18. The names  have been replaced by numbers, which are noted in the figure legend. Red nodes are those 
that are activated. Blue nodes are inactivated. The system here has not been perturbed by external forces. Of 
particular interest is that the “default” state for the system is one where the cell is actively proliferating and 
undergoing translesion synthesis.  
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Figure 20. Deoxyribonucleic Acid (DNA) Adduct Attractor System. 
When the systems model is perturbed through an external stimulus (DNA adduct formation), it transitions from the 
default stable starting state and moves to a new attractor (depicted in the inset). Once the system moves out of the 
basin for the default state attractor, it cannot return to that state without another significant stimulus. This 
multistability (the fact that a system can have multiple stable attractor states) is a characteristic of complex systems. 
Starting at the upper left of the inset, proliferating cell nuclear antigen (PCNA) is activated, DNA adducts are activated, 
and p53 is activated. This leads to translesion synthesis and activation of p21, MDM2, and ubiquitin. Although Cyclin D 
gets activated, there is no activation of G1/S-phase transition. The system then transitions to a state where translesion 
synthesis is primed and ready to go. If G1/S-phase transition were to occur, p53 is activated, along with DNA adduct 
formation, MDM2, and ubiquitin. The next system state has continued p21 activation, loss of p53 activity presumably 
through ubiquitin and MDM2 activation in the prior system state, and DNA adduct formation. The system then 
transitions to only DNA adduct formation and ubiquitin activation, followed by restarting of the cycle. 

translesion synthesis turned on, here designated as stateTL, and presented in Figure 19. If the cell 

were to enter this stateTL, it would be expected to self-perpetuate until a stimulus altered the 

system in a way that increased the frequency of other states. Importantly, the current BN model 

does not predict that all cells will enter stateTL or that stateTL is the default. Rather, model runs 

simply indicate that if stateTL were entered, the cell would remain in stateTL until a stimulus occurs 

sufficient to change the dynamic and transition the system to a different state. Such stimuli might 

include changes in gene expression, alterations of metabolic status, or a change in overall energy 

level. 

The current BN model predicts that, with DNA adducts alone, the cell will enter into a five-state 

attractor (Figure 20). In this cycle, the cell is not predicted to enter into G1/S-phase transition, 

which one would expect because p53 should effectively shut down that pathway. Translesion 

synthesis is predicted to occur in this five-state attractor cycle. 
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Figure 21. Gene Expression Data Attractor System. 
This four-system attractor is based on the gene expression data observed in both studies. This attractor system is 
notable as it shows deoxyribonucleic acid (DNA) adduct formation, translesion synthesis, and G1/S-phase transition 
occurring in all system states. This model predicts that DNA adducts and potential mutations are being passed forward 
to daughter cells through translesion synthesis as the cell cycle progresses at these doses and times in the mouse liver. 
This suggests that B[a]P at these doses and experimental time-points post exposure in the mouse liver could be an 
initiator and promoter of tumorigenesis. This adverse outcome pathway (AOP) might ultimately result in 
carcinogenesis. 

Given that the data and model representation of the system dynamics are reasonable and of good 

quality, the B[a]P BN model supports the hypothesis that high doses and acute durations like those 

used in the two mouse liver studies will initiate liver tumor progression through a genotoxic MOA, 

and that promotion occurs through a cellular proliferation MOA. The available mouse data are 

inadequate to simulate whether the system would be activated at low doses in the mouse. The 

model does, however, provide a hypothesis-testing platform for effects at lower doses, or with 

other species, or other PAHs, given the availability of sufficient, good-quality data. For example, 

transcriptomic studies with PAH mixtures, or other PAHs individually, could be conducted and 

analyzed to determine their impact on the proposed pathway. Gene expression data from these 

studies could be incorporated to elaborate the model further, and simulate additional alterations in 

cell behavior, compared to behaviors based solely on B[a]P exposure. The model then might be 

used to predict doses/exposures that lead to DNA damage, activation of translesion synthesis, or 

G1/S-phase transitions. The standard uncertainties when extrapolating results among species also 

apply to the B[a]P BN model predictions; that is, the magnitude of the dose-response effects 

observed in test animals might differ from what occurs in humans due to genetic or epigenetic 
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variability. Species differences must therefore be accounted for when interpreting model results 

and predictions for potential effects in humans. 

3.1.3.3 Risk Assessment Implications Based on the Tobacco Smoke, PAHs and B[a]P 
Prototype: Use of New Data 

Hazard Identification 

The pathway mining and subnetwork (i.e., intersected network) approach demonstrated in the 

tobacco smoke/PAHs and the B[a]P analyses supports better identification of the MOA based on 

exposure and disease pathway associations than the typical toxicogenomic study results. The 

results suggest that cigarette smoke exposure activates cell cycle progression and cellular 

proliferation pathways. The network-based determination of pathways in the human studies 

demonstrated the coherence between the lung tumor and cigarette smoking molecular pathway 

data. 

The B[a]P analysis indicates that B[a]P activates known human disease pathways associated with 

genotoxicity and tumor promotion/cell cycle progression. The meta-analyses of multiple animal 

data sets and the relatively well-understood mechanistic information provide additional confidence 

in outcomes indicated by the BN model and the data. 

Disease-focused systems models could be developed for a larger set of complex human diseases to 

expand the utility of this approach going forward. Disease-state systems models would integrate 

metabolomics and proteomics data streams and improve our mechanistic understanding of 

observed dose-response relationship, in support of more rapid and accurate hazard identification 

screens. The genes included in a Boolean systems model could be represented in a battery of assays 

to be used in Tox21 screening. HTS assay batteries based on these models could be implemented 

using current multiplex quantitative polymerase chain reaction assay systems. 

Taking the data and results from both the tobacco smoke/PAHs and the B[a]P analyses together 

provides sufficient support for a likely causal relationship between PAH exposure and cancer, based 

on the similarity of the tobacco smoke pathway activation and known cancer pathway activation in 

humans and the activation of known cancer pathways in the rodent B[a]P studies. Important 

uncertainties remain, however. Differences in tissues affected (human lung cancer and rodent liver 

cancer) likely depend on route of exposures. In this case, we have demonstrated coherence, as PAHs 

clearly act as a promoter in both the human and animal studies, triggering cell cycle progression 

and cellular proliferation. Observed associations in the animal studies are consistent based on the 

meta-analysis, but information is insufficient to demonstrate consistency of the transcriptomic 

pathway data in humans (i.e., only one lung tumor and one smoking data set; additional data sets 

needed for both). The consistency of effect in both humans and animals is not necessary for a 

“likely” determination based on transcriptomics, but would be helpful in advancing our 

understanding. Because the only data examined in this prototype are toxicogenomics data, making 

a strong MOA argument is not possible. To strengthen the MOA argument, additional mechanistic 

data consistent with the suggested MOA are needed. 
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Exposure-Dose-Response Assessment 

The Boolean model approach supports prediction of adverse outcomes across a range of doses. The 

dose-response characterization in the B[a]P animal studies was sufficient to support a causal 

determination. Due to the lack of sufficient dose-response data, however, model simulations of the 

severity or incidence of adverse outcome following different PAH or B[a]P dosing was not possible 

(in this exercise). The B[a]P example, however, did demonstrate how the impacts of different 

exposure/activation scenarios could be evaluated. With sufficient dose-response data, the impact of 

different doses could be modeled and estimated beyond the calibration data set. 

Cumulative Risk Assessment 

Similar pathway-based meta-analyses could be performed on transcriptomic data for other 

chemicals to screen for genotoxicity and tumor promotion, prior to the observation of tumors. 

Adequately developed Boolean systems models could inform risk assessors of the likelihood that 

other PAHs or PAH mixtures share a similar MOA to the one identified for B[a]P. Models also could 

be developed that compare and integrate pathway-based results for multiple chemicals and 

nonchemical stressors, to predict outcomes from exposure to mixtures or cumulative stressors. 

Variability and Susceptibility in Human Response 

Variations in human genetics that alter susceptibility to tumorigenetic or carcinogenetic effects 

could be modeled based on data from genome-wide association studies (GWAS),26 knock-out 

studies, or knock-down studies. A Boolean model would simulate and predict outcomes for 

susceptible subpopulations by comparing the impacts of various node or edge alterations in a 

network on state changes, and the sensitivity of those changes to the pathway alterations. For 

example, the impacts of a gene knock-out can be modeled in the Boolean systems model by 

consistently inactivating the node representing that protein, and monitoring how the system state 

dynamics are altered. As an example, SNPs are known to occur in p53, which might impact its 

ability to stop G1/S-phase transition. The p53 gene also has been shown to be mutated in many 

cancers (Vogelstein et al. 2000). Other relevant SNPs for genes or proteins can be identified using 

data mining approaches, and these can be incorporated into the systems model. 

Population variability can be modeled using Monte Carlo simulations to estimate the risk of adverse 

outcomes across different genetic profiles. This would be accomplished by using the same types of 

models as in the human susceptibility context. Population variability would be simulated with a 

series of Boolean systems models, where each model represented a different subpopulation in the 

overall analysis at a frequency comparable to that subpopulation’s occurrence in the human 

population (or equal to its occurrence in a hypothesized human population if performing a what-if 

26Genome-wide association study (GWAS) is defined as an approach used in genetics research to associate 
specific genetic variations with particular diseases. The method involves scanning the genomes from many 
different people and looking for genetic markers that can be used to predict the presence of a disease. Once 
such genetic markers are identified, they can be used to understand how genes contribute to the disease and 
develop better prevention and treatment strategies. 
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type of scenario). For example, if 15 percent of the population is expected to experience a loss of 

function polymorphism, a Monte Carlo simulation would generate a 15 percent chance of choosing 

the Boolean systems model for the functional loss on each random draw from the population of all 

models. 

3.1.4 Risk Assessment Implications Across the Tier 3 Prototypes 

In the Tier 3 prototypes, comparisons of new and traditional data informed our understanding of 

the extent to which new data types can be used to make reasonable estimates of known public 

health risks. Benzene, ozone, and tobacco smoke/PAHs/B[a]P generate specific exposure-

dependent patterns of events or AOP networks that appear causally related to specific human 

disease and disorder (hematotoxicity and leukemia, lung inflammation and injury, and lung cancer, 

respectively). These patterns are observed in humans exposed at environmental concentrations. 

Evidence for a causal association between these molecular patterns and specific adverse outcomes 

includes (1) multiple studies with similar results, (2) pharmacological interventions that reverse 

key events and thus block or ameliorate the adverse effect, (3) human genetic variations of 

unknown origin that alter the AOP network, and also alter risks of the related adverse effect, or (4) 

chemical and nonchemical stressors, known to cause a specific disease, and that alter the same AOP 

network. Additional support for the associations between specific patterns and disease outcomes 

comes from comparisons between human and animal data, primary cell cultures and immortal cell 

lines, and target and nontarget cell types and tissues. From these data, we infer the following: 

	 AOP networks, when sufficiently well described, can help identify hazards for data-limited 

chemicals based on AOP network similarities. 

	 AOP networks also can help (1) identify chemical and nonchemical stressors that are likely 

to increase risks for the same adverse effect by acting on the same AOP network (not 

necessarily the same key event or pathway but within the same network); and (2) better 

characterize susceptible (and resistant) human subpopulations based on genetic variants. 

	 Information that integrates diverse levels of biological organization (systems biology) is 

essential to link molecular events to intermediate events to adverse outcomes. 

	 Molecular indicators or biomarkers of exposure and effects (subsets of the AOP network) 

appear suitable for measuring exposure-response relationships at environmental 

concentrations, if sufficient sensitivity can be demonstrated. 

	 Although in vitro data can reiterate in vivo molecular events, differences are often observed. 

For the immediate future, the confidence in interpreting in vitro data is greater if the data 

are understood in the context of applicable in vivo data. 

	 Several factors add uncertainty to the use of new data types (depending on the assay 

protocol), including the use of cell lines versus primary cell cultures, lack of metabolic 

capability in certain test systems, use of target versus nontarget cell and tissue types, 

species differences, variability in genetic makeup, and differences in lifestage. Exposure 

measurement or estimate errors can be a significant source of uncertainty. All of these 

factors should be considered, to the extent feasible, when using new data types in risk 

assessment. 
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	 Meta-analyses that integrate pathway-based data across multiple studies yield the most 

convincing evidence of associations among chemical exposure, AOP disruptions, and 

disease/disorder. Meta-analyses are generally the most appropriate method for using 

transcriptomics data in a risk assessment. Experimental evidence also can be a significant 

factor in causal determination. 

	 Depending on the type and level of exposure, the resulting molecular interactions might 

result in beneficial, adaptive, or adverse effects. The dynamic nature of these systems is 

complex and will require additional research to understand fully. The B[a]P prototype 

provides an example of dynamic modeling. 

	 When searching for candidate Tier 3 prototypes, one important observation was that, even 

among the most well-studied chemicals, very few studies reporting new data types met the 

data and quality criteria needed for use in risk assessment. In part, this is due to the relative 

newness of these data types for application in risk assessment, and the need for additional 

guidance on their use. Improving the utility of new data types for risk assessment will thus 

require explicit use of systematic data review criteria, adherence to standards of 

experimental and statistical practices (in data generation, analyses, and use in risk 

assessment), and accurate reporting of the variability and uncertainty in the data. 

3.2 Tier 2: Limited-scope Assessments 

Tier 2 prototypes (1) explore new types of computational analyses and short-duration in vivo 

bioassays, and (2) demonstrate some assessment approaches for limited-scope risk management 

decision-making (i.e., the decision context for Tier 2). Here, “limited” generally applies to chemicals 

with lower exposure or hazard potentials than chemicals for which a major-scope assessment is 

warranted, or for which the available data are so limited a major-scope assessment cannot be 

conducted. The amount of resources required to conduct a Tier 2 assessment is between the 

amounts needed for Tier 1 and Tier 3. The uncertainties in the Tier 2 assessment results are 

similarly ranked, more than for Tier 3 but less than for Tier 1. Intermediate testing and assessment 

strategies in Tier 2 aim to prioritize and quantify risk further for a potentially large number of 

chemicals ranked highly in Tier 1, numbers that would quickly overwhelm resources and capability 

to conduct traditional or Tier 3 evaluations (Thomas, R. S. et al. 2013c). 

Tier 2 approaches use a systems biology approach to integrate information across different levels 

of biological organization—from molecules to cells to tissues to clinical outcomes—and to identify 

associations (or preferably causal mechanisms) between environmental exposures and outcomes, 

generally using relatively short-duration test methods (days to weeks). Tier 2 assessments 

integrate results from Tier 1 (e.g., QSAR results, HTS data) with data from advanced data mining 

and higher level assay systems, for example, high-content (HC) in vitro assays, short-term in vivo 

surrogate (e.g., zebrafish) assays, and mammalian species (rodent) assays, and computational 

systems biology models. Short-duration in vivo bioassays are relatively uncommon in risk 

assessments to date, but they hold great promise for providing valuable new data in the near future. 

Such data (see Table 6) increase confidence in the Tier 1 results, yet the approaches still can be 

performed more rapidly and at lower cost than a Tier 3 assessment. Tier 2 assessments also yield 
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Table  6. Summary of Tier 2 NexGen Approaches, Including  Strengths and Weaknesses  

TIER 2:  LIMITED -SCOPE  ASSESSMENT PROTOTYPES  

 Data Mining of 
Existing  Databases  

Alternative Species 
In  Vivo  Assays  

Mammalian  Short -duration  
In  Vivo  Assays  

Approaches:    Discovers or identifies  
associations among 
environmental exposures, study 
results, and human disease  
  Often uses meta-analyses of 

large existing data  sets  
  Suggests potential adverse 

outcomes based on existing  
knowledge of other chemical-
induced molecular event and 
disease relationships  

  Experimentally measures dose-
dependent, chemically induced 
alterations in biological 
functions for intact organisms  
using a range of specific and 
sensitive assays  
  Measures adverse outcomes  

that range from molecular to 
phenotypic changes and  
population effects  
  Uses species with shorter life  

spans than traditional 
experimental species or humans  

  Experimentally measures dose-
dependent, chemically induced 
alterations in biological 
functions in intact animals using  
a range of  specific and sensitive  
assays   
  Measures molecular or cellular 

changes; infers potential 
adverse outcomes based on 
existing knowledge of other 
chemical pathway or disease  
relationships  
  Uses  short-duration exposures  

and observation periods (hours 
to weeks)  

Strengths:    Significantly faster and less 
expensive than traditional 
bioassays   
  Uses  combined  data  sets that 

include tens of thousands of 
humans  
  Integrates  information across 

biological levels (cell, tissue,  
organism) and for key factors 
(lifestage, metabolism, species)  

  Significantly faster and less 
expensive than traditional 
bioassays   
  Evaluates  complex outcomes  

such as birth defects and 
neurobehavioral outcomes  
  Evaluates effects across  

biological levels (cell, tissue,  
organism) and relative to key 
factors (lifestage, metabolism,  
species)  

  Significantly faster and less  
expensive than traditional 
bioassays   
  Includes tissue  and organism 

integration and intact 
metabolism  

Weaknesses:    Observed relationships are 
generally associative and 
primarily support only 
hypothesis generation  

  Species-to-species extrapolation 
is an issue   
  Data sample resolution for small 

species is often  at high levels 
(e.g., entire organism, multiple 
tissues) versus likely target  cells   
  Data on early-life exposure 

effects generally lacking; an 
exception is the embryonic  
zebrafish models  

  Difficulties in relating events  
early in disease initiation  
process to adverse outcomes   
  Changes in the entire organ are  

often assayed  rather than those  
in just  the target  cells, which can  
make critical changes  more 
difficult to detect  
  Data on early-life exposure 

effects generally lacking  

 

results for chemicals with limited data, reducing the costs and delays associated with obtaining the 

additional traditional data needed  for a Tier 3 assessment.  

Three  Tier 2 limited-scope decision-making prototypes  represent appr oaches to assessing 

hundreds to a few thousand chemicals. Implications for risk assessment identified by the Tier 2 

prototypes are discussed at the end of this section and are integrated with other lessons learned in 

Section 5.  The prototypes and their respective approaches are as follows:  
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 diabetes and obesity: knowledge mining27 and meta-analyses of published literature, 

 thyroid disruption: short duration in vivo assays—alternative species, and 

 cancer- and noncancer-related effects: short duration, in vivo assays—rodent. 

3.2.1  Knowledge Mining – Diabetes/Obesity 

This prototype demonstrates the use of knowledge mining as a means of characterizing the 

associative and potentially causal relationships between disease, exposures to environmental 

factors, and intrinsic sources of human 

variability. Exploration of diabetes risks is 

used here as a specific example. Knowledge 

mining capitalizes on massive, new 

databases developed in recent years to 

organize and store data. As a condition of 

publication, most molecular, computational, 

and systems biology journals now require 

that the study data be submitted to 

specified databases. With at least 50,000 

new publications each year in the field of 

omics28 alone, the amount of available new 

data is enormous (petabytes) and growing. 

These databases extend across species and 

include substantial information on human 

disease. Integration and analysis of these 

large databases require computing and 

knowledge-mining techniques. Although 

this section focuses on knowledge mining 

for information on diabetes/obesity, most 

of the other prototypes also use knowledge-

mining methods to some extent. Box 6 

describes some of the challenges in 

resolving the type 2 diabetes molecular 

interaction network. 

Box 6. Molecular Mechanism of Type 2 Diabetes 

The development of type 2 diabetes requires impaired 
beta cell function. Chronic hyperglycemia induces multiple 
defects in beta cells. Hyperglycemia has been proposed to 
lead to large amounts of reactive oxygen species (ROS) in 
beta cells, with subsequent damage to cellular 
components including PDX 1. Loss of PDX 1, a critical 
regulator of insulin promoter activity, also has been 
proposed as an important mechanism leading to beta cell 
dysfunction. "Diabetogenic" factors include free fatty 
acids, tumor necrosis factor alpha, and cellular stress. 
These result in insulin resistance by inhibiting insulin 
receptor substrate 1 functions. These functions stimulate 
molecular mechanisms including serine/ threonine 
phosphorylation, interaction with suppressors of cytokine 
signaling, regulation of the expression, modification of the 
cellular localization, and degradation. Various kinases (ERK, 
JNK, IKKbeta, PKCzeta, PKCtheta and mTOR) are involved in 
this process. Although the importance of genetic factors in 
type 2 diabetes is little doubted, genetic analysis is difficult 
due to complex interaction among multiple susceptibility 
genes and between genetic and environmental factors. 
Genetic studies have therefore produced very diverse 
results. Kir6.2 and IRS, two of the candidate genes, are 
known to have a central role in insulin secretion and 
insulin signal transmission, respectively (adapted from 
NCBI BioSystems Database entry; Kanehisa Laboratories 
2014b). 

27For example, the National Library of Medicine’s Gene Expression Omnibus (GEO): a public functional 
genomics data repository supporting data submissions that are compliant with MIAME (Minimum 
Information About a Microarray Experiment). Array- and sequence-based data are accepted. Tools are 
provided to help users query and download experiments and curated gene expression profiles. 
28Omics refers collectively to studies in genomics, proteomics, and metabolomics—research areas that collect 
vast amounts of molecular information on various aspects of gene expression, protein interaction, and 
metabolism, respectively. A PubMed search on Dec 23, 2013 for preceeding year returned the following “hits” 
(in parentheses) using these search terms: genome (39,571), genomic (52,861), proteome (3404), proteomic 
(6968), metabolome (673), and metabolomics (1778). The numbers in parentheses do not necessarily 
correlate with relevance, but rather illustrate the growth in new knowledge. 
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The risk of diabetes (and other chronic diseases) varies in the population due to genetic and 

environmental factors. Figure 22 presents a systems biology diagram of the complex network of 

interactions involved in the onset of type 2 diabetes. This network is based on meta-analysis results 

of multiple human studies (Kanehisa Laboratories 2014b); it is available on the National Center for 

Biotechnology Information (NCBI) BioSystems Database.29 

Figure 22. A Systems Biology Diagram of the Complex Network of Molecular Interactions Involved in  the Onset 
of Type 2 Diabetes Mellitus.  

This network was constructed based on the results of meta-analyses of multiple human studies, and is available on
  
the NCBI BioSystems Database (Kanehisa Laboratories 2014b).
  




29The NCBI BioSystems Database was developed to (1) serve as a centralized repository of data; (2) connect 
biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; 
and (3) facilitate computation on biosystems data (NCBI 2014a). 
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The following section discusses how knowledge mining of the general literature, and of the National 

Health and Nutrition Examination Survey (NHANES) database in particular, is used to consider the 

potential impacts of environmental chemical exposures on the public health risks for diabetes. 

Multiple chemical exposures are also addressed. 

3.2.1.1 Environment-wide Association Studies30 

An environment-wide association study (EWAS) approach was used by Patel et al. (2012b) to 

investigate possible factors contributing to diabetes risks. In an EWAS, epidemiological data are 

comprehensively and systematically interpreted to identify the most important environmental 

factors associated with disease in a manner analogous to a GWAS. A GWAS associates genetic 

factors with disease on a genome-wide scale and has proper adjustment for the multiplicity of 

comparisons. An important difference is that an EWAS does not have a complete list of candidate 

environmental factors. Patel et al. (2012b) integrated genomic and toxicological data to identify 

genes, genetic variants, and environmental factors associated with type 2 diabetes. The method 

involved three steps: 

1.	 Genetic and environmental data were summarized from VARIMED (VARiants Informing 

MEDicine, a genetic association database) and NHANES (an environmental exposure and 

effects database). VARIMED contains data on 11,977 gene variants, 9752 genes, and 2053 

individuals; NHANES includes 261 genotyped loci, 266 environmental factors measured in 

blood and urine, and clinical measures for the same individuals. 

2.	 Several environmental factors then were identified that positively or negatively affected 

risks for type 2 diabetes, including some nutrients and several persistent organic pollutants. 

Eighteen human genetic variations (SNPs) and five serum-based environmental factors also 

were identified that interacted in association with type 2 diabetes. 

3.	 An analysis of the interactions among genes/gene variants and environmental factors with 

respect to risk for diabetes was conducted by Patel et al. (2013; 2012b). 

Patel et al. (2013) report that the strongest evidence their analysis identified was for an interaction 

between rs13266634, a nonsynonymous coding SNP in the SLC30A8 gene, and three nutrient 

factors, trans- and cis-b-carotene (which their statistical analysis indicated was associated with 

lower risk of diabetes) and c-tocopherol (which increased the risk). The SLC30A8 gene is thought to 

modulate insulin, and Patel et al. (2013) hypothesized that impaired insulin secretion driven by the 

rs13266634 SNP might increase type 2 diabetes risk if combined with high or low levels of these 

specific nutrients. 

The EWAS knowledge-mining method can be applied broadly to any number of common diseases to 

identify interactions between genetic and environmental factors and the impact on risks of disease. 

Patel and Cullen (2012) discuss a more comprehensive representation of chemical exposures 

30This section is adapted largely from Patel et al. (2013; 2012b) with the assistance of Dr. Patel. 
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(termed the “envirome”) and its use in evaluating the interplay of genetics and the environment/ 
The EWAS approach is relatively new but has the potential to identify sensitive populations in 

response to exposures and to identify hypotheses or prioritize chemicals for their exposure-

genome interactions. EPA will continue to evaluate its development and utility for Tier 2 

assessments. 

3.2.1.2 Expert Opinion 

A recent National Toxicology Program (NTP) expert workshop considered evidence of causal 

associations between chemical exposures and increased risk of diabetes or obesity (Thayer et al. 

2012). The data considered at the NTP workshop included approximately 870 findings from more 

than 200 human studies and the most useful and relevant endpoints from experimental animal and 

in vitro assays (e.g., ToxCast and Tox21 programs). Environmental factors considered at the 

workshop included maternal smoking and nicotine, arsenic, persistent organic pollutants, 

organotins, phthalates, bisphenol A, and pesticides. Overall, the results suggested that associations 

can be made between environmental factors and type 2 diabetes or obesity, although causality is 

more difficult to assign (Table 7). Mechanistic and in vitro studies played a demonstrable role in the 

evaluation of causality, particularly in the absence of traditional data. 

3.2.1.3 Itemset Associations between Prediabetes/Diabetes and Chemical Exposures 

As a complement to efforts by Thayer et al. (2012) and Patel et al. (2013; 2012b), we evaluated 

another data mining approach called frequent itemset mining using NHANES data following the 

approach described in Bell and Edwards (2014). Frequent itemset mining often is used with large, 

sparse data sets like financial transactions, shopping transactions, and, more recently, health care 

data. It can identify associations between a specific set of medical interventions and readmittance 

rates, or identify an item in which a shopper might be interested, based on his or her current cart. 

Bell and Edwards (2014) demonstrated the ability to use frequent itemset mining to identify and 

prioritize associations between environmental exposures and health effect markers using the 

NHANES data. 

Building from earlier work (Bell, S. and Edwards 2014), we focused our analyses on the 2003–2004 

and 2009–2010 NHANES cycles to identify associations between markers for diabetes and 

individual metals, examining single metal exposures in the 2003–2004 cycle and complex metal co-

exposures in the 2009–2010 cycle. The Apriori algorithm (Agrawal et al. 1993; Borgelt and Kruse 

2002; Hahsler et al. 2005) was used to identify association rules, X⟶Y, which identify items “Y” 

that are likely to co-occur with item “X/” These rules carry with them parameters that help in 

interpreting their relevance (e/g/, “support” and “confidence”)/ Support is the percentage of 
transactions (individuals or samples) in which all items in the rule are found. Confidence describes 

the proportion of people having “Y” that also had “X/” So for example, in the rule diabetes⟶lead, the 

support would be the number of people who had both diabetes and elevated lead levels. The 

confidence in this case would be the number of people who had elevated blood lead out of all the 

people having markers for diabetes (percentage of the diabetic sample with elevated lead). A third 

parameter of interest described in Tables 8 and 9 below is “lift/” Lift is the deviation of support for 
the rule from the expected support if both sides were independent. A lift of 1 implies that the two 

sides of the rule behave like random variables, a value less than 1 implies that the co-occurrence is 
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Table 7. Expert Judgment Concerning Causality for Diabetes/Obesity and Environmental Factors  

 Chemical/ 
 Environmental Factor 

 Outcome 
Conclusions from  

 Breakout Group 

Maternal smoking 
 and nicotine 

Childhood 
 obesity 

  Likely causal, supported by epidemiology data and animal studies (Behl et al. 
 2013). 

 Arsenic  Diabetes 
  Sufficient evidence for a positive association between arsenic and diabetes 

 in populations with relatively high exposure levels (≥ϭϱϬ µg arsenic/L in 
 drinking water) (Maull et al. 2012). 

Persistent organic 
pollutants  

 Diabetes 
Sufficient evidence for a positive association of some organochlorine 

 pollutants with type 2 diabetes (Taylor et al. 2013). 

 Organotins  Obesity 

  No human data; limited number of high quality animal, in vitro, and 
  mechanistic studies of tributyl tin indicative of adipocyte differentiation (in 

 vitro and in vivo); increased amount of fat tissue in adult animals exposed 
  during fetal life (in vivo), and increased lipid accumulation in adipocytes and 

 increased differentiation of multipotent stromal stem cells into adipocytes 
  (in vitro) (Thayer et al. 2012) 

Bisphenol A   Diabetes 

  Human data insufficient; primarily based on animal and in vitro studies, 
 evidence is suggestive of an effect of bisphenol A on glucose homeostasis, 

insulin release, cellular signaling in pancreatic β cells, and adipogenesis 
 (Thayer et al. 2012) 

 Phthalates 
 Diabetes or 

 obesity 

  Human data insufficient; animal and human data suggestive of PP!Rα 
  agonist activities of phthalate metabolites, species differences exist (Thayer 

 et al. 2012) 

 

less than expected, and a value greater than 1 implies a positive association. Our first study 

identified and ranked metals that were associated with the presence of prediabetes/diabetes 

markers (prediabetes/diabetes⟶chemical Y). Our second study examined the converse  rules 

where chemical X⟶  prediabetes/diabetes. Only the top associations are presented.  

Prediabetes/Diabetes and Individual Chemical Exposures  

Table 8  lists the results of associations between prediabetes/diabetes and metal concentrations in  

blood or urine. These results suggest type 2 prediabetes/diabetes likely  is associated with lead and 

cadmium (blood or urine) and possibly associated with arsenicals (urine). Type 2 

prediabetes/diabetes is not likely associated with cesium and uranium alone. Taking the first row 

in the table as an example, 11  percent  of the individuals from the NHANES 2003–2004 cycle who 

had shown  markers  for elevated metal exposure  or markers for diabetes had both high blood lead  

and the presence of prediabetes/diabetes. Of individuals with markers  for prediabetes/diabetes,  34  

percent  or roughly one-third had high blood lead levels. The strong lift value (1.44) implies a 

positive relationship and  that they are likely not behaving independently.  



   

 Prediabetes/Diabetes and 
Multiple Chemical Exposures  

Using the 2009–2010 NHANES 

cycles, the association of 

prediabetes/diabetes markers, 

given co-occurrence of m ultiple

metals in the body, was 

investigated (Table 9). These 

results support the findings in 

the NHANES 2003–2004 cycle 

analysis, with the strongest 

single associations in  Table 8  

exhibiting the strongest 

combined association in Table 

9. Again taking the first entry in

the table, support of 0.11  

 

 

Table 8. Top Metals Co-occurring with Type 2 
Prediabetes/Diabetes Markers in NHANES 2003–2004  

 Metal Marker  Lift  Support  Confidence  Conclusion 

High blood lead   1.44  0.11  0.34  Association 

 High urine cadmium  1.43  0.13  0.43  Association 

 High blood cadmium  1.26  0.09  0.30  Association 

 High urine arsenobetaine  1.25  0.10  0.33  Association 

 High urine lead  1.20  0.09  0.28  Association 

 High urine total arsenic  1.18  0.09  0.31  Association 

 High blood total mercury  1.12  0.09  0.30  Association 

 High urine cesium  1.03  0.08  0.25  No association 

 High urine uranium  1.01  0.07  0.24  No association 

translates to 11  percent  of the individuals with markers for diabetes or metals had elevated urine  

cadmium, blood lead,  and urine total arsenic along with markers for diabetes. In this case, 59  

percent  of people with high levels of cadmium, lead, and arsenic also had markers for diabetes. 

Considering the large lift (1.46),  an individual with elevated levels of lead, cadmium, and arsenic 

likely would  be at risk for diabetes. The results in the  NHANES 2003–2004 cycle analysis  also point   

to some complex relationships whereby cesium, which was not strongly associated with  the health 

effect markers in the Table 8  results, is considered  associated if found in combination with other  

metals. Further work is needed to provide guidance in interpreting multiple-item associations with  

this type of analysis.   

Synthesis of Frequent Itemset Mining Results  

Overall, the frequent itemset mining results indicate that lead and cadmium exposure are highly  

likely to be associated with type 2 prediabetes/diabetes. High  lead levels occurred in 9 of 10 and 

cadmium in 8 of 10 of the top-ranked rules in the multiple-chemical analysis of the data shown in  

Table 9. Further evidence is provided by the results where blood lead, blood cadmium, and urine 

cadmium were the highest rated outcomes based on lift  in the single chemical analysis shown in  

Table 8. Confirmatory evidence exists that these metals might also be elevated in other diabetic  

populations (Afridi et al.  2008). Low  dose mixtures of lead, cadmium, and arsenic might induce 

oxidative stress (Fowler et al.  2004), and evidence suggests that cadmium  might induce 

hyperglycemia in rats (Bell, R. et al. 1990). The results of the two analyses (Tables 8  and 9)  indicate 

that uranium and cesium are not likely to be associated with  type 2 prediabetes/diabetes. Whether  

mercury is likely to be associated with type 2 prediabetes/diabetes remains unclear.   

Based on this analysis, a large proportion (>50  percent) of the U.S. population with elevated lead,  

cadmium, and arsenic levels would be  expected to have type 2 prediabetes/diabetes.  These  data are  
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Table 9. Strength of Association between Metal Co-exposures and the Presence of 
Diabetes/Prediabetes Markers in NHANES 2009–2010  

  Metal Markers  Lift  Support  Confidence  Conclusion 

 High urine cadmium 
 High blood lead 

 High total urine arsenic 
 1.46  0.11  0.59  Association 

 High urine cadmium 
High urine lead  

 High blood lead 
 High total urine arsenic 

 1.44  0.10  0.58  Association 

 High urine cadmium 
Low urine cobalt  

 1.40  0.11  0.56  Association 

 High urine cadmium 
 High blood lead 

 1.38  0.17  0.56  Association 

 High urine cadmium 
High urine lead  

 High blood lead 
 1.38  0.15  0.56  Association 

 High urine cadmium 
 High urine cesium 

 High blood lead 
 1.38  0.11  0.56  Association 

 High urine cadmium 
 High blood cadmium 

 High blood lead 
 1.37  0.13  0.55  Association 

High urine lead  
 High blood lead 

 High total urine arsenic 
 1.37  0.12  0.55  Association 

 High urine cesium 
 High blood lead 

 High total urine arsenic 
 1.37  0.10  0.55  Association 

 High urine cadmium 
High urine lead  

 High blood cadmium 
 High blood lead 

 1.37  0.11  0.55  Association 

 

not sufficient support for the hypothesis  that these metals “cause” type 2 prediabetes/diabetes. 

They support only  that these metals  (or mixtures of these metals)  are  “associated”  with type 2 

prediabetes/diabetes.  

This association could result from any  the following:  (1) the mixture of these chemicals  do, in fact,  

cause type 2 prediabetes/diabetes; (2) prediabetic/diabetic phenotypes alter the absorption, 

distribution, metabolism, and excretion of these metals, and cause higher body burdens; (3)  only  

one of these   chemicals  causes  type 2 prediabetes/diabetes  and leads to alterations in  the  

absorption,  distribution, metabolism, and excretion properties  of the other chemicals; or  (4) a 
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correlation with some other co-associated factor/exposure. Some data indicate that the three 

metals work together to induce oxidative stress. Other data suggest that cadmium itself might 

induce hyperglycemia in rats. Clearly, further studies are needed to resolve causality. 

This exercise demonstrates the utility of frequent itemset mining to identify associations between 

chemical body burdens and potential disease endpoints and to provide direction for future studies 

needed to resolve the likely causal mechanisms for those associations. The results also illustrate 

how data mining methods from other disciplines can be applied to risk assessment, and provide 

valuable insight into associations between exposure and health effects. 

3.2.1.4 Example: Characterizing Human Susceptibility and Population Variability 

Risk managers can use genotype and allele frequency data in a nucleotide variations database 

(called dbSNP31) to understand population variance, and identify susceptible populations based on 

the underlying genetics, and chemical and nonchemical factors.32 As an example, analysis of a 

random sample of 100 individuals of Mexican descent in Los Angeles found that 66 percent were 

homozygous for the risk allele for diabetes, 30 percent were heterozygous, and 4 percent were 

homozygous for the nonrisk allele (NCBI 2012). Assuming the sampling is representative of the 

entire population of Mexican-descended residents of Los Angeles, approximately 66 percent of 

these individuals might be at an increased risk of developing diabetes, independent of their body 

mass index (OMIM 2014). Heterozygous individuals (30 percent of the population) also might carry 

some risk and be affected by their zinc intake. Likewise, the heterozygous individuals might be 

more sensitive to other metals, chemicals, or dietary factors that could compete with zinc for 

absorption, or they might be more sensitive to chemicals that could interfere with zinc metabolism, 

transport, and insulin biosynthesis. Given the high rate of zinc deficiency in Mexican children that is 

not correlated with socioeconomic status, finding zinc deficiency in children of Mexican descent 

31The dbSNP is world’s largest database for nucleotide variations and is part of the National Center for 
Biotechnology Information (NCBI), an internationally respected resource for molecular biology information. 
As of this date, dbSNP comprises a large cluster of species-specific databases that contain more than 
12 million nonredundant sequence variations (single nucleotide polymorphisms, insertion/deletions, and 
short tandem repeats) and more than 1 billion individual genotypes from HapMap and other large-scale 
genotyping activities—more than 200 GB of data and growing daily. 
32Gene-disease associations can be identified using a combination of EWAS and GWAS. The work by Patel et 
al. (2013) demonstrates the use of an EWAS to identify potential interactions among SNPs (i.e., a mutation of 
a single nucleotide within the DNA of a gene sequence), environmental chemical levels in blood and urine, 
and health effects—specifically type 2 diabetes—using data from NHANES. Although support for genotype 
and chemical interactions was limited, interesting interactions were noted between the nonsynonymous 
coding SNP rs13266634 in the SLC30A8 gene and cis- and trans-beta-carotene and gamma-tocopherol. This 
SNP has been associated with type 2 diabetes previously (Diabetes Genetics Initiative of Broad Institute of 
Harvard et al. 2007; Pare et al. 2008; Rung et al. 2009; Scott et al. 2007; Sladek et al. 2007; Steinthorsdottir et 
al. 2007; Takeuchi et al. 2009; Timpson et al. 2009; Zeggini et al. 2007). The SLC30A8 gene is a zinc 
transporter found in the pancreatic beta-cell secretory vesicles. Zinc has been associated with insulin 
biosynthesis (Emdin et al. 1980), and chronic decreased zinc intake has been associated with an increased 
risk of diabetes (Miao et al. 2013). The risk allele in rs13266634 is C (Sladek et al. 2007), while the minor 
allele is T (NCBI 2012). (Note that single genes and variants of that gene, and the relationship to disease, are 
often studied in isolation, when many genes, in fact, might contribute to the risk of disease. 
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living in Los Angeles might not be surprising, especially if diet plays a significant role in the 

deficiency (Morales-Ruan et al. 2012). 

We also can hypothesize that cadmium exposure will be of concern to individuals who are 

homozygous or heterozygous for the risk allele. Cadmium has been shown to compete with zinc 

transporters and might lead to beta-cell dysfunction, lack of insulin production, and ultimately 

hyperglycemia (El Muayed et al. 2012). Individuals with the rs13266634 risk allele could be more 

sensitive to cadmium exposures than the rest of the population. 

Through database mining and an understanding of the pathway affected by the allele and a 

chemical’s AOP network, we can identify potentially susceptible populations more easily. This 

example could be extended by examining cadmium exposure data for the Los Angeles area and 

using a geographic information systems approach with census data to identify potentially 

susceptible individuals, based on the allele probabilities. This type of predictive modeling could 

help advance risk management with more definitive and targeted community-level responses. 

3.2.2 Short-term In Vivo Bioassays – Alternative Species 

Short-term in vivo bioassays using alternative species (i.e., nonmammalian species) provide data to 

identify hazards, integrate dose-response effects, and understand pathways and resulting adverse 

health effects. The types of alternative or nonmammalian species (e.g., zebrafish, yeast) used in 

scientific exploration can vary widely. Considerable toxicological work has been completed on fish, 

but work in very simple organisms such as yeast also provides insight into cellular regulation at 

multiple levels that control core biological processes and enable cells to respond to genetic and 

environmental changes (Yeung et al. 2011). These assays are useful for assessing chemical risks to 

humans and other species. 

Four advantages of using in vivo assays with alternative species in contrast to using in vitro assays 

include: 

1.	 full representation of the normal metabolic capability of the species under study; 

2.	 evaluation of complex phenomena, such as birth defects or neurobehavioral alterations, 

effects requiring fully functional tissues, and cell-to-cell or tissue interactions; 

3.	 as a function of 1 and 2 above, molecular changes and phenotypic outcomes can be studied 

rapidly and relatively inexpensively in the same organism; and 

4.	 alternative species in vivo assays are faster and relatively inexpensive to perform over the 

full lifespan of the organism (relative to mammalian species), facilitating study of the entire 

disease etiology, from the MIEs to adverse health effects, due to the shorter lifespans. 

Studies in nonmammalian species are playing a progressively more important role in chemical 

testing, hazard identification, and dose-response assessment for both nonhumans and humans (EC 

2011; ECHA 2013; EPA 2012c; OECD 2004b; Perkins et al. 2013; Schug et al. 2011; Vacaru et al. 

2014). Both the European Chemicals Agency (ECHA) and EPA consider nonmammalian species 

tests in the study of endocrine disruptors (ECHA 2013; EPA 2009b, 2014h) to evaluate, in this case, 
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environmental risks rather than human health. EPA has indicated its intention also to include 

alternative species in the Endocrine Disruptors Screening Program to evaluate risks to human 

health (EPA 2011c). As a caveat, although nearly all important biological functions are preserved 

across species, the exact relationships between molecular functions and phenotype outcomes have 

not always been preserved. Additionally, calculation of exposure-dose across species and routes of 

exposure present challenges. Thus, species-to-species extrapolation remains an important risk 

assessment challenge and area of active research. 

The following prototype demonstrates how alternative species studies might be used for 

prioritization and screening or as the basis for Tier 2 type assessments. Specifically, the prototype 

example examines use of alternative species to identify and characterize thyroid hormone 

disruption. 

3.2.2.1 Tier 2 Prototype: Using Alternative Species to Identify Thyroid Hormone Disruption 

Endocrine disrupting chemicals (EDCs) are chemicals that interfere with endocrine hormone 

signaling and produce adverse effects in both humans and wildlife.33 In a state-of-the-science 

review, the World Health Organization (WHO) concluded that thyroid disruption-associated 

neurobehavioral disorders are occurring in children, and the incidence of disorders has increased 

in recent decades (WHO 2012). Normal thyroid function is essential for normal brain development, 

during fetal and early childhood development. Thyroid hormones are also crucial to inner ear and 

bone development, and to bone remodeling and physiological functions such as metabolism (De 

Coster and van Larebeke 2012). Internationally agreed-upon and validated test methods for 

identification of endocrine disruptors address only a limited range of the known endocrine 

disrupting effects (Miller et al. 2009). In its state-of-the-science review, WHO advised that existing 

testing protocols do not characterize all essential functions completely and that adverse effects “are 

being overlooked” (WHO 2012). 

In testing for potential EDCs, the role of the thyroid hormone is of particular toxicological interest 

because the dependence of post-embryonic development on thyroid hormones is a common feature 

of vertebrate ontogeny (Paris and Laudet 2008). Human and vertebrate post-embryonic 

neurodevelopment is thyroid hormone dependent and deviations from normal thyroid hormone 

33Endocrine hormones are secreted internally from glands, and distributed in the body via the bloodstream. 
The best-known endocrine hormones are the sex hormones, estrogens and androgens, and the thyroid 
hormones. Hormones act as signals to help orchestrate several development, reproductive, and growth 
functions. They are released in response to various internal and external stimuli, and travel throughout the 
body at very low levels (parts per billions) until they bind to receptors on cell surfaces and stimulate their 
intended intracellular response. Disruption of hormone signaling can occur from external exposures to EDCs 
that act as hormone receptor agonists or antagonists, or that interfere with hormone production or kinetics 
(release, transport, metabolism, excretion). These disruptions can produce profound adverse effects in the 
many biological processes controlled or influenced by endocrine hormones. Specific effects associated with 
EDCs include learning disabilities, severe attention deficit disorder, cognitive and brain development 
problems; deformations of the body (including limbs); breast cancer, prostate cancer, thyroid and other 
cancers; and sexual developmental dysregulation such as feminizing of males or masculinization of females. 
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concentrations at critical times are associated with a variety of neurological defects and deficits 

(Zoeller et al. 2002). This period of development typically is characterized by transient elevations of 

thyroid hormone that elicit species-specific physiological and morphogenetic responses with 

lasting developmental consequences. Although outcomes might differ among species, thyroid 

hormone regulation is generally essential for normal development in vertebrates, thereby 

establishing the basis for cross-species extrapolation of developmental risks. Several methods using 

alternative species have been proposed to measure these outcomes for thyroid pathways (Makris et 

al. 2011; Nichols et al. 2011). The timing (or window) of exposure is critical, as the impact of 

thyroid hormones changes as the brain develops (Zoeller and Rovet 2004). Transitions from 

tadpoles to juvenile frogs and body plan reorganization in flatfish are two nonmammalian examples 

of thyroid hormone-controlled events. 

A key factor in thyroid hormone-related risk assessment is the ability to examine hormone 

disruption and the resultant developmental disruption at higher levels of tissue organization. 

Results from omics technologies and other thyroid hormone toxicity assessments, such as EPA’s 

ToxCast chemical screening efforts (EPA 2008), can be linked to adverse outcome data from 

alternative species studies. Two examples are: 

1.	 construction of regulatory networks using time-series data in genotyped populations and 

integration of multiple data types (e.g., endogenous metabolite concentrations, RNA 

expression, DNA variation, DNA-protein binding); and 

2.	 chemicals identified as potential developmental disruptors in high-throughput screening 

(HTS) assays that are further evaluated with available in vivo effects data to establish dose-

response relationships, windows of susceptibility, potential impacts of maternal exposure 

on progeny, and existence of subtle impacts on behavior, learning, and memory. 

3.2.2.2 System and Pathway Models 

As discussed throughout this document, a systems biology perspective in understanding the events 

leading to an adverse effect is central to the use of molecular biology data in risk assessment. In the 

absence of an organizing mechanistic concept or anchoring to traditional data, interpretation of 

omic changes is highly uncertain and in general unsuitable for risk assessment other than 

prioritization and screening for additional work. Pathway analyses are useful to inform 

extrapolation across species and to aid in characterizing the variability within populations through 

identifying and describing both initiating, and other, key biological events leading to adverse 

outcomes. They also can help identify how human-focused screening data can inform ecological risk 

assessment. Although making quantitative predictions of disease risks based on today’s system 

biology or adverse outcome models is often very difficult, progress is being made, and pathway 

analysis remains a top priority for advancing dose-response assessment. 

Thyroid hormone disruption can occur at many points in a complex process and at different levels 

of biological organization. Figure 23 illustrates different ways that different classes of chemicals can 

disrupt thyroid hormone regulation and signaling. In humans, disruption leads to birth defects, 

decreased IQ, and metabolic disorders, and potentially to cancer. In rats, increased thyroid-

stimulating hormone (TSH) leads to thyroid hyperplasia and cancer. Understanding the system as a 
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whole provides the most useful risk information, including increased evidence for hazard 

identification and dose-response assessment, characterization of population variability, cross-

species extrapolation, and evaluation of mixtures. 

Figure 23. Major Adverse Outcome Pathways  (AOPs)  for Thyroid Disruption with Example Toxicants and Alternative 
Models Applicable  to Both Human and Ecological Hazard  Assessment (Perkins et al. 2013). 
 
Reproduced with permission from Environmental Health Perspectives.
  
The thick black outlined box indicates the critical event of serum level concentrations of thyroid hormones. Pathway 1: 

rat pathway leading to tumors via thyroid hyperplasia. Pathway 2: principle pathway of concern affecting humans.
  




Abbreviations: IQ, intelligence quotient; 4-MC, 4-methylbenzylidene camphor; OMC, octyl methoxycinnamate; T3, 

triiodothyronine; T4, thyroxine; TR, thyroid receptor. Figure modified from Crofton (2008) . aQuantification of plasma 

TSH levels in Xenopus tropicalis (Korte et al. 2011). bDirect quantification of intrafollicular concentrations of T4 in zebra-

fish embryos (Thienpont et al. 2011). cDetection of developmental defects with X. laevis metamorphosis assay (Degitz
 
et al. 2005; OECD 2004a). dDetection of developmental defects using zebrafish embryos. eReporter gene (eGFP)
 
detection of TR activity (Fini et al. 2007).
 

3.2.2.3 Dose-Response Relationships for Human Disease 

Although quantitatively predicting human disease risks is currently difficult, several approaches 

using alternative species provide information on causal mechanisms as well as data on the potency 

of chemicals that cause effects. Examples of these approaches include the use of biomarkers of 

exposure and effect, assessments of relative potency to induce adverse effects, species 

extrapolation, and benchmark analysis to characterize the dose-response relationship. 

Biomarkers of Exposure and Effects 
Key events in the perturbed pathway can be represented with biomarkers of exposure and effect. In 

situations where considerable systems biology information links the event to outcomes, a 

biomarker might provide a measure of hazard for risk assessment. For example, upstream events in 

thyroid hormone pathways converge on serum levels of the thyroid hormones, triiodothyronine 

(T3) and thyroxine (T4). Downstream events occur in peripheral tissues where a significant degree 
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of species-specific effects is observed (Figure 24). Thus, serum T4 level can be used as a biomarker 

of thyroid function across species. In the laboratory, researchers use T4 and TSH levels in fish and 

frogs to assess the thyroid disrupting potential of chemicals (Thienpont et al. 2011; Tietge et al. 

2013). To assess human exposures, the Centers for Disease Control and Prevention (CDC) has used 

decreased serum levels of T4 and increased levels of TSH measured in the U.S. population to infer 

increased potential risks for thyroid dysfunction-related disorders at low levels of perchlorate 

exposures (Blount et al. 2007; Lau et al. 2013). 

A B 

Figure 24. Dose-response Relationships. 
Within species, significant advances are being made in quantitative systems biology modeling (Eisenberg et al. 2008). 
Panel A: Overall feedback control system model of thyroid hormone regulation with three source organ blocks 
(hypothalamus [HYP], anterior pituitary [ANT PIT], and thyroid glands [THYROID]); three sink blocks (for TRH, TSH, and 
T3 and T4 distribution); and elimination (elimination = metabolism and excretion) (D&E). TRH = thyrotropin-releasing 
hormone; TSH = thyroid-stimulating hormone; T3 = triiodothyronine; T4 = thyroxine; SR = secretion rate; p = plasma or 
portal plasma for TRH-related components; DA = dopamine; SRIH = somatastatin. Panel B: Feedback control system 
(FBCS) model validation study results. Predicted normal circadian TSH versus independent TSH data (not used in fitting 
the FBCS model) (triangles and diamonds represent data from Sarapura et al. (2002), circles represent data from 
Samuels et al. (1994). Also shown (squares) are the mean TSH data from the larger database used to fit the FBCS model 
of Blakesley et al. (2004). Reproduced with permission from Mary Ann Liebert, Inc. 

Relative Potency 

Identification of pathways and assays impacted by chemicals can be useful in initial prioritization of 

many compounds. Potentially toxic chemicals can be identified through predictive models built on 

relationships between in vitro ToxCast assay results and in vivo effects, as demonstrated in an 

analysis identifying developmental toxicants (Sipes et al. 2011b). Focused in vivo tests with 

alternative species provide additional dose-response data and information about exposure 

window-response relationships. Pathway effects defined through gene expression changes can be 
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used to define a benchmark dose (BMD)34 to characterize the sensitivity of an animal to a chemical 

(Thomas, R. S. et al. 2011). 

Alternative species in vivo test systems can detect effects from mechanisms not represented in the 

in vitro high-throughput screening (HTS) assays. As an example, zebrafish were used to assess the 

309 EPA ToxCast Phase I chemicals for potential developmental toxicity to both humans and 

ecological species. In fish embryo or larval cultures, 191 (62 percent) chemicals were toxic (death 

or malformations) to the developing zebrafish. Both toxicity incidence and potency were correlated 

with chemical class and hydrophobicity. As an integrated model of the developing vertebrate, the 

zebrafish embryo screen provides information relative to overt and organismal toxicity. In 12 

classes of chemicals, 100 percent of the chemicals induced developmental toxicity, 4 classes of 

which induced developmental toxicity with an AC50
35 below 4 µM. Translating such results directly 

into dose-response for human risks is difficult, but Padilla et al. (2012) argue that alternative 

species can be used to build relative rankings of chemicals based on their potency to cause adverse 

effect. Such rankings can be used to prioritize chemicals or classes of chemicals for additional 

evaluation. 

Characterizing the Dose-Response Relationship 

Chemical dose-response relationships characterized in one species can be extrapolated to other 

species including humans, if sufficient pathway-based data and kinetic information are available 

(Perkins et al. 2013). Because many biological functions and pathways are conserved across 

species, similarity of genes encoding those pathways provides support for direct comparisons of 

pathway or genomic effects among species. Where pathways are highly conserved, the dose-

response relationship in the alternative species can be extrapolated to an analogous pathway in 

mammals. For example, pathways in the hypothalamus-pituitary-gonad (HPG) axis are highly 

conserved among vertebrates. Based on similarities in the HPG pathways, the chemical effects in 

fathead minnows have been shown to be predictive of endocrine disrupting effects in rats (Ankley 

and Gray 2013). Qualitative predictions of hazard are likely to be tenable based on similarities in 

hypothalamus-pituitary-thyroid (HPT)-dependent pathways among species (i.e., iodine uptake), 

however, even though altered iodine uptake hinders development, the most sensitive outcome 

indicator might be different among species. In rats, for example, thyroid hormone disruption can 

lead to thyroid tumor development (Hurley 1998), while in frogs, metamorphosis is disrupted 

(Degitz et al. 2005). Dellarco et al. (2006) further discuss some of the challenges to cross-species 

extrapolation. 

34Benchmark dose (BMD) is a quantitative value that describes the dose-response relationship based on a 
model that incorporates all of the dose-response data. BMD is the dose that is expected to result in a specified 
percent (called the benchmark response or BMR level) of the population exhibiting the adverse effect(s) 
associated with chemical. BMR is generally set near the low end of the observable range of the data, generally 
at an incidence rate of around 5–10% incidence (EPA 2012a). 
35AC50 is the concentration at which activity is 50% of its maximum. This value is useful in comparing assay 
results. 
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Although species differ in absorption, distribution, metabolism, and excretion of chemicals, species-

to-species dose extrapolation is possible. Differences across species and routes of exposure are 

important considerations when extrapolating data from alternative species to humans. 

Considerable experience has been gained in developing physiologically based pharmacokinetic 

(PBPK)36 models for extrapolating dose among mammalian species (Mumtaz et al. 2012; Thompson 

et al. 2008). Based on this experience, useful kinetic models also can be developed to conduct dose 

extrapolation from nonmammalian species. For example, concentrations in fish plasma from 

aqueous exposures have been extrapolated to a dose that yields an equivalent concentration in 

human plasma using an appropriate kinetic model (Schreiber, R. et al. 2011). As more information 

becomes available on the kinetics of chemicals in in vivo assays using newer alternative species, 

kinetic models will be developed to support the species-to-species extrapolations of dose for a 

variety of dosing regimens. 

Normal post-embryonic development that depends on thyroid hormones requires coordinated 

spatial-temporal control of thyroid hormone activity. Such activity is regulated not only through the 

classical features of the HPT axis, but also through peripheral mechanisms external to the 

hypothalamus, pituitary, and thyroid tissues, such as differential regulation of deiodinase activity, 

hepatic metabolism and excretion of thyroid hormones, thyroid hormone receptor regulation, and 

transmembrane thyroid hormone transport. Of these major controlling processes, the mechanisms 

of the central HPT axis are generally considered conserved across vertebrate species, and useful for 

comparative efforts; those of the peripheral tissues, however, are typically more divergent and 

must be used with care in cross-species analysis. 

3.2.2.4 Population Variability 

Understanding the variation of an individual relative to population variation can be key to 

identifying an adverse effect on a population. Polymorphisms affecting drug responses can vary 

widely in populations. In humans, 20–25 percent of prescription drugs are metabolized in the liver 

by cytochrome P450 CYP2D6, where variants confer widely different rates of drug metabolism, 

such that some people might respond with an onset of toxicity while others fail to experience 

efficacy (Ingelman-Sundberg 2005). Variants causing unanticipated results can comprise a 

significant portion of a population, and that distribution can vary widely across populations 

(Andersen, S. et al. 2002; Ingelman-Sundberg 2005; Sistonen et al. 2007; Wooding et al. 2002). 

Understanding the variation in adverse responses across a diverse testing population helps reduce 

the uncertainty of extrapolating laboratory data to real populations. In ecological risk assessment, 

differential response to chemicals is an important consideration where not only potentially 

sensitive subpopulations might exist, but also sensitive species. 

36Physiologically based pharmacokinetic (PBPK) models simulate pharmacokinetics in the body and are 
used to estimate the dose to a target tissue or organ by accounting for the rates of absorption, distribution 
among target organs and tissues, metabolism, and excretion. PBPK models also are often referred to as 
physiologically based toxicokinetic (PBTK) models in risk assessment to clearly distinguish the chemical as a 
toxicant (IRIS glossary; EPA 2014o). Both terms are in common use, and might appear in the text of this 
document. They relate to the same kind of model and are interchangeable. 
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Approaches have been developed to incorporate population diversity into toxicity testing through 

the use of large collections of different genetic lines of mice or cell cultures derived from them 

(Harrill et al. 2009; O'Shea et al. 2011; Rusyn et al. 2010). Alternative species could be especially 

useful for incorporating population variability into toxicity testing. The diversity in laboratory lines 

and outbred populations of fish can be high, especially if populations are collected from different 

areas impacted by pollutants (Guryev et al. 2006; Williams and Oleksiak 2011). Divergent lines of 

zebrafish can be used to examine variation in responses to chemicals in addition to determining 

possible genetic factors influencing adverse effects. As an example, Waits and Nebert (2011) 

crossed zebrafish lines displaying different levels of sensitivity to dioxin-like chemically induced 

developmental cardiotoxicity. The crosses were used in genome-wide quantitative trait loci 

mapping to identify several genes that contribute to the gene-gene and gene-environment 

interactions (in addition to the AhR). Their results demonstrated that chemically induced cardiac 

teratogenicity was a multifactorial complex trait influenced by gene-gene and gene-environment 

interactions, and that the identified quantitative trait loci harbor many dioxin-like chemically 

responsive genes critical to cardiovascular development. This approach provided useful new 

insights into the genetic basis of susceptibility to AhR-mediated developmental toxicity. 

Although genetic diversity can be incorporated into testing using a panel of genetically inbred lines, 

unexpected results can occur. In a study comparing the responses of 19 inbred to 20 outbred 

zebrafish lines, Brown et al. (2011) found that effects of the EDC clotrimazole were dramatically 

different. Clotrimazole acts by inhibiting P450 activities involved in steroidogenesis production in 

fish. In inbred fish lines, 11-ketotestosterone production via steroidogenesis was significantly 

inhibited. In contrast, outbred lines responded with Leydig cell proliferation in testes and normal 

plasma concentrations of 11-ketotestosterone indicating that the outbred lines could compensate 

for inhibition by clotrimazole. Here, inbreeding had a strong impact on the diversity and type of 

response to the endocrine disruptor. 

Overall, several new approaches are available that can help with better characterizations of 

population variability. These include the use of (1) AOP networks for identifying chemicals and 

other environmental stressors that appear to act by the same mechanisms and could contribute to 

risk; (2) in vivo and in vitro test results from genetically diverse populations for capturing the range 

of genetically determined risk; and (3) epidemiology studies for capturing variability due to 

molecular biological differences in response to chemical and nonchemical stressor exposures. 

3.2.2.5 Cumulative Risks 

As has been described elsewhere in this document, correct identification of causal perturbations 

that lead to adverse outcomes will enable determination of which environmental factors are likely 

to contribute to the cumulative risk for specific outcomes and which are not. Additionally, testing of 

combinations of chemicals can be conducted efficiently in alternative species. For example, 

alterations in neurosensory functions and intrafollicular thyroxine content of zebrafish exposed to 

potential disruptors have proven to be useful tools for evaluating multiple chemicals (Froehlicher 

et al. 2009; Raldua et al. 2012; Thienpont et al. 2011), as has the zebrafish developmental assay. 

Figure 25 illustrates the toxicity of chemical classes in the zebrafish developmental assay data 

(Padilla et al. 2012). Also available, but not shown here, are the dose-response data for each of the 
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Figure 25. Relationship between Chemical Class and Toxicity to Developing Zebrafish for 300+ Chemicals. 

The percentage positive chemicals in each class are represented by the gray bars (bottom axis), and the average AC50 for each
 
group (±SEM) is indicated by the filled red circles (top axis). Only classes with three or more total members were analyzed, 

and only classes with at least two positive chemicals were included in the graph. If a class had only two positive chemicals, no 

error bars are shown (i.e., triazinylsulfonylurea, aliphatic organothiophosphate, phthalate, thiocarbamate, auxins, diphenyl 

ether, nitrophenyl ether, and pyrimidine) (Padilla et al. 2012). Reproduced with permission from Elsevier.
 

more than 300 chemicals that comprise the chemical classes. Thus, using these types of data, 

evaluation of both the individual chemical and the chemical class is enabled. 
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Box 7. What is the Transcriptome? 

Ribonucleic acid (RNA) is the functional outcome 
of deoxyribonucleic acid (DNA) transcription, 
which is regulated by transcription factors. 
Researchers study the transcriptome the set of 
all RNA molecules in a given cell to identify 
gene expression patterns, or signatures. 
Specifically, short term transcriptomic assays in 
mammalian and alternative species enable 
observations of the effects of chemical exposure 
across multiple tissues. 

3.2.3 Short-term In Vivo Bioassays – Rodents 

The use of short-term in vivo mammalian bioassays to support Tier 2 assessments is described 

here. The prototype example is based on research described in papers by R.S. Thomas et al. (2011) 

and discussed further in R.S. Thomas et al. (2013c; 2013d) on the use of short-term mammalian in 

vivo transcriptomic assays to predict chemical toxicity and dose-response (see Box 7 about the 

“transcriptome”)/ This research was a NexGen 

collaborative effort between EPA and The Hamner 

Institutes for Health Sciences. Female B6C3F1 mice 

were exposed to multiple concentrations of five 

chemicals found to be positive for lung or liver 

tumor formation in a 2-year rodent cancer bioassay 

(Thomas, R. S. et al. 2011; Thomas, R. S. et al. 2012c). 

Histological and organ weight changes were 

evaluated and gene expression microarray analysis 

was performed on the liver or lung tissues. The 

histological changes, organ weight changes, and 

tumor incidences in traditional bioassays were 

analyzed using standard BMD dose-response modeling methods to identify noncancer and cancer 

points-of-departure. The dose-related changes in gene expression were analyzed using a 

modification of EPA’s BMD approach (EPA 1995). The analyses in R. S. Thomas et al. (2013c; 

2013d) correlated the lowest transcriptional BMD with a cancer or noncancer BMD that had been 

identified from the traditional toxicity study data, rather than attempting to predict an apical effect 

based on an affected pathway. Efforts to explore the underlying mechanism were limited to 

grouping gene expression changes based on both biological processes and canonical signaling 

pathways. A comparison of the transcriptional BMD values with the traditional noncancer and 

cancer endpoint BMDs (see Figure 26) showed a high degree of correlation for specific biological 

processes (Thomas, R. S. et al. 2011) and signaling pathways (Thomas, R. S. et al. 2012c). In 

addition, transcriptional changes in the most sensitive pathway were also highly correlated with 

the adverse health effects observed in the traditional in vivo studies. 

The effects of exposure duration on outcomes are a key issue in the design and use of these new 

types of bioassays. Further studies demonstrated the consistency of the correlation between 

transcriptional changes and adverse health effects across different exposure periods (5 days to 

13 weeks) (Thomas, R. S. et al. 2013d). The results shown in Figure 26 indicate that overall, the 

BMDs based on the transcriptional assay data are lower than those derived from the traditional 

assay data, and that the transcriptional BMDs could serve as a health-protective indicator of 

biological activity. 
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Figure 26. Scatter Plot of the Relationship Between (A) Benchmark Dose  (BMD) and (B)  Benchmark Dose Lower 
Limit (BMDL) Values for the Cancer and Noncancer Endpoints and the Transcriptional BMD  and BMDL Values for 
the Most Sensitive Gene Ontology Category.  
BMDL is a statistical lower confidence limit on the dose  at BMD. For each chemical and tissue, BMD and BMDL values  
for tumor incidence and the lowest noncancer BMD and BMDL values were plotted. No noncancer BMD or BMDL 
values were plotted for the proteasome subunit, methylene chloride (MECL), in the lung because of the absence of 
histological changes (Thomas, R. S. et al. 2011). Reproduced with permission from Oxford Journals. 

3.2.3.1 Hazard Identification 

Short-term in vivo transcriptomic assays provide the metabolic capability and systems-level 

integration of whole-animal studies with a more rapid assessment of response to chemical 

treatment based on molecular-level data. A host of previous studies has demonstrated that gene 

expression signatures from short-term in vivo studies can be used to predict both subchronic and 

chronic toxic responses (Auerbach et al. 2010; Ellinger-Ziegelbauer et al. 2008; Fielden et al. 2011; 

Fielden et al. 2007; Fielden et al. 2005; Fielden et al. 2008; Nie et al. 2006; Thomas, R. S. et al. 2009; 

Thomas, R. S. et al. 2007; Thomas, R. S. et al. 2013d; Uehara et al. 2011). A transcriptomic 

“signature” typically is defined as a subset of genes for which the qualitative or quantitative 

expression pattern can be used to predict an in vivo adverse response with a defined accuracy. This 

approach remains relatively new, and more short-term in vivo transcriptomic data, standardized 

study designs, and identification of gene expression patterns and network perturbations are 

needed to advance our ability to predict chemical toxicity comparable to longer term assays. 

Dellarco et al. (2006) discuss some of the key challenges in correlating transcriptomic data with 

histopathology data, the traditional “gold standard” for characterizing adverse effects/ 

To develop a broad-based repertoire of gene expression signatures for hazard prediction, several 

factors are worth considering. First, the number of endpoints included should be sufficient to 

enable a comprehensive prediction of toxicological hazard. Previous studies that have used gene 

expression microarray analysis following short-term exposures of chemicals have been limited in 

the breadth of endpoints examined. These endpoints include the prediction of rat liver tumors 
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(Auerbach et al. 2010; Ellinger-Ziegelbauer et al. 2008; Fielden et al. 2011; Fielden et al. 2007; 

Fielden et al. 2008; Nie et al. 2006; Uehara et al. 2011), mouse lung tumors (Thomas, R. S. et al. 

2009), and rat renal tubular toxicity (Fielden et al. 2005). A more comprehensive strategy would be 

to select a battery of tissues that includes those most frequently positive in rodent cancer bioassays 

(i.e., liver, lung, mammary gland, stomach, vascular system, kidney, hematopoietic system, and 

urinary bladder) and tissues commonly affected by noncancer disease. In a previous analysis, 

cancers in the eight tissues in parentheses above accounted for the observed cancers from exposure 

to 92 and 82 percent of all mouse and rat carcinogens, respectively (Gold et al. 2001). Additional 

tissues would be needed to be included for developmental and reproductive effects (including 

tissues from the developing fetus and reproductive organs). 

Second, the number of positive and negative chemicals for each endpoint needs to be sufficiently 

large to support defensible conclusions, and the chemical diversity should represent the diversity in 

the domain of chemicals that need to be assessed for potential effects. For complex toxicological 

responses such as tumor formation, a previous study estimated that at least 25 chemicals were 

necessary (Thomas, R. S. et al. 2009). 

Third, selection of the time point to perform the gene expression analysis is an important decision. 

The time point selection is a balance between cost (i.e., the shorter the time point, the less 

expensive the study) and a more stable gene expression signature. Among the previous efforts, 

certain studies relied on much shorter time points (e.g., 5 days), but tended to increase the dose 

beyond that which would be tolerated in a chronic bioassay (Fielden et al. 2007). Other studies 

used the same doses as those in the chronic bioassay, but used exposures longer than 5 days 

(Thomas, R. S. et al. 2009). In one study that examined the effect of exposure duration, the overall 

conclusion was that increasing exposure duration (2–90 days) increased the predictive 

performance of the gene expression signatures for genotoxicants (Auerbach et al. 2010). 

3.2.3.2 Exposure/Dose-Response Assessment Using High-throughput Screening (HTS) 

With the advent of HTS, the potential to screen thousands of chemicals for biological activity 

presents as many challenges as promises. If HTS can decrease the number of chemicals of interest 

by 90 percent (a 10 percent hit rate across chemicals and assays), the resulting number still would 

overwhelm the throughput of the traditional toxicity-testing paradigm. Clearly, a multi-tiered 

approach to prioritization can lead to more effective applications of animal toxicity testing. The 

development of predictive gene expression signatures and dose-response studies would provide a 

relatively efficient and cost-effective method for both identifying chemicals of concern and 

estimating a point of departure for adverse responses. This information would help support large-

scale prioritization and regulatory efforts in the United States and Europe. The gene expression 

data combined with other data types (e.g., toxicity data from similar chemicals, pharmacokinetic 

[PK]37 data) could provide sufficient information to evaluate toxicity. Confidence in the evaluation, 

37Pharmacokinetics (PK) – The root word ‘‘pharmakon’’ has complex meaning that encompasses both a 
remedy and a toxicant (and more broadly any biologically active substance). Risk assessors sometimes use 
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however, would depend on the overall strength of the evidence. Expression changes can vary 

depending on dose, time, species, tissue lifestage, and individual genetic profile. Such changes 

increase the complexity of identifying causal relationships between exposures, specific signatures, 

and outcomes. 

3.2.4 Risk Assessment Implications Across the Tier 2 Prototypes 

The three Tier 2 prototypes described above illustrate different approaches that are intermediate 

in resource use and scope between the more robust and resource-consuming approaches for Tier 3 

major-scope assessments, and the high-throughput (HT) and cost-efficient approaches discussed in 

the next section for Tier 1 screening and prioritization assessments. The development of the Tier 2 

prototypes led us to the following inferences. 

3.2.4.1 Knowledge Mining 

	 New knowledge mining approaches, as performed for the diabetes and obesity prototype, 

rely on computer-assisted implementation of algorithms that identify, integrate, and 

interpret large amounts of data. These approaches take advantage of the huge, relatively 

new, databases managed by NIH and others into which almost all new published data are 

placed. Hence, a large swath of existing literature can be brought to bear on environmental 

problems in an unprecedented manner. 

	 The computerized component of knowledge mining is in essence high throughput (i.e., the 

literature and data for thousands of chemicals screened in an automated way over a short 

time). The human components of quality assurance and interpretation are the elements that 

add time and resources, making this a Tier 2 prototype method rather than an exclusively 

HT approach. Automated knowledge mining can provide more information that is 

quantifiable than traditional literature searches and can integrate information across 

diseases, chemicals, and other risk factors for further evaluation. 

	 Information acquired by knowledge mining is primarily associative in nature, hence, most 

suitable for hypothesis generation and in screening and prioritization. Use in identification 

of hazards and toxicity values would be suggestive at best. Additional meta-analyses of 

multiple epidemiological, experimental, and mechanistic studies can add to the weight of 

evidence for potential risks identified by knowledge mining, thus potentially expanding its 

use in risk assessment. 

3.2.4.2 Short-duration In Vivo Exposure Paradigms 

The other two Tier 2 prototypes evaluated use of short-duration, in vivo data from both alternative 

species and rodents. The distinct advantages of these approaches are that they are faster and less 

expensive than traditional data generation approaches while retaining the ability to assess 

potential toxicity in systems that have intact biological complexity, architecture, and metabolic 

the word “toxicokinetics” (TK) to distinguish the chemical as a toxicant/ Both terms are in common use, and 
might appear in the text of this document. They relate to the same processes and are interchangeable. 
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capacity (i.e., compared with in vitro systems). Alternative species have additional advantages: 

toxicity can be observed over the lifespan of the organism (nonmammalian species lifespans are 

shorter compared to mammalian species); adverse health effects can sometimes be more directly 

observed and provide context for interpreting molecular data; and complex effects, such as birth 

defects and neurobehavioral deficits, can be studied in intact biological systems. The development 

of the short-duration, in vivo study Tier 2 prototypes led us to the following inferences: 

	 Perturbations in molecular mechanisms are useful indicators of potential toxicity, but the 

correlation of the specific adverse effects across species for similar doses and routes of 

exposure can be complicated. This is true for traditional as well as new data types. 

	 Species extrapolation issues in the use of nonhuman species remain a challenge when 

interpreting the relevance of the effects for humans, and in estimating equivalent doses for 

a given response level. Many important molecular mechanisms and biological processes are 

well conserved across species, but the relationships of molecular events to specific 

downstream adverse outcomes, in some instances, have drifted with evolution. Thus, the 

specific outcome of a perturbed molecular mechanism might differ among species. 

	 Alternative species data (e.g., zebrafish developmental assay data) are suitable for 

identifying hazards and evaluating the potency of chemicals to cause an adverse effect, and 

could be used for screening and prioritization. Augmented with sufficient supporting data 

(e.g., AOP information) and exposure concentrations that are relevant to human exposures, 

these data could be suitable for determining toxicity values for limited decision-making. 

	 The prototype example based on the short-term in vivo rodent study presents 

transcriptomic data that correlated well with dose-response relationships based on 

traditional cancer and noncancer endpoints. In this example, the observed transcriptomic 

events were nonspecific relative to the observed adverse effects in the traditional studies, 

that is, transcriptomic events did not predict a specific adverse outcome. The logic, 

however, is that toxicity must be preceded by changes in gene expression and, hence, the 

concentration at which gene expression changes occur could be used in prioritization and 

screening, and in determining a BMD. Due to the associative versus causal nature of these 

studies and uncertainties in the predictive nature of transcriptomic events for adverse 

effects, these data are considered suggestive. As with other approaches, supporting data— 
such as mechanistic information, consistent results across multiple studies, and 

experimental interventions that demonstrate causal relationships—would increase the 

confidence in the overall evidence and expand use of these data in risk assessment. 

Although current experience with this model is limited, wider use in the future is 

anticipated. 

	 In addition to extrapolation issues for molecular events, differences in the toxicokinetics 

(i.e., the absorption, distribution, metabolism, and excretion) of chemicals among species 

might exist, confounding comparison of target tissue levels and responses. 
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In summary, these Tier 2 approaches are promising, will be deployed in the near future particularly 

for screening and prioritization, and will be further evaluated for use in estimating toxicity values. 

3.3 Tier 1: Screening and Prioritization 

This section summarizes in vitro new high-throughput (HT) and high-content (HC) approaches 

available to develop data for screening and prioritizing large numbers of chemicals (i.e., tens of 

thousands of chemicals) into categories for focused research, further testing, or further assessment. 

Tier 1 chemical rankings rely on QSAR models, HTS/HCS assay data, statistical correlations 

between in vitro and in vivo assays, and systems models that focus on molecular targets and 

chemical perturbations to susceptible biological pathways that might result in adverse effects or 

clinical disease. The Tier 1 prioritization and screening prototypes demonstrated use of a variety of 

these new approaches including the following: 

 QSAR models, read-across, and high-throughput virtual molecular docking (HTVMD) 

models (discussed in Section 3.3.1); 

 High-throughput screening (HTS)/high-content screening (HCS) assays and the ToxCast 

Program (discussed in Section 3.3.2); 

Section 3.3.3 discusses the risk assessment implications across the Tier 1 prototypes. 

HT in vitro assays are used to probe MIEs (e.g., activation or inactivation of specific receptors, 

enzymes, or transport proteins) or other key events in these biological pathways, and to replace 

more costly and time-consuming assays to assess the potential for adverse outcomes. Correctly 

identifying the linkages from a MIE to an assay endpoint to potential for adversity is key to the 

relevance of each assay for use in Tier 1 risk assessments. The critical support for this linkage 

comes from statistical modeling using in vivo and in vitro data on the same chemicals, from 

literature reviews and biological expertise, and from adequately developed systems biology models 

with acceptable simulations of normal and altered biological processes (e.g., virtual tissue models 

or other types of systems biology models). The knowledge gained in developing Tier 2 and 3 

assessments will provide further context and support continual improvement in interpreting Tier 1 

data. 

EPA’s Chemical Safety for Sustainability (CSS) program is actively researching systems approaches 

and developing tools to understand links between exposures to chemicals and disruptions in 

pathways that lead to disease (EPA 2012b). The CSS research aims to increase the efficiency and 

speed of chemical evaluations dramatically, and to support assessment of potential effects from 

chemical exposure at critical lifestages (the embryo and childhood), and on susceptible populations 

associated with factors such as genetic differences or coexisting diseases. The program within CSS 

that focuses on developing automated chemical screening technologies is the Toxicity Forecaster 

(ToxCast™) program/ ToxCast is a multiyear effort launched in 2007 to evaluate HTS/HCS assays 

with living cells, or isolated cellular components (e.g., proteins, nuclear receptors, transcription 

factors, enzymes), and to develop rapid approaches for assessing adverse health effects of 

chemicals. A key goal of the ToxCast program is to protect human health by identifying chemicals 

that are of potential concern and require additional testing, and to limit the number of animal-

based toxicity tests. The main thrust of the research aims at understanding correlations and 
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linkages between molecular/cellular perturbations and apical toxicity endpoints (adverse 

outcomes). To resolve these linkages, statistical and computational (in silico) models are being 

developed that compare the chemical effects results from ToxCast in vitro assays to the adverse 

effects outcomes from thousands of in vivo animal toxicity studies on hundreds of chemicals that 

have been compiled in EPA’s Toxicity Reference Database (ToxRefDB)/ EPA’s ToxCast assay results 

and databases are freely available to the science community and to the public (EPA 2014l). 

NIH is also developing and deploying several tools and databases to evaluate assays, pathways, and 

underlying mechanisms. These include the Tox2138 data, BioSystems (NCBI 2014a; database of 

mechanistic networks), BioAssay Research Database (NCBI 2014e; data on more than 35 million 

compounds and thousands of assays and experiments), and the 1000 Genomes Browser.39 A major 

thrust of these NIH resources is to summarize, and make publicly available, information found in 

the scientific literature, thus facilitating transparent meta-analyses of data and broad acceptance of 

approaches within the scientific community. 

HT/HC assays and models have several purposes for risk assessment. One is to generate data for 

Tier 1 assessments that screen and prioritize chemicals for potential toxicity. Prioritization 

identifies the subset of tested chemicals that could disrupt normal pathways or bind to critical 

targets to elicit adverse outcomes. Alternatively, prioritization could identify chemicals that are of 

less concern for toxicological effects. The in vivo dose leading to the concentration in the in vitro 

assays needed to activate targets or perturb networks can be estimated with reverse toxicokinetic 

models (see Section 3.3.2.3). These estimates are then interpreted within the context of real or 

potential environmental exposures, duration and frequency of those exposures, and other relevant 

information to rank tested chemicals for level of concern, or to identify subsets to advance to Tier 2 

or Tier 3 testing or further evaluation. In some cases, the data developed in Tier 1 could be used to 

supplement the evidence for reference values derived in Tiers 2 and 3 assessments, especially with 

respect to identifying AOPs and AOP networks associated with chemical-induced disease (see 

Table 10). HT methods also might be used for rapid data generation to help risk assessors and 

managers make urgent decisions. Examples of decision-making where high-throughput 

prioritization and screening are useful include emergency response or urgent, need-to-identify 

chemicals of potential concern. Specific examples include the HT-based evaluations of dispersants 

38Several federal agencies collaborate in the Tox21 program: Environmental Protection Agency, National 
Institute of Environmental Health Science/National Toxicology Program, the NIH Center for Advancing 
Translational Science/National Chemical Genomic Center, and the Food and Drug Administration. 
Collaborators conduct screening with many of the same aims as EPA’s ToxCast program but cover more 
chemicals with fewer HTS assay technologies (Tice et al. 2013). 
39The 1000 Genomes Browser is an interactive graphical viewer that enables users to explore variant calls, 
genotype calls, and supporting evidence (such as aligned sequence reads) that have been produced by the 
1000 Genomes Project. The project is an international collaboration to produce an extensive public catalog of 
human genetic variation (including SNPs and structural variants, and their haplotype contexts) to support 
GWAS and research on human genetic variants and their contribution to disease. The genomes of about 2500 
unidentified people from about 25 populations around the world will be sequenced (1092 have been 
sequenced to date). The results are freely and publicly accessible to researchers worldwide. 
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used in the Deep Water Horizon Gulf oil spill (Judson et al. 2010);  the ongoing  prioritization and 

screening of potential endocrine disruptors as part EPA’s effort under the Food Quality Protection  

Act (limitations on pesticides  in food) and the Safe Drinking Water Act (EPA 2011c);  and in 

research applications (Knudsen et al.  2011a).  

Table 10. Summary of Tier 1 NexGen Approaches,  Including Strengths, and Weaknesses  

 

Approaches:  

  Uses structural characteristics and experimental  
data from chemical analogs to predict toxicity 
for various endpoints, metabolism, fate, and 
chemical groupings (based on similarity) for  
data-poor chemicals   

  Chemicals can be classified rapidly and 
inexpensively  
  Some QSAR models can generate quantitative  

values such as the LOAEL that can be used both 
to rank chemicals and as a point of departure 
for reference value derivations (albeit with 
considerable uncertainty associated with that 
value) (OECD 2014e)  
  SAR models provide quality characterizations  

useful for binning chemicals into groups for 
read-across  

TIER 1:  SCREENING AND PRIORITIZATION  PROTOTYPES  

New QSAR Models  High -throughput In Vitro  Assays  

  Experimentally measures concentration-
dependent, chemically induced alterations in 
biological functions using range  of specific and 
sensitive  in  vitro  assays  
  Infers potential adverse outcomes based on 

existing knowledge of other chemicals and 
potential importance of selected biological 
processes  

  Rapid, relatively inexpensive, multiple bioassay 
options available  
  Research on key pathways and  new assays rapidly 

progressing, including alternative test  species  
assays that improve the representation of  in vivo  
responses  
  Systems biology models continue to evolve with 

increasing amounts of knowledge and increases in 
their predictive  utility and context for interpreting 
the in vitro  results  

Strengths:  

Weaknesses:  

  If the physical chemistry or structures of 
chemicals being evaluated differ significantly 
from the chemicals used to develop the models 
(the training set) or have fragments not 
represented in the training set, results likely to 
be unreliable  
  Active metabolites are not represented in the  

results for parent compounds  
  Major issues exist around characterizing the 

uncertainty in QSAR and related read-across  
approaches, and in the transparency of some 
models (see  Ball et al. 2014; OECD 2004b; 
Patlewicz et al. 2013a)].  

  Coverage of important biological processes is 
incomplete, cell lines generally not metabolically 
competent and vary widely from their in situ  
counterparts, interactions among cell types or 
tissues cannot be evaluated in in vitro  assays  
  Volatile and chemical gases cannot currently be  

tested  
  Systems biology models (and approaches) require 

consistent support and iterative laboratory 
collaborations to improve and update the models 
continually (i.e., short-term planning is 
inadequate)  

 

3.3.1	  QSAR Models, Read-across, High-throughput Virtual Molecular Docking 

(HTVMD) Models  

QSAR models  are regression or pattern recognition models used in risk assessment to classify or  

predict target toxicities, chemical potency, exposure potential, and the like, as a function of one or 

more chemical descriptors. The  descriptors are generally inherent physiochemical properties of the  

chemical,  such as atomic  composition, structure, substructures, hydrophobicity, surface  area 

charge, and molecular volume. QSAR  models correlate  inherent properties of the two-dimensional 

or three-dimensional  chemical structure of an unknown chemical, the “query” chemical  (as input  
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parameters in the model run), with similar properties for a set of chemicals having known 

toxicological or exposure potential called the “training set” (EC 2010; EPA 2014g; Goldsmith et al. 

2012; OECD 2014c; Venkatapathy and Wang 2013; Wang, N. et al. 2012c). QSAR models are run on 

high-speed computers, and the output is thus considerably less costly and orders of magnitude 

faster than in vitro or in vivo assays. Interpreting QSAR results for use in hazard and dose-response 

assessment, however, requires expertise, and issues exist with transparency and uncertainty 

characterization. 

A variety of QSAR models and support tools are available to choose from (Hansen et al. 2011; JRC 

2014; OECD 2014d). Each model has its own set of assumptions and chemical domains of 

applicability. Although QSAR is not a new technique, what is new are more concerted efforts to 

validate predictive accuracy relative to authoritative, traditional based toxicity values (Golbraikh et 

al. 2012; Venkatapathy et al. 2004; Wang, N. et al. 2012b; Wang, N. et al. 2012c; Wang, N. et al. 

2011). 

QSAR models have been used most commonly in the classification of data-poor chemicals with 

unknown hazard or exposure potential. Each model can generate quantitative estimates for various 

outcomes, for example, kinetic parameter values, a rodent oral or inhalation LD50, a fish LC50, or a 

rodent maximum tolerated dose. The commercially available TOPKAT model (TOPKAT 2014) is the 

only QSAR model (at the time of this report) that generates a rodent quantitative lowest observable 

adverse effect level (LOAEL) and, importantly, has been evaluated in studies published in the peer-

reviewed literature (Venkatapathy et al. 2004; Venkatapathy and Wang 2013). The TOPKAT 

generated LOAEL can be used to rank chemicals and as a point of departure (POD) to compare with 

existing reference values, albeit with a considerable number of caveats concerning confidence in 

those QSAR-based POD values. Significant limitations in the TOPKAT model include a database in 

need of updating with new information since 2004, and a lack of transparency. 

Structure-activity relationship (SAR) models use a similar modeling approach but generate only 

qualitative characterizations. Qualitative characterizations can be used to categorize chemicals for 

specific hazards (e.g., suspected carcinogen, likely mutagen, potential developmental toxin). An HT 

SAR approach popular in the European Union is called read-across. Substances with 

physicochemical and human health or ecotoxicological properties or environmental fate properties 

that are similar, or that follow a regular pattern (usually because of structural similarities), can be 

considered as a “group of substances.” These groups of chemicals are used to predict the 

physicochemical properties, human health effects, or environmental effects of a new “target 

substance(s)” that has inherent properties similar to those of the groups. The predictions are made 

by interpolating to other substances in the group called “reference substance(s)” that have had 

adequate testing for these characteristics, and become “source substance(s)” for read-across (OECD 

2014b, d). The term analog approach is used when read-across is employed within a group of a very 

limited number of substances for which trends are not apparent. The simplest case is read-across 

from a single source substance to a target substance. When a group contains more substances, the 

term category approach is used (see Box 8). 
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The grouping of substances and read-across offer a 

possibility for meeting the standard information 

requirements of the European Union’s REACH40 

regulation (requirements set in Annex XI, 1.5) 

(REACH 2014). The read-across approach must be 

considered on an endpoint-by-endpoint basis due 

to the different complexities (e.g., key parameters, 

biological targets) of each endpoint. If the read-

across approach is adequate, unnecessary testing 

can be avoided. 

The Organization for Economic Cooperation and 

Development (OECD) provides a free 

downloadable QSAR software package, the QSAR 

Toolbox, that is intended for use by governments, 

the chemical industry, and other stakeholders to 

assess potential human and ecological chemical 

toxicities for data-poor chemicals (OECD 2014c). The QSAR Toolbox estimates the potential toxicity 

of a compound of interest based on the available information for structurally similar analogs, and 

uses similarities or trend analysis to construct the categories of chemicals for read-across screening 

purposes even if only a few of the members in the category have available test data. Read-across 

has become one of the most widely used approaches under REACH (Patlewicz et al. 2013b). The 

method’s popularity is driven not only by its relative simplicity and the online availability of the 

QSAR Toolbox (ECETOC 2013; ECHA 2012; OECD 2014d), but also because it provides some 

information to evaluate chemicals of interest when no other information is available. 

Box 8. From: Use of Category Approaches, 
Read across and (Q)SAR: General 

Considerations. ECETOC Technical Report 116 
(Patlewicz et al. 2013a) 

There are many endpoints where read across can 
be applied and these range in complexity and 
sophistication from simple physiochemical and 
acute/local effect to repeated dose/systemic and 
reproductive toxicity. This range of endpoints 
translates to a range of complexity of approaches 
that needs to be developed, i.e., not as simple as 
one size fits all. The foundation of many 
categories of read across justification is that the 
substances are similar in structure (same 
functional groups) or have a common/shared 
metabolic pathway or precursor/ 0 Data on 
toxicokinetics can be a key piece of evidence to 
support these justifications/” 

OECD and others have developed guidance for use of QSAR models for regulatory purposes (NAFTA 

2012; OECD 2004b). Documenting and addressing uncertainty in the read-across results, however, 

remains a major challenge. Within the European Union, ECHA is developing a framework to 

facilitate a more transparent and structured approach to identifying and assessing uncertainty 

associated with the use of read-across (Ball et al. 2014; Patlewicz et al. 2013a). Others in the 

industrial sector are also developing approaches to address uncertainty systematically in read-

across results (Blackburn and Stuard 2014). 

At EPA, QSAR models are being used to screen, rank, and categorize chemicals for level of concern 

in a variety of EPA programs, including Superfund mitigation; the Office of Chemical Safety and 

40REACH – Registration, Evaluation, Authorisation and Restriction of Chemicals. REACH is a regulation 
of the, adopted to improve the protection of human health and the environment from the risks that chemicals 
can pose, while enhancing the competitiveness of the European Union chemicals industry. It also promotes 
alternative methods for the hazard assessment of substances to reduce the number of tests on animals. 
REACH requirements became effective June 1, 2007 and are implemented by the European Chemicals Agency 
(ECHA 2014). 
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Pollution Prevention High Production Volume Challenge Program and Pre-Manufacture Notice 

review process; the Office of Chemical Safety and Pollution Prevention/Office of Water Endocrine 

Disruptors Screening Program (Weiss et al. 2012); and the Office of Water Candidate Contaminant 

List. The QSAR models used by EPA include the Sustainable Futures Initiative suite of models, the 

OECD QSAR toolbox models (OECD 2004b, 2014c), HTVMD (Rabinowitz et al. 2008), MetaCore 

(Teschendorff and Widschwendter 2012; van Leeuwen et al. 2011), and the TOPKAT model 

(Rakyan et al. 2011; Venkatapathy et al. 2004). 

High-throughput virtual molecular docking (HTVMD) models use a ligand-based chemoinformatics 

strategy to predict relationships between various attributes of ligands and their binding to known 

targets. These models, which are increasingly being used in risk assessment, can screen thousands 

of chemicals for the potential affinity of their three-dimensional structures to bind to active protein 

binding sites. HTVMD models have been used in the pharmaceutical industry for years to identify 

candidate drugs. These models also can be used to estimate the likelihood that a chemical of 

toxicological interest would bind to a target protein, for example, the potential affinity of a chemical 

as a direct agonist of the estrogen receptor. 

Limitations in current HTS/HCS assays include difficulties in evaluating the toxicity of metabolites, 

volatiles, and limited solubility compounds such as metals. QSAR and HTVMD models can provide 

some information to address these gaps in chemical coverage. Recent advances in high-

performance computing support simultaneous runs of QSAR and HTVMD models, dramatically 

decreasing the time to discovery. The U.S. Army Medical Research and Materiel Command, for 

example, has recently published their version of a Docking-based Virtual Screening pipeline that 

facilitates the use of the AutoDock molecular docking software on high-performance computing 

systems (Jiang et al. 2008). 

Results from these rapid, computationally based methods (e.g., QSAR, read-across, molecular 

docking models) can add to the evidence in assessments based on more traditional data (when 

available) and advance the speed and accuracy of chemical screening (Golbraikh et al. 2012; Lock et 

al. 2012; Rusyn et al. 2012; Sedykh et al. 2011; Wignall et al. 2012). Continued improvements and 

transparency in these models, and the criteria for interpreting the data, are anticipated to support 

their use for chemical screening and prioritization, and in the design of new products and chemical 

processes that minimize harm to health and the environment (i.e., green chemistry). 

3.3.2 High-throughput and High-content (HTS/HCS) Screening Assays 

High-throughput screening (HTS) and high-content screening (HCS) assays are major tools used for 

early evaluation of chemicals and to determine the chemicals’ ability to perturb molecular 

pathways (Judson et al. 2013; Judson et al. 2011; Kavlock et al. 2012; Sipes et al. 2013; Tice et al. 

2013). For example, as part of EPA’s ToxCast program, the following (EPA 2014l) were conducted: 

	 A chemical prioritization project compiled and analyzed data on 1877 chemicals, including 

pesticides; food, cosmetics, and personal care ingredients; pharmaceuticals; and industrial 

chemicals. 
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HT  testing used a battery of 782 in vitro  assays across 7 distinct technologies and multiple 

biological formats (cell-free, cell lines,  and primary cells from multiple tissue types).   

All  1877 chemicals  were  tested in a subset of 185 endocrine-related assays for nuclear 

receptors, steroidogenesis,  and CYP P450 assays.   

Several predictive models are undergoing further development (see B ox 9). Much  of the  HTS/HCS  

methodology was developed to aid the pharmaceutical and biotechnology industries in the drug  

discovery process, where  screens are needed for millions of candidate compounds to identify  

candidate  drugs for a  target of interest (e.g., a receptor or enzyme)  (Bleicher et al. 2003; Mayr and 

Bojanic 2009). The technology has broader use  in approaches previously called chemical genetics 

(or sometimes,  chemical  biology), in which  small-molecule screening is used to identify  probes for  

biological signaling networks and cellular phenotypes (Schreiber, S. 2003). More recently, 

toxicologists have become int erested in these assays because targets of pharmaceuticals and  

research  chemicals  might  be  similar to those  

involved in disease processes induced by  

exposures to environmental chemicals  (Houck 

and Kavlock  2008).  A  large data matrix of toxic 

chemicals versus  appropriate HTS assay  results  

provided toxicologists a  novel  and promising 

approach for  identifying  AOP  networks leading to  

adverse phenotypic changes.  

Box 9. Examples of Current Research on Predictive  
High Throughput and Content Models  

Endpoints   
  Liver tumors: Judson et al. (2010)  

  Hepatocarcinogenesis: Shah et al. (2011) 

  Rat fertility: Martin et al. (2011)   

  Rat -rabbit prenatal developmental tox: Sipes et al. 
(2011a)  

  Zebrafish development: Sipes et al. (2011b)   

Pathways  
  Endocrine disruption: Reif et al. (2010)  

  Microdosimetry: Wambaugh and Shah (2010) 

  Differentiation:  Chandler  et al. (2011) 

  Angiogenesis: Kleinstreuer et al. (2011a)  

  Cancer hallmarks: Kleinstreuer et al. (2013b)   

  Endocrine activity: Rotroff  et al. (2012)  

The underlying technologies for HTS assays are	  
well known, and the discussion here focuses on a 	
broad description of the types of assays and some 

of the key issues to be considered when designing 

in  vitro assays for Tier 1 assessments.  HTS assays 

can be divided broadly into two types: cell  

free/biochemical assays and cell-based  assays. 

Cell-free  assays typically test for the direct interaction of a test  chemical with a specific protein such  

as a receptor,  enzyme, or transcription factor. Measures of interaction include activation,  

repression, or inhibition of the protein’s  activity.  In cell-based assays, a cellular readout can be 

molecular  based (e.g., changes in gene or protein expression) or phenotypic (e.g., cytotoxicity, 

changes in cell morphology).  The selection of the cell system is critical  for cell-based assays. These 

assays have been developed using a variety of primary cell types from various organs and species,  

immortalized cell lines,  or  stem cells  (Dick et al. 2010; EPA 2014k; NCBI 2014e). Each type has  

strengths and weaknesses. For example, immortalized cell lines generally produce very 

reproducible screening results over long periods of time due to the continuous growth and stability 

of the cell lines. The disadvantage is  the significant  differences in these cells  from their normal (i.e.,  

nonimmortalized) in  vivo  counterparts with respect to the completeness or representation of  

physiological processes. These differences  might  result in different outcomes when subject to  

comparable chemical exposures. The converse holds true for most primary cells, that is,  they  better 

represent normal physi ological responses,  yet  are  more challenging with respect to  consistent, 

reproducible screening results. Co-culture systems combine different cells in an attempt to mimic 
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in vivo systems and their complex cell-cell signaling networks (Berg et al. 2010). Advanced culture 

methods compatible with HTS also are being developed, for example, three-dimensional collagen 

matrices designed to enhance maturation of induced pluripotent stem cell-derived hepatocytes 

(Gieseck et al. 2014). These systems improve the consistency and longevity of the test cell 

population (compared with primary culture cells) and provide better representation of normal 

biology (relative to immortalized cells). Certain whole organisms, including Caenorhabditis elegans 

and zebrafish embryos, are providing valuable new HTS assay data (Kanungo et al. 2014; Parng et 

al. 2002; Smith, M. V. et al. 2009). 

3.3.2.1 The First-Generation of Predictive Models from ToxCast 

The following discussion summarizes the main results of work conducted in EPA’s ToxCast 

program focusing largely on the published work from Phase I of ToxCast, which tested about 300 

chemicals, primarily active ingredients in pesticides (Knudsen et al. 2011a; Rotroff et al. 2013; Sipes 

et al. 2013). The Phase II results, which extend testing to as many as 1877 chemicals, have just 

recently been released (EPA 2014j). 

Models for Reproductive, Developmental, Chronic, and Cancer Endpoints 

Several first-generation (Phase I) models have been published to date, including ones for 

reproductive, developmental, and chronic/cancer endpoints (Judson et al. 2008; Knudsen and 

Kleinstreuer 2011; Martin et al. 2012; Martin et al. 2011; Martin et al. 2009b; Sipes et al. 2011a; 

Wetmore et al. 2013; Zaldívar et al. 2012). These models are being tested and refined using the 

newest (Phase II) ToxCast data. An important point about these models is that the in vitro data are 

principally derived from human cells, while the in vivo data are from rodents and rabbits. The 

following text on the models for reproductive toxicity, developmental toxicity, developmental 

vascular disruption, and cancer is reproduced from Judson et al. (2014). 

“Reproductive Toxicity Model: Initial models of reproductive toxicity were built using 

the data set compiled by Martin et al. (2009a). This data set compiled information 

on 75 reproductive effects for 256 chemicals with data from both ToxCast and 

guideline studies on multigeneration rat reproductive guideline studies performed 

as part of pesticidal active ingredient registrations. A total of 19 parental, offspring 

or reproductive endpoints had a sufficiently high incidence after chemical exposure 

and were used as predictive end-points in the model. These included reproductive 

performance indices, male and female reproductive organ pathologies, offspring 

viability, growth and maturation, and parental systemic toxicities. Next, these end

points were combined with the ToxCast data to build a model of generalized 

reproductive toxicity. A reproductive toxicant was defined as a chemical with a 

reproductive adverse effect seen at <500 mg/kg/day. A total of 68 chemicals in the 

data set were considered reproductive toxicants. Using the in vitro assay data from 

ToxCast, a linear discriminant analysis (LDA) model was constructed that predicted 

the reproductive toxicity with a 74 percent balanced accuracy (BA = mean of 

sensitivity and specificity) based on cross-validation and a 76 percent BA using an 

external validation set. The in vitro assays used in the model included activity in 

nuclear receptors (estrogen receptor, androgen receptor, peroxisome- proliferator-
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activated receptor [PPAR]), cytochrome P450s, G-protein-coupled receptors, and 

other cell signaling pathways. This model was also evaluated for its utility in 

prioritizing chemicals for further testing based on a scenario where many chemicals 

were tested in vitro, but where only a few could be tested in vivo because of cost and 

animal welfare considerations (Martin et al. 2011). Two regulatory environments 

were evaluated in this study—one consistent with industrial chemicals where little 

data are required to be generated unless there is prior evidence of risk (screen in) 

and another where many studies are required for registration, but the U.S. EPA has 

the ability to waive (screen out) certain studies. 

Developmental Toxicity Model: Models of prenatal developmental toxicity used data 

compiled from ToxRefDB on guideline rat and rabbit developmental toxicity studies 

(Knudsen et al. 2009). A total of 383 rat and 368 rabbit studies were available, 

covering 387 chemicals, mostly pesticidal active ingredients. Of these chemicals, 283 

were tested in both species, and, of those, 53 chemicals were specifically 

developmentally toxic (no overt maternal toxicity or maternal toxicity at doses 

higher than observed for the developmental defects). The primary expressions of 

developmental toxicity in pregnant rats were fetal weight reduction, skeletal 

variations and abnormalities, and fetal urogenital defects. Relative to rats, general 

pregnancy/fetal losses were more frequently observed in the rabbit as were 

structural malformations to the visceral body wall and CNS [central nervous 

system]. Species-specific models were built on these data, linking in vitro ToxCast 

data to developmental defects (LDA with cross validation) (Martin et al. 2012). 

Specifically, 271 chemicals (187 unique) with ToxCast and ToxRefDB data were 

used, with 251 for the rat model (146 identified as developmental toxicants) and 

234 for the rabbit model (106 identified as developmental toxicants). A 

developmental toxicant was defined as eliciting any significant end-point (i.e., fetal 

weight reduction, various malformations, prenatal loss) regardless of the maternal 

toxicity dose. The overall risk of a chemical causing developmental defects was 

linked to disruption of the following main targets and pathways: transforming 

growth factor beta (TGFβ), retinoic acid receptor (RAR), and G-protein-coupled 

receptors in rat; and interleukins and chemokines in rabbit. Species-specific models 

had a BA of about 70 percent. A key finding was that the molecular effects driving 

prenatal developmental toxicity showed strong species dependence in prediction 

models for pregnant rats and rabbits. Because the same set of in vitro assays was 

used for both species models, the differences are assumed to reflect model input 

parameters related to (i) the chemical space tested in each species; and (ii) the 

apical end-points (in vivo outcomes) recorded for each species, toxicokinetic 

differences between rats and rabbits, and/or toxicodynamic differences between 

the responses in pregnant dams and their concept uses for either species. 

Developmental Vascular Disruption Model: Several of the molecular targets 

associated with developmental defects suggested a broad linkage between 

disruption of vascular development and the emergence of gross phenotypic 
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developmental defects. This hypothesis led to the concept of ’putative vascular 

disrupting compounds’ (pVDCs) (Hanahan and Weinberg 2000; Kleinstreuer et al. 

2011a; Knudsen et al. 2009; Sipes et al. 2011a). An AOP linking multiple molecular 

initiating events to outcomes was developed around the biomedical literature and 

Mouse Genome Informatics (MGI) database to provide a framework for identifying 

pVDCs based on ToxCast in vitro signatures. Particular targets included 

inflammatory chemokine signaling (CK), the vascular endothelial growth factor 

(VEGF) pathway, and the plasminogen-activating system (uPAR). Consistent with 

the species dependence of prediction models built for prenatal developmental 

toxicity in pregnant rats and rabbits (Martin et al. 2012), we also observed species 

differences in models predicting pathway-level sensitivity to angiogenic signals, 

particularly those mediated by CK and uPAR pathways. This suggests a mechanistic 

link to species-dependent processes for inflammatory responses and extracellular 

(ECM) remodeling, respectively. The group of pVDCs with rat developmental 

toxicity correlated with down-regulation of pro-inflammatory CK assays, whereas 

pVDCs with rabbit activity often resulted in up-regulation of these signals. The 

rabbit pVDCs generally showed greater bioactivity across assays, which can be 

inferred to entail ECM degradation and release of angiogenic growth factors. The 

observed in vivo developmental toxicity also showed a distinct trend across species, 

with skeletal malformation in rats and prenatal death in rabbits being the most 

prevalent end-points for the pVDCs (Sipes et al. 2011a). To further investigate this 

linkage, a cell/tissue-level dynamic signaling in silico model was developed 

(Kleinstreuer et al. 2011a) using the CompuCell3D (CC3D) software (Swat et al. 

2012). The in silico model could recapitulate self-directed assembly of endothelial 

cells into a completed vascular network utilizing signal-response pathways 

involving an exchange of CK, VEGF, and uPAR among several cell types. By 

incorporating parameters from ToxCast HTS data into this ‘virtual tissue model’, the 

concentration-dependent disruption of angiogenesis was shown for 5HPP-33, an 

anti-angiogenic thalidomide analog. 

Cancer Model: We also have published a first-generation prediction model linking in 

vitro effects and the likelihood that a chemical will be an in vivo carcinogen (Judson 

et al. 2008). This model began with the hypothesis that chemicals perturbing cancer 

hallmark processes would increase the likelihood of those chemicals being 

carcinogens (Hanahan and Weinberg 2011; Thomas, R. S. et al. 2013c). To test this 

hypothesis, univariate associations were calculated between each gene tested by the 

ToxCast assays and each cancer end-point (rat or mouse) in ToxRefDB. We found 

that the vast majority of cancer-linked genes (defined as having an odds-ratio > 2, 

with confidence intervals not overlapping with zero after permutation testing) were 

either hallmark-associated or involved in xenobiotic metabolism. A scoring function 

was used that combined the cancer-associated gene hits for each chemical into an 

overall score. This was applied to an external test set of 33 chemicals that were not 

used in the model development process. The results were that the model 

distinguished between carcinogens and noncarcinogens with statistical significance 
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(p = 0.024). Future work on all of models will expand them to look in more detail at 

the molecular mechanisms linked to the adverse outcomes and to forward validate 

using ToxCast Phase II data.” 

3.3.2.2	 Summary of ToxCast Phase I Results (This section is reproduced from Judson et al. 
2014) 

[Note: This section is reproduced from Judson et al. 2014] 

“The goals of [ToxCast] Phase I largely have been met, and include the following 

demonstrating: (i) that a large set of environmentally relevant chemicals can be screened in 

a diverse battery of in vitro assays; (ii) that predictive models of toxicity can be developed 

using these data; and (iii) that in vitro pharmacokinetic data can be integrated with the in 

vitro assay data, enabling us to make initial quantitative comparisons with in vivo rodent 

toxicity data. That said, a number of challenges lie ahead. Some of these have been outlined 

by other researchers who performed independent analyses of the ToxCast data (Benigni 

2013; Sonich-Mullin et al. 2001). One challenge is presented by the broad diversity of 

chemicals, chemical-biological activities in vitro and chemical effects in vivo. At the very 

least, these pose a classic statistical power issue. For instance, if there are N different 

mechanisms by which a chemical can cause a specific phenotype, one needs a significant 

multiple of N examples for each such pathway-end-point pair in the data set to discover this 

linkage using purely statistical methods (Knudsen and Kleinstreuer 2011). This argues for 

the need to increase the size of the data set (number of chemicals), and data are now 

available from Phase II of ToxCast” (italics are Editor’s revised text). 

The amount of high-quality in vivo toxicity data will increase much more slowly than the amount of 

HTS/HCS data, hampering the development of predictive models based solely on statistical analysis. 

Most chemicals with existing traditional data have been captured in ToxCast and Tox21. In addition, 

although tremendous progress is being made in understanding the network of events that underlie 

disease and in developing assays to test for these events, the field is still in its infancy. In particular, 

HT assays generally measure changes in important key events or processes, rather than an 

integrated indicator of adverse outcomes. Variability or confounding factors in in vivo conditions 

(e.g., species, tissue, lifestage, metabolism, complex interactions), some of which might be difficult 

to evaluate in in vitro systems, might lessen the utility of HT approaches in predicting disease. As a 

consequence, characterizing the results of HT testing as indicative of alterations in biological 

processes rather than as predicting disease (Thomas, R. S. et al. 2012b) is generally more 

reasonable. As discussed above, more complex, cellular and multiscale, biologically based models 

are therefore needed to interpret HT data, and to simulate outcomes indicative of multiple levels of 

biological organization and interactions. Such models could leverage and incorporate biological 

knowledge and expertise on the etiology of disease/ EPA’s VT modeling research continues to 

progress toward that end. 

Further advances are needed in developing HT quantitative reference values for use in risk 

assessment. One approach is to use HT/HC in vitro and in vivo data to develop reference values that 

support or supplement traditional values that require extensive in vivo animal test data. Points of 

departure derived from HT/HC data might be used to guide further testing, and for many chemicals 
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preclude the need for specific hazard identification. This approach could be viable because expected 

exposures are likely much lower than the in vitro-derived points of departure (i.e., acceptable 

margins of exposure from a risk management perspective) (Rotroff et al. 2010; Wambaugh et al. 

2013). The goal would be to have a significantly smaller set of chemicals for which more in vivo data 

intensive reference values, and follow-up testing, would be needed. 

Although these challenges are daunting, in vitro methods and computational models have already 

demonstrated proof-of-concept that HTS/HCS assays likely will improve risk predictions for human 

and ecosystem health for thousands of currently untested chemicals, as data increase and methods 

evolve. 

3.3.2.3 Toxicokinetics 

Toxicokinetic models have been developed to extrapolate the concentration of a chemical that is 

used in the HTS assays to an equivalent dose that would be delivered to a target in a test animal or 

human, providing key information for use in dose-response characterization. As previously 

mentioned, the HTS assays are run in concentration-response format. The potency of each chemical 

in each assay can be summarized using AC50 or lowest effective concentration values, depending on 

the type of dose-response data collected. The potency values among the in vitro assays, along with 

other chemical information, have been proposed for use in hazard identification (Martin et al. 2011; 

Sipes et al. 2011b) and prioritization of chemicals for further testing (Reif et al. 2010). The 

relationship between the in vitro concentration of the chemical in the well to the concentration of 

the chemical in the blood or target tissue (in vivo), however, can be complex and can depend on 

variables not captured in the HTS assays. These variables include bioavailability, clearance, and 

protein binding (Wetmore et al. 2012). 

In vitro-to-in vivo extrapolation (IVIVE) is a process that uses data generated within in vitro assays 

to estimate in vivo drug or chemical fate. In the past, IVIVE has been developed and applied in the 

pharmaceutical industry predominantly to estimate therapeutic blood concentrations for specific 

candidate drugs and to identify potential drug-drug interactions (Chen, Y. et al. 2012; Gibson and 

Rostami-Hodjegan 2007; Shaffer et al. 2012). Due to both legislative mandates and public pressure 

for increased information on potential chemical toxicity, IVIVE is increasingly being used to predict 

the in vivo toxicokinetic behavior of environmental and industrial chemicals (Basketter et al. 2012). 

Reverse dosimetry uses a PK model to determine a plausible exposure concentration based on a 

measured or estimated internal concentration of a chemical at a target site (or based on a surrogate 

internal metric such as a biomarker of exposure). At the population level, probabilistic reverse 

dosimetry uses a distribution of internal concentrations to identify the most likely exposure 

concentrations (or intake doses) experienced by a population of interest (Grulke et al. 2013). A 

combination of IVIVE and reverse dosimetry can be used to estimate the daily human oral dose 

(called the oral equivalent dose) necessary to produce steady-state in vivo blood concentrations 

that are considered equivalent (with respect to chemical concentration at potential targets) to the 

dose delivered in vitro at the AC50 or lowest effective concentration values. The estimated in vivo 

exposures likely to produce adverse effects based on in vitro data can be generated for each assay 

across the more than 600 in vitro assays (Rotroff et al. 2010; Wetmore et al. 2012). These estimates 
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of potentially adverse exposure levels can be compared with model estimates of actual exposures 

for chemicals based on production volume or use patterns (Mitchell et al. 2013; Wambaugh et al. 

2013; Wambaugh and Shah 2010). 

3.3.2.4 Virtual Tissue Modeling 

A major challenge in the use of in vitro data is how best to organize and interpret the information 

for relevance to in vivo human responses. Purely statistical methods that treat the data as just a set 

of numbers with no biological context have inherent limitations, including uncertainty about 

biological relevance, and an increase in chance correlations when correlating large numbers of 

explanatory variables to only one endpoint (Benigni 2013; Thomas, R. S. et al. 2012b). One 

approach to address this challenge is to develop network models of AOPs (Ankley et al. 2010; 

Boobis et al. 2008; Kleinstreuer et al. 2011b; Meek et al. 2003; Seed et al. 2005; Thomas, R. S. et al. 

2013c). These network models are essentially hypotheses constructed from knowledge and data 

about the biological processes. Proposed AOP networks provide additional biological context to 

interpret the in vitro assay results and statistical analyses but they do not address the multiple 

testing issues inherent in the statistical approach. A step further is to develop and use more 

complex, cellular and multiscale, biologically based models (often referred to as VT models). VT 

models incorporate knowledge of the structure of the biological pathways being altered (including 

PK information), and explicitly address and represent the spatial and temporal dynamics of 

multiple levels of biological organization (DeWoskin et al. 2014; Knudsen and Daston 2010). 

VT models provide an experimental and theoretical framework for the systematic and integrative 

analysis of complex multicellular systems. They capture the flow of molecular information across 

cellular and biological networks, and process this information computationally into higher order 

responses that ideally simulate a potential adverse outcome. Responses to perturbation depend on 

network topology, system state dynamics, and collective cellular behavior. For agent-based VT 

models, these simulations are enabled from individual cellular behaviors in a multicellular field that 

can result in emergent properties. Emergent properties are behaviors that arise from interactions 

of parts at the next higher level of a system (e.g., functions, phenotypes) that are not apparent from 

knowledge about the behavior of the parts alone. VT models address both the relevance and 

multiple comparison issues by prioritizing the most relevant assays and interpreting their results in 

a systems biology context and are the focus of EPA’s VT modeling research. The initial focus is to 

develop virtual embryo (v-Embryo™) models for various developmental effects and the virtual liver 

(v-Liver™) for hepatotoxic effects. 

The goal of the v-Embryo project is to provide a rapid, hypothesis- and chemical-testing platform 

capable of estimating the probability of adverse effects on the developing embryo from exposure to 

environmental chemicals (EPA 2014m). v-Embryo models are initially being developed to assess 

developmental effects in the eye, blood vasculature, genital tubercle, and limb. These systems have 

many canonical signaling pathways relevant to other organs and tissues. The models are developed 

based on developmental toxicology expertise and in-house assay data from ToxCast, ToxRefDB, 

stem cells, and zebrafish. v-Embryo models have already demonstrated their utility as hypothesis-

testing platforms and for organizing the extant data within a systems biology framework. This 

framework is one that represents key events, accounts for interactions at different levels of 
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biological organization, and can address multiple kinds of stressors and exposure regimens. Model 

development is still in early stages, but the models are considered to be one of the more promising 

approaches to providing rapid and accurate health effects assessments in the future (DeWoskin et 

al. 2014; Knudsen and DeWoskin 2011; Knudsen et al. 2011b; Knudsen and Kleinstreuer 2011). 

The goal of the v-Liver model is to construct a cell-based tissue simulator that uses systems models, 

a knowledgebase of chemical effect networks, toxicokinetic information, and in vitro data to predict 

chemically induced hepatotoxicity quantitatively from simulated exposures (EPA 2014n). The 

v-Liver model simulates hepatic functions by considering three main biological processes: (1) blood 

flow into the liver carrying nutrients and chemicals to cells, (2) molecular cross-talk networks that 

determine cellular responses, and (3) the dynamic interactions between cells that maintain 

homeostasis or result in histological effects (Shah and Wambaugh 2010). Blood flow is simulated by 

extending a PBPK model to calculate microdosimetry in the hepatic lobule using ordinary 

differential equations (Wambaugh and Shah 2010). Molecular cross-talk networks in individual 

cells are simulated using nondeterministic Boolean networks (Jack et al. 2011). Initially, the focus of 

the v-Liver model is to simulate key hepatocellular phenotypes in acute and chronic lesions such as 

hypertrophy, injury, death (necrosis/apoptosis/autophagy), Kupffer cell activation, or cell cycle 

progression. Many possible molecular events might lead to these cellular responses, and many of 

these events could be a consequence of nuclear receptor activation. Evidence from the literature is 

being organized on molecular and cellular perturbations by nuclear receptor activators, including 

xenobiotic and endogenous metabolism, oxidative stress, mitochondrial injury, DNA damage, the 

cell cycle, and apoptosis. 

Extensive work supported in part by the Department of Defense has focused on building 10 

different virtual models or “human organs-on-chips” and will provide an additional and potentially 

highly useful source of data for the VT models (Wyss Institute 2012). This effort is designed to 

streamline the drug development process and more effectively predict safety of drugs and 

chemicals in humans. 

Virtual models are also briefly discussed in Section 4.4 as one of the new approaches that can 

address recurring issues in risk assessment, in this case, dose-response characterization. 

3.3.2.5 HT Exposure Estimation: ExpoCast Prioritizations 

The use of HT assays to characterize biological activity in vitro enables prioritization of potential 

environmental hazards once the results of in vitro assays have been anchored to, and found to be 

predictive of, in vivo effects. Without capabilities for HT assessment for potential exposures, 

prioritization (with respect to potential risk) cannot be completed, as most chemicals have little or 

no exposure data (Arnot and Mackay 2007; Arnot et al. 2010a; Arnot et al. 2010b; Cohen Hubal et 

al. 2010; Goldsmith et al. 2014; Hubal 2009; NRC 2006; Rosenbaum et al. 2008; Rotroff et al. 2010; 

Sheldon and Cohen Hubal 2009; Wetmore et al. 2012). Currently, few, if any, inexpensive in vitro 

assays are widely available to characterize the properties of chemicals that are relevant to 

exposure. Furthermore, studies assessing both the presence of environmental chemicals in the 

immediate vicinity of individuals (exposure potential), and any known biomarkers of actual 

exposure, are expensive, labor intensive, and, with the notable exception of CDC’s NHANES, 
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typically difficult to extrapolate to the general population (Angerer et al. 2006; Eskenazi et al. 2003; 

Rudel et al. 2008). For these reasons, exposure prioritization must rely on mathematical models 

that when parameterized by chemical-specific properties, provide a structured, consistent way to 

approach large numbers of unknown chemicals. 

Physicochemical properties (e.g., water solubility, preference for binding in lipids) inherent to a 

given compound have been used to predict potential bioaccumulation within ecological species to 

make HT prioritizations for potential chemical exposure (Gangwal et al. 2012; Reuschenbach et al. 

2008; Walker and Carlsen 2002; Walker et al. 2002). Environmental fate and transport models are 

designed to account for the accumulation of compounds in various environmental media (i.e., air, 

soil, water) and for the degradation rates of those compounds in those media. These fate and 

transport models enable predictions of human exposure based on assumptions of human 

interaction with environmental media and derivation of food from the environment (Arnot and 

Mackay 2007; Arnot et al. 2010a; Arnot et al. 2010b; Rosenbaum et al. 2008). Parameterized based 

on chemical structure and production volumes alone, these models can be used to make HT 

exposure prioritizations (Arnot and Mackay 2007). 

EPA initiated an ExpoCast program for exposure model development and prioritization. The 

framework is designed to be flexible and expandable to incorporate new HT exposure models as 

they become available. Two quantitative fate and transport models amenable to HT operation have 

been developed: USEtox (Rosenbaum et al. 2008) and RAIDAR (Arnot and Mackay 2007). These 

models have been empirically assessed for their ability to predict exposures inferred from the 

NHANES data set. More recently, Wambaugh et al. (2013) proposed a framework for HT exposure 

assessment, and demonstrated applications with an analysis that predicted human exposure 

potential for chemicals and estimated uncertainty in these predictions by comparison to 

biomonitoring data. The far-field mass balance human exposure models (USEtox and RAIDAR) were 

used in conjunction with an indicator for indoor or consumer use to evaluate 1936 chemicals. The 

model predictions were compared to exposures inferred by Bayesian analysis from urine 

concentrations for 82 chemicals reported in NHANES. Joint regression on all factors provided a 

calibrated consensus prediction, the variance of which serves as an empirical determination of 

uncertainty for prioritization on absolute exposure potential. Information on use was found to be 

most predictive; generally, chemicals above the limit of detection in NHANES had consumer/indoor 

use. 

NexGen efforts to incorporate exposure prioritization information could proceed along three fronts. 

First, efforts to evaluate the utility of the predictions would be undertaken to determine if the 

chemicals of highest priority are indeed present in the environment. Next, further model 

development is needed for fate and transport predictions—specifically for exposure from personal 

contact sources (i.e., consumer use). Third, model results could be used to estimate mg/kg body 

weight/day (accompanied by uncertainty characterization) for application in calculating risk-based 

prioritizations. 
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3.3.2.6	 HT Assays to Evaluate Thyroid Pathway Disrupting Chemicals –Workgroup 
Recommendations 

EPA’s NexGen Thyroid Disrupting Chemical Workgroup (EPA 2013a) conducted a thyroid 

prototype case study that reviewed existing ToxCast assays and provided recommendations for 

how the data could be used to predict thyroid disruption-induced developmental neurotoxicity. A 

major reason the workgroup selected the thyroid hormone system as its prototype is that the 

underlying biology of thyroid hormone homeostasis is well established, thus enabling the 

elucidation of the pathway(s) for thyroid hormone disruption (Zoeller and Crofton 2005). The 

workgroup identified three issues to address for HT assay use to predict chemically induced 

developmental neurotoxicity via disruption of thyroid hormone homeostasis: (1) assay 

identification and refinement; (2) algorithm development for toxicity and hazard prediction; and 

(3) standards development for assay conduct, data analysis, and data reporting for risk assessment 

needs. Following is a brief summary of the case study findings with respect to these issues. 

Assay Identification and Refinement 

As a first step, the workgroup identified the HT assays in the ToxCast database that assess 

endpoints known to be relevant to disruption of thyroid function. ToxCast contains multiple assays 

relevant to assessing the potential for a chemical to disrupt thyroid hormone homeostasis. 

Coverage of the effects of concern, however, is quite variable. Although five of the identified assays 

evaluate endpoints that directly affect the thyroid hormone pathway (e.g., thyroid hormone 

receptor binding and thyrotropin-releasing hormone receptor binding), the rest evaluate endpoints 

not specific to the thyroid hormone pathway. For example, of the 90 assays identified as thyroid 

relevant, 85 are related to hepatic stimulation, metabolism, and clearance of thyroid hormones. 

Alteration of these pathways influences thyroid hormone homeostasis indirectly. 

Neurodevelopmental effects via thyroid disruption by this mechanism are thus secondary effects of 

a chemical (e.g., inadequate hormone availability due to increased elimination). Secondary effects 

contrast with primary effects, whereby a chemical interferes directly with the function of the 

thyroid gland itself or interacts at the site of thyroid hormone receptor in the brain of a developing 

organism. 

Adequately assessing the potential of an environmental chemical to disrupt thyroid hormone 

homeostasis requires that appropriate endpoints be identified and assays developed and 

incorporated into testing schemes. Work is ongoing to identify the specific endpoints in the 

pathways that need to be tested. Additional assays not currently part of ToxCast need to be 

developed. A recent workshop review by Murk et al. (2013) provides a state-of-the-science 

assessment of important MIEs for thyroid disruptors, current and potential new assays for these 

MIEs, and recommendations for research priorities. 

Algorithm Development for Toxicity and Hazard Prediction 

The workgroup’s second recommendation was to develop algorithms or decision logic flows that 
assess the potential adversity of the outcome and the uncertainty in the available data. Assays 

evaluating endpoints directly affecting the thyroid-related brain changes might be weighted more 

heavily in algorithms than those measuring upstream hepatic enzyme induction. Algorithms should 

address the possibility of multiple chemicals interacting with the same key event and one 
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interacting with various MIEs. Biological plausibility is also an important issue that should be 

addressed during algorithm development. 

Incorporating many sets of dose-response information into combinatorial analysis requires some 

simplification of assay results. Many current HT assay results are simplified via classification as 

either a positive or negative (“hit” or “no hit”) or are assigned a summary statistic such as an IC50 

(the concentration producing a 50 percent inhibition of response) or lowest effective dose. 

Obviously, binary decisions such as hit/no hit determinations depend on the criteria chosen to 

define a hit. These criteria could be derived from statistical significance, biological significance, or 

an arbitrary, nominal level of change. Depending on the data set, the basis for the classification 

criteria might be difficult to determine, and might not be consistent across assays. Similarly, 

summary statistics depend on the model used to generate them or on the specific value chosen 

(such as IC50 versus IC10, the concentration producing a 10 percent inhibition of response). Relative 

potency ranks also might vary depending on the shape of the dose-response curve, such that within 

a given set of chemicals, Chemical A could have the lowest IC50, while Chemical B could have the 

lowest IC10 value. Lack of such information will lead to greater uncertainty in data use. Thus, these 

criteria need to be explicitly stated and accessible. 

Assay Conduct, Data Analysis, and Data Reporting for Risk Assessment Needs 

Understanding the characteristics of individual HTS assays and data used to screen chemicals for 

disruption of thyroid hormones is critical. Individual assays might be used in predictive algorithms 

or test batteries for hazard identification and prioritization. They also might be used to provide 

supporting data for individual chemical risk assessments. Although the uses are potentially diverse, 

several common assay characteristics will be needed. Minimally, the data reporting should include 

sufficient information to document assay conduct and reliability, the rationale for selecting 

exposure levels, data analysis techniques, and underlying assumptions regarding assay analysis, 

conduct, or conclusions. 

Three advantages of the ToxCast data sets are the availability of (1) dose-response information for 

all assays, (2) assay method details, and (3) source code for all computational models used in the 

data analyses. Reliable dose-response information, transparency for the methods used, and 

reproducibility of the results (i.e., availability of model code and assay conditions) are critical for 

these types of assays to be useful in risk assessment. 

In summary, the thyroid pathway case study was complicated by the multitude of target sites at 

which the thyroid axis could be disrupted (Crofton and Zoeller 2005; Murk et al. 2013); the 

secondary, indirect nature of the insult produced; and the complexity of the endpoint of concern— 
neurodevelopment. This case study was successful in identifying the nodes in the thyroid toxicity 

pathway that need additional assay coverage, the algorithm development and assay conduct issues 

that need to be addressed, and the data reporting requirements for using HTS data in an 

assessment. 
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3.3.3 Risk Assessment Implications Across the Tier 1 Prototypes 

The Tier 1 prototypes provide examples of new HT approaches to develop data for screening and 

prioritizing huge numbers of chemicals (i.e., tens of thousands) into categories for focused research, 

further testing, or further assessment. The main approaches are QSAR modeling, read across, and 

HTS and HCS assays. Methods being advanced to support or interpret HTS/HCS data for use in risk 

assessment include toxicokinetic models (that relate in vitro doses to chemical concentrations at in 

vivo target sites), VT models (to provide an experimental and theoretical framework for integrating 

and interpreting HTS/HCS assay data, as well as other data types), and HT exposure data (used in 

conjunction with the toxicity potential to screen and prioritize potential risk). The development of 

the Tier 1 prototypes and experience with the HT approaches led us to the following inferences: 

	 QSAR models can be used to screen and prioritize a large number of chemicals, and in some 

cases to estimate LOAELs; criteria, however, are needed to characterize the confidence in 

the QSAR values for predictive accuracy relative to authoritative, traditional toxicity values; 

critical issues include QSAR model transparency and updated data for the training set. 

	 QSAR models, read-across, and HTVMD models have the potential to address some of the 

limitations in the current state of the HTS and HCS assays, for example, evaluating 

potentially toxic metabolites, volatiles, and limited-solubility compounds such as metals. 

	 Large sets of environmentally relevant chemicals can be screened in a diverse battery of in 

vitro assays; predictive models of toxicity can be developed using these data. 

	 In vitro PK data can support reverse PK models capable of extrapolating dose levels from 

the in vitro assays to equivalent in vivo rodent doses enabling initial quantitative 

comparisons between in vitro toxicity data and in vivo rodent toxicity data. Initial estimates 

of the equivalent human doses are also possible. 

	 Limitations in the HTS/HCS data include the need to assay larger numbers of chemicals 

(ToxCast Phase II data and beyond); variability or confounding factors in in vivo conditions 

(e.g., species, tissue, lifestage, metabolism, complex interactions), some of which are difficult 

to evaluate in in vitro systems, lessen the utility of HT approaches in predicting disease. 

	 At present, characterizing the results of HT testing as indicative of alterations in biological 

processes is generally more reasonable than as predicting disease. 

	 Cellular and multiscale biologically based models (e.g., VT modes) are needed to interpret 

Tier 1 HT data (as well as Tier 2 data) and to simulate the complex dynamics of multilevel 

biological organization and interactions. These models aim to capture spatial and temporal 

dynamics in AOPs and how chemical (or nonchemical) stressors can perturb normally 

functioning network controls along those pathways and cause disease. 

	 HTS/HCS in vitro data might be used along with HT in vivo data to develop new types of 

reference values that support or supplement traditional values (based primarily on in vivo 

animal studies), but further advances in methods are needed to develop HT quantitative 

values for use in risk assessment. 

	 The quality of the databases that support evaluations and associations between HT assay 

data and disease outcomes is central to improving the confidence in HT data predictions 

and the use of these data to support higher tier assessment values. 
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4 Advanced Approaches to Recurring Issues in Risk Assessment 

In addition to supporting more rapid and efficient chemical-specific assessments as discussed 

above, new data types and advanced approaches are contributing to our understanding of 

recurring, cross-cutting issues in risk assessment. These issues are often sources of controversy due 

to limited data or lack of methodology. The issues discussed in this section include (1) individual 

versus population-level effects; (2) variability in human response due to a variety of factors (e.g., 

genetic differences, early-life exposures, toxicokinetic differences); (3) exposures to mixtures and 

nonchemical stressors; (4) interspecies extrapolation; (5) characterization of responses at 

environmental exposure levels; and (6) implications of new methods for addressing recurring 

issues in risk assessment. Additional details are captured in a series of NexGen-related published 

articles on human variability (Zeise et al. 2012); early-life exposure and later-life disease risks 

(Boekelheide et al. 2012); and multifactorial interactions of the environment and genes (Bell, S. and 

Edwards 2014; Patel et al. 2012a; Patel et al. 2012b; Shen et al. 2011; Smith, M. T. et al. 2011; Zhuo 

et al. 2012). Further relevant discussions are in the National Research Council’s (NRC) reports 

Toxicity Testing in the 21st Century (NRC 2007b), Science and Decisions (NRC 2009) and, mostly 

recently in a NexGen paper by Krewski et al. (2014). The National Academy of Sciences’ principles 

for uncertainty and variability analysis, articulated in Science and Decisions (NRC 2009), and 

reiterated in Appendix C of this report, are particularly relevant to these new approaches for risk 

assessment. 

The application of new risk assessment methodologies that are key to the framework for the next 

generation of risk science has been explored in the context of the NexGen case study prototypes; 

this analysis indicated that many innovative methodological aspects of the NexGen framework are 

already beginning to be adopted in practice (Krewski et al. 2014). Of interest here is how new data 

types and approaches can inform these challenging issues and advance our ability to protect human 

health and the environment. 

4.1 Individual versus Population-level Effects 

Important to understand is that for environmental risk assessment, evaluating risks to the 

individual is not the same as evaluating risks to a population. In particular, an exposure effect at the 

level of the individual is a change in the magnitude of some measure of a toxicological effect for a 

given exposure level. An exposure effect at the level of the population is a change in the incidence 

effects of any particular magnitude, that is, the number of new cases in the population for that 

magnitude of effect within a specified period divided by the size of the population initially at risk.41 

The magnitude of change should be defined as it relates to severity, so that a greater magnitude 

represents a more severe effect. For instance, a decrease in body weight of 20 percent is greater in 

magnitude (and is more severe) than a decrease of 10 percent, and a “moderate” liver lesion is 

greater in magnitude (and is more severe) than a “mild” liver lesion/ Thus, for a monotonic dose 

41Best presented as a ratio, as defined here, rather than just the number of new cases. 
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response relationship in an individual for any given endpoint, a higher exposure will lead to effects 

that are greater in magnitude and, thus, greater in severity. In a human population, increasing 

exposure levels will result in more individuals (i.e., higher incidence) at or above a given magnitude 

(severity) of effect for the endpoint considered. Increased exposure also will result in a greater 

magnitude of effects for a fixed percentile of the population. Thus, as magnitude of effect and 

incidence related to a given endpoint increase at the same time, more and more subjects will suffer 

from more and more severe effects (i.e., of larger magnitude) as exposure increases. Figure 27 

illustrates this concept. 

Figure 27. Magnitude  (M)  of the Effect and Incidence  (I) for Decrease in Red Blood Cell Counts:  Both Increase  with 
Dose.  
The solid middle line reflects the hypothetical dose-response  relationship  for decrease in red blood cells in the median 
individual (hence, I = 50%), the solid bottom line that of a more sensitive individual (at the 5th percentile of the 
population), and the top solid line that of a less sensitive individual (95th percentile). The dose-responses are 
normalized to each individual’s background value on the y-axis. For a given effect size, for example, M = 5% decrease in 
red blood cells, a higher dose will result in a higher incidence (see shortest arrow). For a given percentile of the 
population, for example, I = 5%, a higher dose will be associated with a larger effect size M (see longest arrow). 
Similarly, a higher dose also can be associated with a simultaneous increase in I and M (see middle arrow). HD10

05 

represents the human dose (HD) at which a 10% (or greater) magnitude (M) of effect is experienced at a population 
incidence (I) of 5%, a notation that is explained at the end of this subsection. 
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To evaluate uncertainties explicitly and quantitatively, the distinction between magnitude (or 

severity) and incidence should be maintained explicitly in a hazard (or risk) characterization. For 

example, when the aim is to derive a human limit value, the associated42 target human dose is 

defined as a function of both the magnitude of the effect and the fraction of the population with that 

effect. For convenience, human dose or exposure is denoted HD, the magnitude of effect is denoted 

M, and incidence is denoted I. Their relationship is denoted as follows: 

HDM
I = human dose 

where a fraction I of the population shows an effect of magnitude (or severity) M or more (for the 

critical endpoint considered). 

This notation indicates the (estimated) human dose with the specified magnitude of effect and 

incidence, given the magnitude of effect. A major advance of this framework is the specification of 

HDM
I as the final goal of hazard characterization because, in the past, the distinction between 

severity and incidence has usually not been made explicit. Specification of the value of M for 

different types of endpoints is discussed in the next two subsections. 

4.2 Human Variability and Susceptibility 

Human response to environmental chemicals is influenced by both intrinsic (e.g., genetics, lifestage, 

internal dosimetry) and extrinsic (e.g., chemical exposure, stress, nutrition) factors. New methods 

to examine gene-gene, gene-environment, and epigenome-gene-environment interactions are 

available (Baker 2010; Cordell 2009; Lvovs et al. 2012; Meissner 2012; Patel et al. 2012a; Patel et al. 

2013; Patel et al. 2012b; Thomas, D. 2010). Zeise et al. (2012) explored how these factors can 

influence each biological and physiological step in the source-to-outcome continuum, and 

contribute to variability in the final health outcome (see Figure 28). The Zeise et al. (2012) review 

was informed by an NRC workshop, “Biological Factors that Underlie Individual Susceptibility to 

Environmental Stressors and Their Implications for Decision-Making/” The authors considered both 

current and emerging data streams that are providing new types of information and models 

relevant for assessing interindividual variability. 

In risk assessment, human variability typically is accounted for by including an uncertainty factor of 

1, 3, or 10 in the calculation of a reference dose for noncancer health effects. Variability is not 

explicitly accounted for in cancer health assessment except for the incorporation of an age-specific 

adjustment factor of ≤10 for childhood exposures to genotoxic carcinogens. Rather, current cancer 

risk assessment approaches aim to account for sensitive subpopulations by using a 95 percent 

upper confidence limit in calculating estimates of potency. In a few cases, data on sensitive 

populations (e.g., asthmatics and those sensitive to air pollutants) might be specifically 

42Note that a health-based guidance value derived in a hazard characterization would not be the same as the 
target human dose, but instead would be a (conservative) estimate of it. 
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Figure 28. Framework Illustration of  How Susceptibility Arises  from  Variability.  
Multiple types of biological variability intersect with the source-to-outcome continuum, either by modifying how changes to 
source/media concentrations propagate through to health outcomes, or by modifying the baseline conditions along the 
continuum. The aggregate result of these modifications is variability in how a risk management decision affects individual 
health outcomes. The parameters and initial conditions along the source-to-outcome continuum serve as indicators of 
differential susceptibility, some of which are more or less influential to the overall outcome (see Figure 25 in original source) 
(Zeise et al. 2012). Reproduced with permission from Environmental Health Perspectives. 

incorporated into risk assessments. Figure 29 from Zeise et al. (2012) illustrates how different 

types of variability can influence dose-response relationships. 

The following discussion addresses factors that contribute to variability in human response to 

environmental exposures, and how new data and approaches will reduce uncertainty in estimating 

risks. 

4.2.1Genomic Variability 

Understanding the interaction between genetic and environmental factors will greatly improve our 

ability to estimate and manage public health risks. An estimated 20–50 percent of phenotypic 

variation is captured when all single nucleotide polymorphisms (SNPs) are considered 

simultaneously for several complex diseases and traits. The proportion of total variation explained 

by individual genome-wide-significant variants has reached 10–20 percent for several diseases 

(Visscher et al. 2012). Copy number variation and unexplored noncoding ribonucleic acids (RNAs), 
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Figure 29. Effects of Variability in (A) Pharmacokinetics (PK),  (B)  Pharmacodynamics (PD),  (C) Background/ 
 
Exposures, and (D) Endogenous Concentrations.  

In (A) and (B), individuals differ in PK or PD parameters. In  (C) and (D),  individuals have different initial baseline conditions (e.g., 

exposure to sources outside of the risk management decisions context; endogenously produced  compounds) (Zeise et al. 2012). 
Reproduced with permission from Environmental Health Perspectives.
  




microRNAs, and epigenetic factors most likely also contribute to human variability. Environmental 

factors are thought to contribute the remaining variability. The term “environmental factors” as 

used here is broadly defined to include diet, exercise, chemical exposures, and other factors. 

Several approaches to generating and evaluating genomic data are emerging that can provide new 

insights into human variability. These include (1) computational modeling approaches in which 

variability in parameter values is simulated and differences among subpopulations is explored 

(Diaz Ochoa et al. 2012; Knudsen and DeWoskin 2011; Shah and Wambaugh 2010); (2) high-

throughput in vitro data generation using cells lines with different genetic backgrounds (Abdo et al. 

2012; Lock et al. 2012; O'Shea et al. 2011); (3) in vivo studies in genetically diverse strains of 

rodents to identify genetic determinants of susceptibility (Harrill et al. 2012; NIEHS 2014b); (4) 

comprehensive scanning of gene coding regions in panels of diverse individuals to examine the 

relationships among environmental exposures, interindividual sequence variation in human genes, 

and population disease risks (Mortensen and Euling 2013; NIEHS 2014d); (5) genome-wide 

association studies (GWAS) to uncover genomic loci that might contribute to human risk of disease 

(Abecasis et al. 2012; Bush and Moore 2012; NHGRI 2014a; Wright et al. 2012); and (6) association 

studies that correlate measures of phenotypic differences among diverse populations with 
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expression patterns for groupings of genes based on coexpression (Friend 2013; Patel et al. 2012a; 

Patel et al. 2013; Weiss et al. 2012). New understanding of the contribution of epigenomics to 

disease is rapidly advancing with evaluation of changes such as differential methylation of 

deoxyribonucleic acid (DNA) (Hansen et al. 2011; Rakyan et al. 2011; Teschendorff and 

Widschwendter 2012). 

The approach reported by Lock et al. (2012) is being used in Tox21 Phase II (in collaboration with 

Rusyn and colleagues at the University of North Carolina) to expand the study of interindividual 

differential sensitivity to 180 toxicants. The researchers are evaluating approximately 1100 distinct 

human lymphoblastoid cell lines, with densely sequenced genomes representing 9 races of humans. 

Data will be collected on more chemicals in the future, and the numbers of chemicals evaluated in 

this manner will expand. The large number of human cell lines used allows for an analysis of 

determinants associated with differential cytotoxicity in vitro. Panel “a” in Figure 30 illustrates one 

example of how these new types of genetic variation data can be used in risk assessment, in this 

case, how a population concentration-response curve can be estimated for cycloheximide based on 

HT in vitro data using human cell lines with different genetic backgrounds. Although differences 

between immortalized cell lines and in vivo cells should be considered when interpreting results of 

this type, this approach can provide significant new insights into variability in human response and 

better inform current and future risk assessments. Other examples of human variability data are 

discussed in the benzene prototype (Section 3.1.1) and in Box 10 using GWAS data.43 

The Tier 3 prototype for benzene-induced leukemia and the example presented in Box 10 illustrate 

how identifying gene networks and interactions advance our understanding of disease progression 

and the causal nature of gene/pathway alterations in leukemia. This knowledge will enhance our 

ability to screen chemicals having limited health effects data for their potential to increase risks of a 

specified disease if they are found to cause similar mechanistic disruptions. Risk assessments of the 

future will increasingly incorporate these types of data to replace uncertainty factors and to 

improve risk management for susceptible subpopulations. 

43The differential risks conferred by human genetic variability are complex and might not be captured by 
analyzing small-scale gene variability alone. Hundreds to thousands of genes are likely to be involved in any 
disease, and multiple variations in genetic makeup might confer similar increased or decreased risk for the 
same disease. Disease occurrence also could be influenced by emergent system properties that require 
analysis of not only how gene variations affect cellular components, but how effects on critical network 
interactions propagate through higher levels of the biological system (Torkamani et al. 2008). Consequently, 
although incorporation of new types of data can help improve characterizations of human variability, the 
characterizations are likely to be incomplete. 
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Figure 30. New Types of Genetic Variation Data Can be Used in Risk Assessment. 
Panel a: Population concentration-response was modeled using in vitro quantitative 
high-throughput screening (qHTS) data and cycloheximide data (cytotoxicity assay) as an 
example. Logistic dose-response modeling was performed for each individual to the 
values shown in gray, providing individual 10% effect concentration values (EC10). The 
EC10 values obtained by performing the modeling on average assay values for each 
concentration (see frequency distribution) are shown in the inset. Panel b: A heat map 
of clustered false discover rates (q values, see color bar) for associations of the data 
from caspase-3/7 assay with publicly available RNA-Seq expression data on a subset of 
cell lines. A sample subcluster is shown (Lock et al. 2012). Reproduced with permission 
from Oxford Journals. 
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Box 10. Combining Genetics  and Bioinformatics to Improve Estimates of Variability in  Human Response  

Variability in human response to chemical exposures is partly due to genetic influences. The National Center for 
Biotechnology Information at the National Library of Medicine  in the National Institutes of Health has a vast array of 
databases devoted to human variability, especially genotype -to -phenotype associations. These resources include 
dbSNP (database of single nucleotide polymorphisms and estimates of their  occurrence within the population);  dbGaP 
(database of Genotypes and Phenotypes);  GTEx database (Genotype -Tissue Expression);  OMIM (Online Mendelian 
Inheritance in Man);  and PheGenI (Phenotype -Genotype Integrator, which aggregates information from many of the  
aforementioned resources).  

In this example, genome -wide association study (GWAS) data were reviewed to examine the relationship between 
genotype and white blood cell count in benzene -exposed and non -benzene -exposed workers in China. This work has 
been used, in part, to describe a possible mode of action for benzene hematotoxicity. Lan et al. (2004)  identified 
single nucleotide polymorphisms (SNPs) associated with four DNA repair and genomic maintenance genes that could 
be involved in carcinogenesis. These SNPs confer significant odds ratios from  1.4 to 5.7 of having a white blood cell  
count <4000 cells/µL blood. This observation demonstrates a quantitative increased risk of hematotoxicity in 
individuals  with any of these SNPs. Hematotoxicity is highly correlated with leukemia resulting from benzene 
exposure. Hence, these SNPs also might confer susceptibility to leukemia.   

PheGenI provides links to dbSNP to view genetic diversity of SNPs within reported populations. For instance,  
rsϭϮϵϱϭϬϱϯ ’s !/� genotype is reported to occur in ϱϭ/ϭ% of the Chinese population and 31.1% of the Japanese  
population; and among Europeans and those of European descent, the A/C genotype occurs in approximately  
9 –17  % of the population (NCBI 2014c).  

Overall, the minor allele (C), has a relatively low penetration within the global population at just 18.7%  ±  2.2% (mean 
± standard error of the mean), and an average heterozygosity of 30.0%  ±  24.5% (average ± standard error of the  
mean).  

Using the global minor allele rate of 18.7% ± 2.2 %, a probability function and model can be constructed so  that any  
given member of the population has the minor allele A for rs12951053 SNP. Using this probability function, the  
number of people who might have a white blood cell count <4000  cells/µL blood  can be estimated, and thus the 
potential for hematotoxicity. Model uncertainty  also can be estimated. This  approach thus provides  a quantitative 
estimate of human health hazard.  

In addition, this approach can help inform  the analysis of environmental justice issues. For instance, by using census  
demographic data and the SNP occurrence data for people of particular races or other  specific groups, creating 
probabilistic models that might more accurately reflect the SNP pool of a population, and thus, human variability, is 
possible. For  at -risk populations, regulatory agencies could use this type of information to inform their site -specific 
risk assessments, such as a Superfund site risk assessment in the United States.  

4.2.2 Early-life Exposures 

Early-life exposures to chemicals can invoke molecular effects that appear to result in increased 

susceptibility to disease or other morbidity later in life, often via epigenetic modifications 

(Boekelheide et al. 2012). Evidence from both humans and animals helped establish the influence of 

early-life exposure on later-life outcomes. For example, human observational data and animal 

studies report that arsenic exposure during prenatal and early postnatal life increases the risk of 

cancer, respiratory and cardiovascular diseases, and neurobehavioral disorders (Boekelheide et al. 

2012; Cronican et al. 2013; NRC 2011; Tokar et al. 2012; Tokar et al. 2011). Later-life outcomes can 

be influenced by time of exposure, predisposition of a species to a particular disease, an individual’s 

genetic predilection to disease, or gender. Improved ability to predict disease risk associated with 

in utero or early postnatal exposures results from advances in identifying the targeted genomic 

region of chemicals and chemical mixtures, epigenetic alteration of gene expression, and the causal 

links between early-life chemical exposure and later-life outcomes (Boekelheide et al. 2012; NRC 

2011). 

Computational and statistical models for developmental effects provide valuable new approaches 

predicting risks from in utero exposures. The Tier 1 sections present examples of developmental 
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toxicity models based on the ToxCast data (Kleinstreuer et al. 2013a; Kleinstreuer et al. 2011a; 

Knudsen et al. 2009; Sipes et al. 2011a) and discuss the systems biology models under development 

in the v-Embryo project (DeWoskin et al. 2014; Knudsen and DeWoskin 2011; Knudsen et al. 

2011b; Knudsen and Kleinstreuer 2011). These new approaches and supporting data are advancing 

our ability to understand normal developmental biology, and to predict how chemical 

perturbations can lead to adverse outcomes, especially when addressing the very challenging issues 

around assessing effects from in utero exposures (e.g., rapidly changing kinetic and dynamic 

processes in the developing infant, critical windows of exposure, and sparse data). 

Epigenetic biomarkers for early-life exposures (e.g., placental epigenetic biomarkers, plasma 

biomarkers) could be used as early indicators of adverse health effects later in life. Development 

and interpretation of epigenomic44 biomarkers are in early stages (Hansen et al. 2011; Rakyan et al. 

2011). As our understanding of the underlying epigenetic mechanisms advances (e.g., DNA 

methylation, histone modification, microRNA), however, our ability to use biomarkers of early-life 

exposure to predict later-life disease risk will improve. A good example is the work based on 

associations between early-life exposure to arsenic and DNA hypomethylation, with the subsequent 

development of arsenic-induced skin lesions (Boekelheide et al. 2012; Pilsner et al. 2009). 

4.2.3 Variability in Internal Dosimetry 

Differences in individual absorption, distribution, metabolism, and excretion rates (i.e., 

toxicokinetics [TK]45) for any given chemical will affect the levels of the chemical found in different 

parts of the body, including at its proposed target site, the main value of interest in hazard 

assessment. The uncertainty factor mentioned in Section 4.1 is used to calculate a reference dose 

for noncancer health effects to account for human variability and has two parts—one for 

pharmacodynamic (PD) differences and one for pharmacokinetic (PK) differences. The PK portion 

of the uncertainty factor for interindividual variability is 3.16 (101/2). When PK data are available, 

physiologically based pharmacokinetic (PBPK) model results are used to estimate the internal 

dosimetry of chemicals for any given exposure and route, and replace the uncertainty factor. 

Extensive literature is available on the general use of PBPK models in risk assessment (Clewell et al. 

2002; EPA 2006; McLanahan et al. 2012; WHO 2010) and, more specifically, use of models along 

with advanced statistical approaches to characterize population variability (Barton et al. 2007; Chiu 

et al. 2009).46 A recent analysis of population distributions for PK parameters affecting chemical 

44The “omic” in epigenomic is in reference to data on a complete range of epigenetic biomarkers (i.e., the 
whole picture). Epigenetic refers to the kind of change in gene activity that the marker represents. 
45Toxicokinetics (TK) – Risk assessors will sometimes use the word “toxicokinetics” (TK) to distinguish the 
chemical as a toxicant from a drug and the more traditional use of the word pharmacokinetics (PK). The 
root word ‘‘pharmakon’’ has complex meaning that encompasses both a remedy and a toxicant (and more 
broadly any biologically active substance). Both terms are in common use, and appear in the text. They relate 

to the same processes, and are interchangeable.
 
46Bois and Clewell (2010) provide a particularly good presentation of the determinants of population 

heterogeneity and the intercorrelation of covariates affecting a chemical’s clearance from the body. 
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disposition supports the use of the default value of 3.16 to account for interindividual variability 

when the toxin of interest is the parent compound, and for the most sensitive subpopulations, 

except for very young children (younger than approximately 3 months) (Valcke and Krishnan 

2014). When the probable toxin is a metabolite, however, or when risk assessors have additional 

PK data (especially for susceptible subpopulations) that can be incorporated into a PBPK model, the 

model results provide a better characterization of the chemical’s toxicokinetics and are used in lieu 

of the uncertainty factor to reduce uncertainty in the derived reference value. 

In vitro-to-in vivo extrapolation (IVIVE) and reverse dosimetry (RTK) are central to the use of the 

new HT data in NexGen assessments. As highlighted in the Tier 1 assessment discussion, IVIVE and 

reverse dosimetry are being used to estimate in vivo exposures and internal concentrations (Rotroff 

et al. 2010; Wetmore et al. 2012). This information is essential to apply the HT results for relevance 

in humans, specifically for the information needed to characterize dose-response (i.e., external dose 

[estimated from RTK], internal concentration [estimated from IVIVE], and the associated effects 

[from the HT assay and systems modeling results]). As with PBPK models, the main limitation in the 

application of IVIVE and RTK approaches is the availability of data to support the critical PK 

parameter values for rates (and sites) of absorption, metabolism, elimination, and tissue 

partitioning. 

The data developed for PBPK models will complement and extend the domain of applicability for 

IVIVE and RTK models, and vice versa. Concerted efforts to populate databases for needed PBPK 

model parameter values historically have employed various structure-activity relationship 

(SAR)/quantitative structure-activity relationship (QSAR) algorithms (Béliveau et al. 2003; Peyret 

and Krishnan 2011; Poulin and Haddad 2013), extrapolations from in vitro data (Harwood et al. 

2013; Poulin and Haddad 2013), the more resource intensive compilations and curations of 

literature (DeWoskin and Thompson 2008; Hines 2007, 2013; Thompson et al. 2009), or targeted in 

vivo studies. These data resources can be used to assist the IVIVE and RTK effort. Conversely, the 

focused interest in developing IVIVE and RTK parameter values on the much larger domain of 

chemicals than traditionally addressed with PBPK models is likely to add a significant amount of 

new data and methodology that will benefit PBPK modeling and PK approaches in general. As with 

many such efforts, advances in the modeling depend on the free exchange and availability of these 

data resources. 

4.3 Mixtures and Nonchemical Stressors 

Cumulative risk addresses exposure to combined threats from all intrinsic and extrinsic stressors 

(e.g., chemical exposure, pharmaceutical use, underlying susceptibility, socioeconomic status, work-

life stress) and factors that improve health (e.g., good diet, exercise). Assessing cumulative risk 

remains a challenging area for human health risk assessment. Only a few studies have examined the 

potential impact of exposure to environmental chemical mixtures, or to mixtures and nonchemical 

stressors; while innumerable combinations of chemical mixtures and nonchemical stressors occur 

in the environment. Conventional methods for risk assessment have progressed little in overcoming 

this particularly daunting challenge. New methodologies in systems biology, computational models, 

and data mining are promising based on a more comprehensive disease-oriented approach to 

identifying and managing cumulative risk for chemical classes or structures. 
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Understanding and modeling common patterns of significant pathway or network alterations 

associated with disease are integral to developing efficient approaches for assessing risk from 

mixtures, specifically in evaluating how components in that mixture might alter specific nodes, and 

whether additive, antagonistic, or synergistic outcomes would be expected. The HTS and omics data 

support bioinformatic and computational efforts to characterize mixtures. HTS and omics assay 

data can be combined with bioinformatics data mining and computational cellular signaling 

simulations to predict possible disease outcomes (initially for screening-level assessments). 

As our understanding continues to evolve on how nonchemical stressors affect network 

interactions and modulate disease, we will begin to address the very challenging assessment of 

potential cumulative chemical and nonchemical stressor impacts on health. Mixtures assessment 

logically would focus on anthropogenic and natural chemicals known to co-occur in the 

environment. Biomarkers of exposure data will play a key role in determining internal levels 

resulting from actual environmental exposures. Because epigenomic networks are more easily 

modulated by environmental factors than the genome, epigenomics will be the initial focus so that 

mechanisms that mediate cumulative risks imposed by exposures to environmental factors can be 

identified (Bollati and Baccarelli 2010; Cortessis et al. 2012; Koturbash et al. 2011). 

4.4 Interspecies Extrapolation 

A better understanding of toxicological or biological pathways and their similarity (or lack thereof) 

among species will improve our ability to extrapolate chemical effects across species and to select 

model organisms for testing (Aldenberg and Rorije 2013; Kenyon 2012; Lalone et al. 2013; NRC 

2005; Smirnova et al. 2014).47 Animal models in hazard identification and characterization of dose-

response traditionally use chemical testing of mammalian species, and apply an interspecies 

(animal-to-human) uncertainty factor (≤10) or body-weight conversion factor to derive an EPA 

reference value. As knowledge increases on the extent of pathway conservation among species, 

alternative test species, including nonmammalian vertebrates (adult and embryonic zebrafish) and 

invertebrate models, will be more useful in chemical risk assessment. Regulatory toxicology as a 

whole will move toward increasing reliance on predictive approaches to assessing chemical risk, 

with greater emphasis placed on understanding chemical perturbation(s) of conserved biological 

pathways at key junctures, including molecular initiation events (MIEs) (e.g., activation or 

inactivation of specific receptors, enzymes, or transport proteins). As discussed in Section 3 (Box 3), 

an extensive effort to develop and interpret adverse outcome pathway (AOP) networks in terms of 

animal-to-human extrapolation is ongoing at the Organization for Economic Cooperation and 

Development (OECD 2014a). 

Data from alternative mammalian species and in vitro models are valuable for both ecological and 

human health risk assessment when used in a pathway-based framework (Ankley et al. 2010). 

Extrapolation between species can occur at different levels of biological organization, such as the 

47Pharmacokinetics is an equally important area for consideration. As cross-species extrapolation of 
pharmacokinetics has been discussed extensively elsewhere and is only mentioned here. 
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MIE, the pathway, and the organ or individual levels. Based on the similarity of pathway-based 

values to standard toxicological values, this approach appears to be useful for extrapolating hazard 

values across species, especially if a known pathway is involved. 

That gene sequences are conserved—even between distantly related species—is well known, and 

conservation across species is indicative of an essential function. DNA sequence similarity can, but 

does not always, reflect a functionally conserved role for the genes in question. Investigations of 

gene function homology can be approached through interspecies comparisons of various 

components that affect the phenotype in question. The implicated genes, their sequence variation, 

and the relevant signaling pathways and tissues (cells, organs, circuits) are all informative. Thus, 

new approaches to understanding the underlying molecular mechanism can improve cross-species 

extrapolation (e.g., see Ankley and Gray 2013; Burgess-Herbert and Euling 2013; Chen, J. et al. 

2007; Chiu et al. 2013; Jubeaux et al. 2012; Reaume and Sokolowski 2011). 

4.5 Responses at Environmental Exposure Levels 

New data and approaches are needed to resolve long-standing controversies about characterizing 

low exposure-dose-response relationships. Much discussion has been held in the risk assessment 

field about linearity versus nonlinearity, threshold versus nonthreshold responses, and cancer 

versus noncancer outcomes. With a few exceptions, available traditional studies have insufficient 

statistical power to inform responses at environmental concentrations, and more information is 

needed about AOP networks, variability in response, background levels (White et al. 2009), and 

dose-response model uncertainty (Slob et al. in press). 

Risk assessors generally have relied on a combination of precedents and theoretical arguments 

with some mechanistic underpinnings to guide extrapolation approaches to low exposure levels. 

Although the tendency has been to compartmentalize cancer into linear, nonthreshold responses, 

and noncancer effects into nonlinear, threshold responses, the same mechanistic arguments below 

can apply to both: 

 Clearance pathways, cellular defenses, and repair processes are thought to minimize 

damage so that disease does not result. 

 Backgrounds of exposure or preexisting disease can result in additivity to preexisting 

response backgrounds. 

	 Statistically greater response variability in the human population (as compared to
 
traditional inbred animal studies) flattens (i.e., linearizes) the low dose-response 

relationships (Crump et al. 2010b; Lutz 1990; NRC 2009). 


Harmonization of the methods used to assess cancer and noncancer risk is critically important 

(Gaylor et al. 1999; NRC 2009). Many important biological pathways do not parse neatly into cancer 

or noncancer processes, rather disrupted biology can contribute substantially to both types of 

adverse outcomes. A holistic perspective (i.e., a systems approach) that accounts for progression of 

effects—and different spectra of effects as dose increases—is needed to incorporate and interpret 

the large amount of mechanistic information being generated by the health effects and medical 

research communities. These new data and this knowledge will help inform the low-dose range 
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issues in two primary areas: (1) a dramatic increase in data from laboratory and field 

(epidemiological) studies for response at low doses, and (2) the elucidation of mechanisms for 

response at low dose and dose progression. Of note is that many of the HTS assays in the ToxCast 

program use human cell lines, and a broad range of doses (some of which can be at levels 

comparable to expected environmental exposures) provides much more information on dose 

range-responses (Judson et al. 2014). 

New experimental data to characterize dose-response relationships at environmental exposure 

levels will avoid extrapolations of higher doses that often are based on assumptions about the 

shape of the dose-response curve at low doses, rather than direct estimation of risk in the low dose 

region. New high-throughput experiments have resulted in a dramatic increase in the availability of 

dose-response data for many chemicals at environmentally relevant concentrations. Dose-

dependent molecular changes associated with adverse outcomes now can be measured for 

hundreds (in vivo) to tens of thousands (in vitro) of chemicals (Judson et al. 2014; Rotroff et al. 

2010; Sturla et al. 2014; Thomas, R. S. et al. 2011; Thomas, R. S. et al. 2012c; Thomas, R. S. et al. 

2013c; Tice et al. 2013; Wetmore et al. 2013; Wetmore et al. 2012). Faster and less costly molecular 

epidemiology and clinical studies also provide valuable data on biological responses in 

environmentally exposed humans (McCullough et al. in press; Thomas, R. et al. 2014; Vineis et al. 

2013). The power of an assay to detect an effect (assay sensitivity and experimental variability) will 

be an important determinant for the reliability of these direct empirical measurements. 

Observed molecular changes include alterations in both magnitude and character of responses, 

reflecting underlying alterations in biology with increasing dose and time. Biological processes 

linked to disease that are consistently observed across the exposure range of interest are likely to 

be useful as biomarkers of exposure and effect (Institute of Medicine 2010; Thomas, R. et al. 2014). 

Observed molecular changes must be understood in a mechanistic context and in light of their 

impact on variability in human responses in the population. 

Rhomberg et al. (2011) identified the challenge of translating modest degrees of underlying 

variation in biological response to discrete differences between healthy and diseased states. 

Specific molecular alterations have been shown to be causally related to (or be a risk factor for) a 

disease or multiple diseases, but more commonly individual changes act in concert to execute 

normal biology, adapt to insults, or lead to disorder and disease (Medzhitov 2008). Ultimately, 

knowledge of endogenous levels of a toxicant under study, background levels of other stressors, 

background incidence of disease, relevant biological/physiological pathways, and biological 

mechanisms for coping with toxicant stressors are all factors that must be taken into account in 

evaluating population dose-response. Although elucidating which dynamic changes are relevant to 

risks is challenging, incremental progress is being made. 

NRC (2007b) recommended developing new approaches and models to generate the data needed 

for characterizing the dose-response curves and improving quantitative estimates of risk, especially 

at doses applicable to likely human exposures. Examples of some new approaches to dose-response 

modeling are described in Burgoon and Zacharewski (2008), Parham et al. (2009), Zhang et al. (in 

press), and Zhang et al. (2010b). The application of HT assays of pathway perturbations that 

directly measure biological effects at environmental exposure levels are described in Rotroff et al. 
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(2010) and Wetmore et al. (2012). The reduced cost of in vitro HT assays relative to in vivo toxicity 

tests enables the use of a much broader range of exposure levels, leading to a more detailed 

description of dose-response relationships throughout the exposure range of interest. Figure 31 

summarizes the automated dose-response modeling approach proposed by Burgoon and 

Zacharewski (2008) and suggests how dose-response models could be developed using large-scale 

molecular biology studies. 

Empirical dose-response models are used widely in health risk assessment. They will continue to be 

used in the near term for screening and categorizing toxic substances, determining toxic potency, 

determining a point of departure (POD) for low-dose extrapolation, determining human exposure 

guidelines, estimating risk under specific exposure circumstances, and interpreting human data.48 

Models that are based on a robust understanding of biological processes, in contrast, are less 

common, but are anticipated to become more so in the future. To date, the main biologically based 

models used in risk assessment are PBPK models (see Section 4.2). Well-developed and adequately 

tested PBPK models are currently used in risk assessment to simulate the toxicokinetics of a 

chemical or chemicals across dosing regimens (duration, amounts, delivery rate, routes) and 

species, or extrapolating from in vitro regimens to in vivo doses (IVIVE). 

48Establishing human exposure guidelines for environmental agents involves determining a POD on the dose-
response curve. Examples include a particular response level on a BMD model estimate of the dose-response, 
corresponding to a specified increase in risk usually in the 5–10% range, or a signal-to-noise-crossover dose 
introduced by Sand et al. (2011). This POD is reduced further by adjustment factors to derive a level of 
exposure considered to be protective of human health and the environment. NRC (2009) suggests an 
integrated approach to the establishment of human exposure guidelines using adjustment factors applied to 
the POD, where the magnitude of the factor depends on the “expected” behavior of the exposure-response 
curve at low levels of exposure. NRC also examined the influence of background exposures and background 
disease rates on the shape of the exposure-response curve at low levels of exposure. 
Characterizing the expected response at low exposure levels (i.e., those the public is most likely to encounter) 
is another great challenge to previous methods used in risk assessment, specifically the use of relatively high-
dose in vivo animal assays as the source of data for adverse health effects because the spectrum of adverse 
effects might be quite different at lower doses. 
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Figure 31. Overview of Automated Dose-response Modeling from Burgoon and Zacharewski (2008). 
Step 1: Dose-response data from a large-scale study are loaded. Step 2: The application feeds dose-response data for one 
feature into the algorithm. Examples of feature data include messenger ribonucleic acid (mRNA), protein, or metabolite levels 
and enzyme or binding activities at each dose within a study. Step 3: The application initializes the particle swarm optimization 
(PSO) algorithm by randomizing model parameters and assigning cliques. Step 4: The PSO identifies the closest model in each 
clique at the end of an iteration and moves the members of each clique toward that model. Step 5: This iterative process ends 
once a best-fit model has been identified or when all iterations have been used. Steps 3 through 5 are repeated for each model 
class for the same feature, thus generating best-fit models for the linear, quadratic, Gaussian, exponential, and sigmoidal 
classes. Step 6: The best linear, quadratic, Gaussian, exponential, and sigmoidal models are compared with the best overall 
model using a weighted vote method. The model with the smallest Euclidean distance compared with the dose-response data 
receives the most votes. Step 7: The application uses the best overall model to calculate EDn and point-of-departure (POD) 
values, used to rank and prioritize putative biomarkers or chemical activities. Step 8: Model-based clusters can provide 
additional mechanistic insight by integrating potency and POD data with functional annotation and phenotypic anchoring. For 
example, EDn and POD data might generate model-based clusters for lipid metabolism and transport gene expression that 
could be associated with the occurrence of hepatic vacuolization and lipid accumulation. Step 9: Through complementary 
comparative studies using toxic and nontoxic congeners in responsive and nonresponsive species across time, data could 
emerge that differentiate biomarkers of exposure from toxicity-related responses that can support mechanistically based 
quantitative risk assessments. Reproduced with permission from Oxford Journals. 
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A new class of biologically based models called “virtual models” is being developed to simulate 

normal biology and to predict how chemical perturbations might lead to adverse effects (i.e., to 

predict a chemical’s toxicodynamics) based on knowledge of potential mechanisms/ Such models 

could be used to estimate the dose-response characteristics of a chemical for specific endpoints. 

Examples of virtual models being developed at various levels of biological organization or function 

include the: 

1.	 European Virtual Physiological Human project (Hunter et al. 2010); 

2.	 HumMod, a whole-body integrated human physiology model (Hester et al. 2011); 

3.	 Virtual Cell (V-Cell), a spatially realistic quantitative model of intracellular dynamics 

(Moraru et al. 2008); 

4.	 EPA’s Virtual EmbryoTM (v-Embryo) project, a suite of models that simulate normal 

development leading to the formation of blood vessels, limb-buds, reproductive systems, 

and eye and neural differentiation (Knudsen and DeWoskin 2011; Knudsen et al. 2011b); 

5.	 EPA’s Virtual LiverTM (v-Liver) model that simulates the dynamic interactions in the liver 

used to translate in vitro endpoints into predictions of low-dose chronic in vivo effects in 

humans (Shah and Wambaugh 2010); 

6.	 Virtual Liver Network (German Federal Ministry for Education and Research 2014), a 

German initiative to develop a dynamic model of human liver physiology, morphology, and 

function integrating quantitative data from all levels of organization (Holzhutter et al. 

2012); and 

7.	 Hamner Institutes for Health Sciences’ DILIsym® project that intends to identify new 

molecules that might cause liver toxicity and to understand the mechanism of existing 

toxicants (The Hamner Institutes For Health Sciences 2014). 

In addition, the Physiome Project (Physiome Project 2014) is a major resource and model 

repository for hundreds of physiology models (Hunter et al. 2002). 

Once fully developed, these models could dramatically improve our characterization of the dose-

response relationship of various chemicals for several target tissues and functions. 

4.6 Implications of New Methods for Recurring Issues in Risk 
Assessment 

Based on the discussion above, and the examples provided throughout the report, the following 

summary inferences can be drawn about the use of new data and approaches in addressing 

recurring issues in risk assessment: 

	 Genetically derived human variability and susceptibility or resistance to environmental 

stressors can be evaluated using experimental in vitro and computational approaches; and 

emerging data streams (such as genetically defined human cell lines, genetically diverse 

rodent models, human omic profiling, and GWAS). 
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	 New understanding of mechanistic events allows for greater confidence in causal linkages 

among exposure, molecular events, and adverse health outcomes; and enables the 

identification and grouping of chemical mixtures and other environmental stressors 

that can alter risk of a specific disease based on similarities of pathway perturbations. 

 Omic events are well characterized across several species and thus inform cross-species 

extrapolations. Functional and omic responses that are highly conserved across many 

species facilitate cross-species considerations. 

 New data types, collected in the range of environmental exposures, and systems models 

provide better insights into low dose-response relationships than previously possible. 

Mechanistic information on adaptive, maladaptive, and background responses will help 

characterize the shape of dose-response relationships for individuals and populations. 

Based on the above, risk assessment likely will move to a more probabilistic description of risks 

derived from distributions of response across the human population, depending on several factors. 

Such factors include genetic makeup, lifestage, internal dosimetry, exposure to mixtures and other 

environmental stressors, and a better understanding of low dose-response relationships. 
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5 Lessons Learned from Developing the Prototypes 

Perhaps the most critical revelation from the prototypes presented in this report is that the 

National Research Council (NRC) vision embodied in their report on Toxicity Testing in the 21st 

Century (NRC 2007b) can be realized, as evidenced by the remarkable progress in biology. Clearly, 

more must be done. Yet in the relatively few years since publication of that report, the focus of risk 

assessments has begun to shift from the traditional approach of using animal study data and 

uncertainty factors to the new assessment approaches demonstrated in the prototypes. The new 

approaches consider a different and broader array of data, a mechanistic understanding of 

adversity, and a move toward replacing uncertainty factors and extrapolations with data-derived 

probability distributions. This report provides additional scientific support for modernizing risk 

assessment. 

Additionally, the methods discussed in the prototypes illustrate a convergence of perspectives and 

synergy of methodology occurring between the medical research community, traditionally focused 

on addressing treatment for clinically observable disease, and the toxicology community, focused 

on predicting outcomes from initial exposures. This convergence will greatly facilitate progress. 

Both communities are now developing and using tools and approaches to resolve the more detailed 

sequence of causes and biological events leading to disease, whether to address the challenges of 

delivering personalized medicine, or to identify environmental risks and susceptible 

subpopulations. 

The NexGen framework outlined in Section 2 provides not only categorization of assessments for 

different applications, but also a process for a controlled and scientifically sound transition from 

traditional assessment methodology to more advanced technologies as we gain experience and 

confidence in their use (see Box 11). 

Methods illustrated in the Tier 1 and Tier 2 prototypes originally were designed for qualitative 

evaluation of chemicals. Already, however, some of the approaches are being tested for developing 

relative potency estimates and quantitative toxicity values (or newer metrics) for use in certain 

decision contexts. These methods will be used more extensively as they are further developed, and 

as confidence in the values increases. Importantly, the criteria and scientific process used to 

evaluate confidence in the new data and application results will guide additional research and 

further refinement (e.g., focus on hypothesis testing, statistical validity, comparison with real-world 

values, transparency, peer review, stakeholder communications, and the like). 

The Tier 3 data types (1) demonstrate that new methods can provide similar estimates of hazard 

and risk when compared with results based on traditional data; (2) illustrate the relationships of 

molecular events to intermediate effects to adverse effects (hazard identification); (3) show how 

new data can be used to inform exposure-dose-response; and (4) provide a basis for characterizing 

data-limited chemicals using HT and HC data and adverse outcome pathways (AOPs). Additionally, 

the prototypes collectively show how to address long-standing risk assessment issues, such as 

characterizing human variability, assessing cumulative risks, and estimating the quantitative low 

exposure-response relationships. 
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Data quality and reporting are significant issues going forward. The searches for data to develop the 

prototypes resulted in many studies in the literature that could not be used because either the data 

or the reporting did not meet the criteria for use in health risk assessment. This in part results from 

the rapid evolution of best practices (i.e., the lag time before being fully implemented in the 

research community), inconsistent application of criteria for data quality and reporting (see 

Functional Genomics Data Society 2014 for discussion), and the need for additional guidance and 

consensus on best practices. 

Rhomberg et al. (2013) reviewed 50 existing “weight-of-evidence” frameworks (now termed 

evidence integration). They identified four phases of analysis consistently used in the 50 

frameworks. “(1) defining the causal question and developing criteria for study selection, (2) 

developing and applying criteria for review of individual studies, (3) evaluating and integrating 

evidence and (4) drawing conclusions based on inferences” (Rhomberg et al. 2013). Steps 1 and 2, 

as used at EPA, are discussed in some detail in NRC (2014) and U.S. DHHS (2014). Table 11 focuses 

on Steps 3 and 4 to evaluate the strength of the causal connections among the exposures, AOP 

networks, and adverse outcomes discussed in the prototypes and draws on previous authoritative 

works for the basis of the evidence integration (EPA 2005; Hill 1965; Meek et al. 2014; U.S. DHHS 

2014). This table is illustrative; in future practice, evidence integration and conclusions could differ. 

As presented in Table 11, confidence in causality ranges from suggestive to likely, based on the 

supporting new data types/ “Likely” is generally for cases where the new data types are well 
anchored to adverse outcomes by a combination of observational and experimental chemical-

specific data, similar chemicals data, AOP networks, and robust systems biology understanding. In 

practice, most new data are anticipated to be suggestive. Of note is that, contrary to traditional 

approaches, some new approaches can be used to estimate relative potencies or toxicity values in 

the absence of clearly identified hazards. 

The goal of NexGen health assessments, as illustrated by the prototypes, is to improve our 

understanding of environmental hazards and the environmental concentrations at which those 

hazards might occur in a population. New types of assessments can be more efficient, and, in some 

cases, more robust, than those based only 
Box 11.  Applications for New Data Types   

(adapted from Afshari et al. 2011) 

  Elucidation  of mechanisms of action  

  Classification  of compounds by elicited toxicant phenotype   

  Generation of hypotheses regarding compound action  

  Classification of compounds in similar mechanistic classes  

  Ranking and categorization by toxicogenomic signature  

  Classification of compounds  of unknown toxicity  

  Discerning the lowest effect levels for transcripts  or BMDs 

  Discovery of biomarkers of exposure and toxicity  

  Validation/quantification of biomarker signatures  

  Discerning dose relationships at environmental exposure 
levels  

on traditional data. Introduction of new 

assessment types will be iterative and will 

require input from both the scientific 

community and the public. Major 

assessments likely will continue to be 

driven, for the foreseeable future, by 

traditional data, however, increasingly 

augmented with new data types. 

Concurrently, methods and data for 

screening and prioritization to support 

limited scope decision-making will become 

more prevalent. 
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Table 11.  Illustrative Framework  for  Causal Determination Focusing on  New Data Types  

Prototypes  Evidence for Causality  Evidence Integration  

 
T

ie
r 

3
 

Test the hypothesis that new 
 data types can provide 

comparable results to 
 traditional data. 

  Illustrated that new data 
types (when properly 
collected, analyzed, and 
reported) can provide results 
comparable to those from 
robust traditional human 

 data. 
  Indicated  that new data 

types could be used to:  
(1) evaluate potential hazard 
of chemicals with no or 
limited traditional data, (2)  
augment traditional 
assessments, or (3) better 
inform traditional risk 
assessment issues, such as  
human variability and 
susceptibility,  cumulative  
risk, and low exposure-dose
response relationships.  

Evidence is consistent, coherent, and biologically plausible that the observed  
  molecular events are causally related to adverse effects. Specifically, in molecular 

  epidemiology and clinical studies: 

  

 

 

 





 

Specific pattern alterations in molecular events are consistently and strongly 
 associated with known intermediate events and known hazards at 

 environmental exposure levels. 

  Dose-dependent alterations observed in concomitantly collected molecular 
events and adverse effects are in the range of environmental exposure of 
measured exposure-dose relationships (benzene, ozone); PAH exposures were 

  self-reported, and uncertainty in PAH exposures prevented characterization of 
 dose-response. 

   Adverse outcome pathway (AOP) networks are also disrupted by other chemical 
 and nonchemical stressors known to alter incidence of the specific 

 disease/disorder under consideration (benzene, ozone). 

   Experimental evidence (pharmacological interventions) has been shown to 
 modify identified AOPs, and have associated an altered incidence of adverse 

 outcomes or severity of disorder (benzene, ozone). 

 Additional experimental evidence provided by identification of naturally 
  occurring human gene variants in the AOP network that alter susceptibility and 

 risks (benzene, ozone). 

 Multiple supporting molecular epidemiology and clinical studies; coherent with 
   other systems biology data. See NIH BioSystems (2014a) Acute Myeloid 

 Leukemia or Acute Inflammatory Response. 

 Data collection, analyses, and reporting met minimum data requirements.  

Implications based on comparisons to robust traditional risk 
assessments:  For benzene and ozone, identified molecular  
events are likely causally related to known adverse outcomes  
in a dose-dependent fashion. The molecular data for PAH are 
suggestive for a causal association between PAH and lung  
cancer. Uncertainties in species-to-species extrapolation, and 
data quality, analysis, and reporting limitations for BaP
associated rodent liver cancer prevented interpretation of  
BaP molecular data.  
 

 Suggestive vs. likely: More commonly, molecular data are 
 expected to be only suggestive or inadequate for causal 

 determination. To rise to likely, the following are currently 
necessary: multiple, consistent, high-quality observational 
studies (across multiple labs/studies); experimental evidence 
showing that reversal of pathway alterations blocks or 

 ameliorates adverse outcome; or naturally occurring 
experiments where gene variants alter incidence or 
characteristic of disease. Important variables such as  

 experimental paradigm (e.g., in vivo vs. in vitro), cell type, 
tissue type, and species also require consideration. New data 
types are likely to be most useful for screening and 
prioritization, nonregulatory decision-making, and 
augmenting traditional data, particularly in informing 
mechanisms of action.  





Modification of the Bradford-Hill criteria  (consistency, strength, specificity, temporal relationship,  and coherence of the data) continued to be useful in the evaluation of data (EPA 2005, 
2013c, e; Meek et al. 2014; U.S. DHHS 2014).  To simplify the presentation, similar prototypes with shared attributes are aggregated where possible. The left column summarizes the 
prototype results, the middle column presents evidence for causality exemplified by the prototypes, and the right column illustrates how such prototypic evidence might be integrated 
and weighed. The first set of prototypes is unique in that the prototypes have known human health effects and well-documented public health risks/ For these prototypes, the “Evidence 
Integration” column evaluates how successful new data types were in predicting known outcomes.  
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Table 11.  Illustrative Framework  for  Causal Determination Focusing on  New Data Types  (continued)  

 Prototypes  Evidence for Causality  Evidence Integration 

Illustrated how large NIH and  
other large, searchable 
databases can be knowledge- 
mined to identify, organize, 
integrate, and analyze existing 
data in new ways to discover 
new insights into public health 
risks.  

Illustrated how new short-
duration in  vivo  exposure 
bioassays can be used to 
collect more robust data than  
in vitro  exposure bioassays,  
but in a shorter period than  
traditional bioassays.  

   Knowledge mining and meta-analysis discover associations between known 
exposures to several chemicals (biomonitoring) with prediabetes/diabetes using 
the Centers for Disease Control and Prevention’s National Health !ssessment 
Examination Survey systems  

  Very limited systems biology context and AOP data.  

  In vivo  exposures of intact organisms with intact metabolism associate 
molecular events with adverse outcomes or measure adverse outcomes  
directly.  

  High-content assays with measurable adverse outcomes (e.g., zebrafish  
developmental assay) have greater evidentiary weight than initiating event 
assays.  

  Cross-species  extrapolation introduces additional uncertainties.  

  Relatively well-understood systems biology context and AOP are necessary for 
interpretation of the data.  

Suggestive: Could rise to likely with the types of supporting  
data noted above under “Suggestive vs/ likely/”  

 
 2

 
T

ie
r   Suggestive:  For transcriptomic studies with AOP  

descriptions. This could rise to likely with the types of 
supporting data noted above  under “Suggestive vs/ likely/”  

  Suggestive: Could rise to likely for human health hazard 
using zebrafish  developmental outcomes and other models 
with phenotypic outcomes; could rise to likely with the  
types of supporting data noted above under in “Suggestive  
vs/ likely/”  

Illustrated recent advances  
and use of QSAR models to 
estimate values similar to 
those of traditionally based 
assessments.  

  QSAR models can predict chemical-specific toxicity values based on chemical 
inherent properties for a number of data poor chemicals.  

  Models are developed based on  chemical structures and known outcomes for 
data rich chemicals.  

  OECD is harmonizing international use of QSAR hazard models and read-across  
in the OECD  QSAR toolbox  

  Suggestive: TopKat Model predictions of potency when  
model is appropriate for chemicals evaluated; not generally 
predictive of dose-response for specific hazards; does  
generate a LOAEL for a subset of the data poor chemicals 
that meet confidence criteria. Additional OECD models and  
read-across can improve confidence in hazard 
characterization.  

  Could rise to likely with the types of supporting data noted  
above under “Suggestive vs/ likely”  data to adverse  
outcomes.  

 
ie

r 
1

 
T

Illustrated how new, generally 
robotically conducted,  in vitro  
bioassays can evaluate (with 
unprecedented speed) the 
potential of chemicals to 
disrupt biological processes.  

  High-throughput in  vitro  assays based on biological process disruptions are 
interpreted in a systems biology and AOP context, and associated with adverse 
outcomes.  

   Thyroid hormone disruptor assay results are supported by considerable 
systems biology and cross-species understanding. See NIH BioSystems  (2014a)  
for additional review of thyroid hormone-mediated signaling pathways.  

  Suggestive: When coupled with understanding of the  
AOP(s); could rise to likely with the types of supporting data 
noted above  under “Suggestive vs/ likely”  data to adverse 
outcomes  

Modification of the Bradford-Hill criteria  (consistency, strength, specificity, temporal relationship, and coherence of the data) continued to be useful in the evaluation of data (EPA 2005, 
2013c, e; Meek et al. 2014; U.S. DHHS 2014).  To simplify the presentation, similar prototypes with shared attributes are aggregated where possible. The left column summarizes the 
prototype results, the middle column presents evidence for causality exemplified by the prototypes, and the right column illustrates how such prototypic evidence might be integrated 
and weighed. The first set of prototypes is unique in that the prototypes have known human health effects and well-documented public health risks. For these prototypes, the “Evidence 
Integration” column evaluates how successful new data types were in predicting known outcomes/  



   

  

 

     

  

   

 

 

  

 

    

 

   

  

   

   

  

 

  

  

   

  

   

  

 

  

   

   

 

   

                                                             

  
    

 
  

With new approaches we can (1) gather new data on biological alterations caused by chemical 

exposures; (2) begin to understand AOPs and AOP networks, and improve our interpretation of 

new data in a biological context; (3) start understanding the effects of other environmental risk 

factors or modifying factors, such as mixtures exposure, other environmental stressors, and 

susceptibility factors like genetic makeup and preexisting health status; (4) better characterize 

exposure-response; and (5) better characterize variability and uncertainties. New data types will 

support assessments based on an understanding of adverse outcome and the underlying 

mechanisms needed to identify causal links between exposures and effects. Conversely, the new 

data can be used to identify network interactions49 that represent “normal” biology and the 

chemical perturbations that lead to adverse outcomes (Andersen, M. E. and Krewski 2009; Chiu et 

al. 2013; Goodman et al. 2014). 

5.1 Looking Across the Major-scope Assessment Prototypes (Tier 3) 

The Tier 3 prototypes were designed to test the hypothesis that new data types could provide 

results comparable to those that robust traditional data provide (see Section 3 and EPA 2013c, d; 

Hatch et al. in press; McCullough et al. in press; McHale et al. 2010; McHale et al. 2012; Smith, M. T. 

et al. 2011; Thomas, R. et al. 2014). Support for this hypothesis follows. 

AOP networks appeared useful in predicting specific hazards and could successfully do so for 

benzene and other known leukemogens (hematotoxicity); ozone (lung inflammation and injury); 

and polycyclic aromatic hydrocarbons (PAHs; lung cancer). Nonchemical stressors that alter risks 

also appear to affect the same AOP networks as chemical risk factors. These exposure-dependent 

network modifications appear causally related to specific gene changes, pathway perturbations, 

intermediate events, and adverse effects. We inferred from these data that less well-studied 

chemicals that induce the same AOP or AOP network would be of concern for the same health 

outcomes. Thus, AOP networks such as those developed by EPA, the Organization for Economic 

Cooperation and Development (OECD), or the National Institutes of Health (NIH) BioSystems are 

anticipated to be essential in the future to help elaborate mechanisms of action and potentially 

increase confidence in the overall evidence; assess hazards posed by less well-studied chemicals; 

and provide a construct for grouping chemical and nonchemical stressors by common mechanisms 

for cumulative assessment. As illustrated by the prototypes, AOP networks also can help evaluate 

the role of human gene variants in subpopulation susceptibility (or resistance). 

An AOP network, or component biomarkers, can help characterize exposure-dose-response 

relationships, as illustrated by benzene and ozone (and the Tier 2 thyroid hormone disruption 

prototype discussed below).50 Important to note is that AOPs appear to evolve with increasing 

exposures. For example, with benzene, gene and pathway alterations indicative of impaired 

immune function are present at all exposure levels evaluated (from <0/1 ppm to ≤10 ppm), but at 

49As noted in earlier in the report, AOPs and AOP networks do not imply creation of new biological processes 

that are specifically adverse, rather they address perturbations of normal biological processes.
 
50Uncertainty around self-reported PAHs exposures (in the available data sets used here) prevented 

characterization of exposure-dose-response for PAHs.
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higher concentrations AOPs characteristic of more frank toxicity (apoptosis and cell death) begin to 

emerge. Thus, data collection over a wide range of environmental concentrations remains 

important for interpreting new data types. One of the most promising applications of 

exposure/effect biomarkers is the ability to measure directly events of interest in environmentally 

exposed humans; such applications are revolutionizing epidemiology. 

Chemical exposures known to result in specific diseases share AOP networks with disease of 

unknown origins (idiopathic or potentially naturally occurring disease). Chemically induced 

adverse effects appear to add to naturally occurring backgrounds of disease, via shared 

mechanisms. As discussed by NRC (2009) and Crump et al. (1976), this finding has implications for 

an assumption of low-dose linearity for cancer and noncancer outcomes at the population level. 

Uncertainties evaluated, where possible, and that deserve consideration in risk assessment 

as feasible, arise from the following factors: interindividual and subpopulation variability from 

genetic makeup and coexposures; species, target versus nontarget cell and tissue types; and in vivo 

versus in vitro primary cell culture and cell line protocols. 

The evidence for these conclusions is additionally summarized in Table 11, and discussed in 

more detail in Section 3 and the NexGen background papers. 

5.2 Looking Across the Limited-scope Assessment Prototypes (Tier 2) 

The Tier 2 approaches appear useful in identifying potential hazards, characterizing relative 

potency of hundreds of chemicals, and using AOP networks to refine both hazard 

identification and exposure-response assessment. Two very different approaches were 

considered in the limited-scope prototypes: (1) computer-assisted knowledge-mining techniques 

used to scan huge existing databases to identify associations among various factors of interest such 

as exposure, health status, coexposures, and genetic and lifestyle susceptibility traits (Burgoon 

2011; Patel et al. 2012a; Patel et al. 2013); and (2) relatively new experimental paradigms involving 

short-duration in vivo exposure of both alternative (nonmammalian) and mammalian species to 

predict health outcomes, to explore interactions of AOPs and apparent exposure-response 

anomalies, and to consider species-to-species similarities and differences (Padilla et al. 2012; 

Perkins et al. 2013; Skolness et al. 2013; Thomas, R. S. et al. 2012c; Thomas, R. S. et al. 2013b; 

2013c; Warner et al. 2012). These new approaches are faster and less expensive than the molecular 

epidemiology and molecular clinical studies noted above. Furthermore, unlike the quantitative 

structure activity relationship (QSAR) models and HTS data (discussed below), the data from in vivo 

studies are from intact systems for metabolism, normal architecture (for various cell types), and 

normal tissue interactions; and can be used to study more complex system-level outcomes, such as 

developmental and neurobehavioral outcomes. Confidence in these data generally ranks between 

Tier 3 and Tier 1 approaches. Highlights from the prototypes are briefly discussed below. 

Computer algorithms were developed to search the NHANEs database and identify associations 

between chemical exposures and incidence of prediabetes or diabetes. Exposures were determined 

via the National Health and Nutrition Examination Survey (NHANES) human tissue biomonitoring; 

incidence was clinically defined within NHANES. In all four data-mining exercises, specific chemical 

exposures were associated with altered diabetes or prediabetes risks (e.g., chlorinated organics, 

heavy metals, selected nutrients). Because data mining identifies associations among events in very 
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large data sets, results are most suitable for hypothesis generation. The addition of other data 

types, such as AOP network data, read-across, or traditional data, augment confidence in the 

observed associations. Thayer et al. (2012) reported on a workshop that reviewed traditional data 

on chemically related diabetes and obesity, and independently identified a similar set of chemicals 

to those identified in the above data mining exercises. 

Two Tier 2 prototypes demonstrated use of short-duration exposures in alternative species 

and mammalian species, respectively, coupled with new molecular and computational 

approaches to provide insights into potential environmental risks. The alternative species 

assays were used to detect effects over the entire lifespan of the organism, and to evaluate 

population dynamics. The mammalian assay assumed that molecular events identified in short-

duration experiments would reflect chronic outcomes and thus be useful in more rapid assessment 

of chemicals. These short-duration exposure studies using different animal models successfully 

identified exposures associated with molecular events, AOPs, and AOP networks; explored complex 

mechanistic behaviors; screened for potential hazards; and evaluated chemical potencies. 

Although only one prototype illustrated data-mining approaches, data-mining is becoming 

an essential tool in many areas of modern science and in the development of assessments in 

all tiers. With the explosive growth of new data, evaluation of the available literature rarely can be 

accomplished without using computer algorithms to search for, identify, organize, prioritize, and 

integrate key data. 

5.3 Looking Across the Prioritization and Screening Prototypes (Tier 1) 

For the first time in the history of risk assessment, robotically conducted, in vitro 

experiments are allowing the evaluation of chemicals (e.g., on the order of 10,000). Results 

from QSAR models (Goldsmith et al. 2012; Venkatapathy and Wang 2013; 2012b; Wang, N. et al. 

2012c) and HT in vitro bioassays were used to illustrate a set of methods to evaluate chemicals 

rapidly (Judson et al. 2013; Kavlock et al. 2012; Rusyn et al. 2012; Sipes et al. 2013; Tice et al. 

2013). Kavlock et al. (2012) note that “These tools can probe chemical-biological interactions at 

fundamental levels, focusing on the molecular and cellular pathways that are targets of chemical 

disruption/” 

Thousands of chemicals are currently being evaluated in the ToxCast and Tox21 programs 

using these methods. Estimates of relative potency and insights on potential hazards are being 

generated. 

Methods are being developed using reverse dosimetry to extrapolate in vitro concentration 

to test species (e.g., rodent) and human in vivo concentrations (in vitro-to-in vivo extrapolation 

[IVIVE]; see Section 3.3.2.3) (Hubal 2009; Rotroff et al. 2010; Wetmore et al. 2013; Wetmore et al. 

2012). This extrapolation supports quantitative comparisons of in vitro toxicity results with in vivo 

results and estimates of dose-response for human exposures. 

With the current state of the science, estimates of risks of disease in humans based 

exclusively on in vitro findings are too uncertain, and are primarily useful for screening and 

ranking large numbers of chemicals for further evaluation and assessment. Insights on 
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underlying mechanisms of toxicity, and the factors that might contribute to the variability in 

response to chemical exposure, however, are progressing from these data streams and increasing 

their utility in understanding risks (Lock et al. 2012). 

5.4 Certain Caveats Pertaining to New Data Types in Risk Assessment 

In general, much of the new toxicogenomic data currently being generated is associative in nature, 

that is, exposure and adverse outcomes can be associated with hundreds to thousands of gene 

changes, not all of which are likely to be causal in nature (Mendrick 2011). Associative data are only 

“suggestive” of a causal relationship between exposure and adverse health outcomes/ Criteria to 
move from “suggestive” to “likely” causal include meta-analyses of multiple, independent studies 

yielding similar results, experimental evidence of alterations in putative AOP networks with 

consequent health outcomes (such as pharmacological interventions, gene knock-in/-out studies, or 

alterations in risks due to human gene variants in key pathways), or combinations of traditional 

and NexGen data. The prototypes demonstrated how different types of evidence in each decision 

support category might be characterized with respect to causality and evidence integration. This is 

shown in Table 11. Additionally, 

	 Cell type, tissue, individual, subpopulation, species, and test system can affect how specific 

alterations in molecular events manifest as adverse outcomes or disease, even when the 

molecular signature is the same. This phenomenon is likely due, at least in part, to 

epigenomic differences and genomic plasticity. This issue should be considered within an 

assessment, as is feasible. 

	 The metabolism of many chemicals often plays an important role in toxicity. That most HT 

in vitro test systems are not metabolically competent should be taken into account. 

Although various approaches to add metabolic capability are being evaluated, satisfactory 

solutions are not yet available. Consequently, positive results can be informative, but 

negative results should not be interpreted as lack of toxicity. 

	 Molecular profiles appear time-dependent, that is, they evolve over time with continued 

exposure and post-exposure. Predicting adverse outcomes therefore can be challenging 

based only on “snapshots” of biological events/ Some signatures do appear to be stable over 

time, and might serve as reliable indicators of chronic outcomes. 

	 Adverse outcome arguments in support of a regulatory assessment cannot be made solely 

with gene expression data, as messenger ribonucleic acid (mRNA) expression levels cannot 

be used to infer protein activity directly. These data could, however, be suitable for ranking 

and screening. Gene expression data can also be used in a regulatory assessment to 

complement other mechanistic data. 

	 Data reproducibility and false negative rates remain potential limitations of HTS/HCS 

assays (e.g., toxicogenomics). The false negative rate (i.e., deeming a chemical nontoxic 

when it is toxic) tends to decrease as the number of independent replicates used increases. 

Successful screening programs require low false negative rates, while balancing their 

efficiencies (i.e., cost and throughput). 
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	 Our current ability to monitor multiple molecular processes (i.e., genomics, transcriptomics, 

proteomics, and epigenomics) in a single study is very limited, primarily due to expense. 

This lack of biological integration limits our understanding. 

	 Sufficient good-quality data from the open literature adequate to support risk assessment 

are available for a limited number of chemicals, at this time, due primarily to experimental 

design and reporting issues. This lack of data underscores the critical importance of high-

quality research and testing programs like ToxCast and Tox21 to advance the methods 

development; it also emphasizes the need for systematic review of the data. 

5.5 Fit-for-purpose Assessment 

Table 12 integrates many of the lessons learned from the NexGen effort and illustrates components 

of “fit-for-purpose” assessments matched to the decision-context categories. Listed in the table are 

potential uses for NexGen assessments, data sources and types in different assessment categories, 

exposure paradigms used, incorporation of metabolism and toxicokinetics, use of traditional data, 

hazard characterization, potency metrics, inferences drawn about the causal associations among 

exposure, AOPs and adverse outcomes, and the numbers of chemicals that can be assessed over a 

given time period. 

5.6 Conclusions 

Based on the lessons learned in the NexGen program, several new types of high- and medium-

throughput assessments are being advanced. In the foreseeable future: 

	 Tens of thousands of chemicals with no or very limited traditional data will be analyzed 

using similarities in physical-chemical structure of known toxicants to estimate the toxicity 

of unstudied chemicals (often called quantitative structure-activity modeling); and using 

rapid, robotically conducted in vitro bioassay data to identify a chemical’s potency to alter 
important biological processes as indicators of toxicity (e.g., ToxCast and Tox21 programs). 

	 Thousands of chemicals will be evaluated using computer-driven analyses of the world’s 
new and existing data, extracted from the published literature and stored in massive 

databases, to develop new knowledge about the potential toxicity of chemicals, and the 

causes of disease/ Examples of such databases include the National Library of Medicine’s 
National Center for Computational Biology databases and the Comparative Toxicogenomic 

Database (CTD). Previously, analyzing so much data from so many sources in an integrated 

fashion was not possible. 

	 Hundreds of chemicals will be evaluated using a variety of new methods, including a 

concerted, mechanistic approaches to understanding the cumulative effects posed by 

multiple chemical and nonchemical stressors. 

Issues of particular interest, likely to be informed by new and emerging knowledge, are historically 

difficult risk assessment questions such as: Why do individuals and specific populations respond 

differently to environmental exposures? Are children at particular risk for certain exposures and 

effects? What happens when people are exposed to low levels of many chemicals? How might other 

environmental factors like poverty and preexisting ill health make chemical exposures riskier? 
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Table  12. Illustrative Fit-for-Purpose Assessments Matched to the Decision-context Categories  

 Description 
 Tier 1 

 Prioritization and Screening 
 Tier 2 

-  Limited scope Assessments 
 Tier 3 

-  Major scope Assessments 

Potential Uses of 
 NexGen Assessments 

  

  

  

Screening chemicals with 
no-data-other-than-QSAR
or-HT-data  
Queuing for research, 

 testing, or assessment 
Urgent or emergency 

 response 

Generally nonregulatory decision-
making  

   Urban air toxics 
   Potential water contaminants 
   Hazardous waste and superfund 

 chemicals 
   Urgent or emergency response 

Often regulatory decision-
 making 

   National risk assessments 
   Community risk assessment 
  Special problems  

 Data Sources     EPA databases such as ACToR 
 and ToxCast 

NIH databases, Array express, 
 NHANES 

 All policy-relevant data 

a New Data Types  QSAR, high-throughput 
 screening, read across 

High-content assays, medium 
 throughput assays, knowledge 

   mined large data sets, AOPs 

Molecular epidemiology, 
 clinical and animal studies 

Exposure Paradigms of 
 Studies Used in  
 Assessments 

   In vitro, in silico        In vitro, in situ, and in vivo, in silico   In vivo 

Metabolism in Test 
 Systems 

Little to none    Partial to intact  Intact 

 Incorporation of 
 Toxicokinetics 

  Reverse toxicokinetic models Reverse toxicokinetics models, 
biomonitoring  

Dosimetry and PK modeling   

  Traditional In Vivo Data  Anchors in vitro assays using  No to very limited 
pesticide registration data  

 Nonspecific Nonspecific to Identified  

 Relative rankings and   Relative rankings and  
 toxicity values  toxicity values 

New data types augment 
traditional data that remain 

 basis for assessment 

 Identified 

 Risk distributions, cumulative 
 risks, community risks 

 Hazards 

 Potency Metrics 

Strength of Evidence  
Linking Exposure to 
Adverse Effects  

 Suggestive   Suggestive to likely   Suggestive to known 

Numbers of Chemicals 
 that Can Be Assessed 

 1000s–10,000s  100s–1000s  100s 

Time to Conduct 
 Assessment 

a

 Hours–Days  Hours–Weeks  Days–Years 



Each assessment  type also uses the  data types from the column to the left.  

Such large-scale  knowledge creation  was unimaginable 15  years ago. This new knowledge  holds 

great promise for impro ving  our ability to conduct  risk assessments, and to protect  human  health  

and the environment.  

Logistical and methodological challenges in interpreting and using newer data and methods in risk 

assessment remain significant. Despite these challenges, we anticipate that these new approaches 

will have a variety of applications for risk managers within EPA and the risk assessment  community  

at large in the near future. Such applications include identifying safer chemicals and processes,  and 

reducing hazardous chemicals in the environment. Near-term progress will include case-by-case  
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development of additional examples made available for public input and peer review. The research 

implications generated from this report are captured in EPA’s Chemical Safety for Sustainability 
(CSS) and Human Health Risk Assessment (HHRA) research program plan, and the National 

Institute of Environmental Health Sciences’ (NIEHS) Strategic Plan/ EPA’s research plans are 

discussed in more detail in Section 6. 
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6 	 Challenges and Research Directions 

6.1 Challenges 

More than 80,000 chemicals are currently listed or registered for use in the United States under 

EPA authorities, and at least a thousand more are introduced every year (EPA 2014f). The 

overarching challenge is to obtain and interpret data that provide the information risk assessors 

need to assess these chemicals quickly and efficiently for safety and sustainability. The information 

needed includes the following: (1) how best to design and produce safer chemicals, (2) how 

chemicals and their byproducts move through the environment, (3) what the sources of chemical 

exposure are, (4) what are the critical biological processes and toxicity pathways that chemicals 

might interact with to cause disease, and (5) what is the contribution of exposure to chemicals in 

the environment to the overall disease burden for susceptible populations (EPA 2012b). 

The prototypes presented in this report demonstrate how new data types (molecular, cellular, 

tissue, whole body) can be used to address (1), (4), and (5) above. Arguably, the greatest challenge 

to the use of molecular data in risk assessment is interpreting those data to predict observable 

adverse effects in humans. In other words, how do changes in molecular events affect cells, changes 

in cells affect tissues and organs, and changes in organs affect the whole body? Large amounts of 

HTS/HCS data are being collected on effects at the molecular level, and the body of information on 

diseases and disease outcomes is substantial, yet only very sparse data are available on 

intermediate levels of organization and on the sequence of events from disruption of normal 

biology at the cell level to effects at higher levels of organization. 

To fill these gaps in our understanding of the complex chemical and biological interactions at 

different levels of biological organization, advanced research programs and models are needed. 

Specific areas of interest include the following: 

	 reliable, predictive molecular indicators for a wide variety of chemicals and diseases to 

assess hazard and characterize exposure-dose-response; 

	 identification of the networked interactions among genes, proteins, cells, tissues, organs, 

individuals and populations; and the sequence of events at different levels that can lead to 

disease (i.e., adverse outcome pathway (AOP) networks; Hartung and McBride 2011); 

 an integrated understanding of how genes are expressed, and how the resulting proteins 

interact to maintain the body; 

 methods to group chemical and nonchemical stressors based on common AOPs to enable 

cumulative risk assessment; 

	 methods to measure and account for individual human variability due to genetic 

differences, preexisting backgrounds of disease and exposure, or adaptive and 

compensatory capabilities; and how to incorporate this information to assess risk at the 

population level; 

	 data and methods to adjust for interspecies differences when assessing potential toxicity in 

humans based on nonhuman toxicity data; and 
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	 data and methods to characterize the dose-response curve quantitatively for responses at 

low levels of exposure. 

Verifying high throughput/high content toxicity testing schemes and computational models is 

essential for these new data and approaches to be used for risk-based decisions or in risk 

assessments. Central to this effort is a framework and criteria for determining the adequacy of the 

new data types for different types of decisions. The level of certainty needed in the data varies with 

its use because inaccuracies in results have increasing consequence and costs as one progresses 

from decisions about screening, to further testing, to what are safe levels, to what regulatory 

actions need to be taken (Crawford-Brown 2013). Traditional “validation” schemes designed to 

evaluate conventional assay and testing structures do not adequately address the potential uses of 

these new data and methods, and would require an impractical number of years to implement. 

Thus, as the technology for rapid, efficient, robust hazard testing advances, the verification process 

for these new methods must also advance to provide confidence in their use. Clear and transparent 

articulation of these decision considerations will be important to the acceptance of, and support for, 

assessment results. 

6.2 Research Directions 

EPA’s Office of Research and Development (ORD; EPA 2014c) has the lead on identifying and 

conducting EPA research to address the above challenges. ORD has six national research programs, 

two of which are discussed here that directly address innovation and development of NexGen risk 

assessments: (1) the Chemical Safety for Sustainability (CSS; EPA 2014a) research program; and (2) 

the Human Health Risk Assessment (HHRA; EPA 2014b) research program. The discrepancy in 

available data across levels of biological organization and over time is a major focus of ongoing 

research in both programs. CSS develops new tools and innovative technologies to evaluate 

chemical toxicity, to optimize confidence in risk management decisions, and to prioritize time-

critical research. HHRA incorporates and integrates the available tools and scientific information 

into state-of-the-science risk assessments that support regulatory actions to protect human health 

and the environment. 

Insights gained during the development of the prototypes presented in this report (see Section 5) 

are guiding further research. Specific areas of focus are reflected in the top level CSS and HHRA 

research themes and areas of interest bulleted below. EPA freely provides the details of the 

strategic research action plans in the CSS and HHRA programs (2012b, d). EPA also collaborates 

with numerous other research centers. Appendix A briefly summarizes relevant research activities 

with EPA’s collaborators in the United States and in Europe (where complementary, equally 

compelling research is underway) to advance the next generation of toxicity testing and risk 

assessment. Highlights of ongoing research sponsored by NIEHS (2014c) is also listed below. 

Top Themes in EPA’s Ongoing Chemical Safety and Sustainability Research Program (EPA 2012b) 

include the following: 
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 Sustainable Chemistry;
 

 High-Throughput Toxicity Assay Development, Predictive Models, Integrated Testing 

Strategies; 

 Rapid Exposure and Dosimetry Tools and Data; 

 Evaluation of Alternative Assays and Applications in Hazard Assessment; 

 Chemical Evaluation for Emerging Materials; 

 Life Cycle and Human Exposure Modeling; 

 Integrated Modeling for Ecological Risk Assessment; 

 AOP Discovery and Development; 

 Systems Biology Computational Models – Virtual Tissue (VT) Models based on Advanced In 

Vitro (e.g., organotypic systems), Alternative Species In Vivo Data, and Knowledge Mining; 

and 

 Integrated Applications and User Interfaces to Support Decision-making. 

Top areas in EPA’s Human Health Risk Assessment Research Program (EPA 2012d) include: 

	 Identify, evaluate, integrate, and apply relevant data from a variety of scientific disciplines 

to characterize the risk from exposures of individual chemicals, mixtures and nonchemical 

stressors. 

	 Develop a suite of state-of-the-science assessment products that inform a variety of risk-

based decisions by the EPA, State/local/tribal agencies and the public to protect public 

health and the environment (e.g., ISAs, IRIS, MSDs, PPRTVs51). 

	 Broaden exposure assessment technology and assessment guidance to translate exposure 

and dose estimates across various experimental designs to address different exposure 

scenarios flexibly. 

	 Update dosimetry modeling and biomarker approaches to predict a profile of internal dose 

metrics across all routes to support mode of action (MOA)/AOP, and aggregate or 

cumulative risk descriptions. 

 Expand cumulative risk assessment methods to incorporate ecological impacts and indices 

of resilience and wellness to support sustainability and community risk characterizations. 

 Improve prioritization and emergency response by evaluating and incorporating new data 

streams, and developing rapid assessment approaches. 

51ISA = Integrated Science Assessments for six principal pollutants - ozone, particulate matter, carbon 
monoxide, sulfur dioxides, nitrogen oxides, and lead; IRIS = Integrated Risk Information System human health 
assessments on more than 550 chemical substances; MSD = Multipollutant Science Documents; PPRTV = 
Provisional Peer-Reviewed Toxicity Value. 
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 Advance decision analytic and probabilistic approaches to characterize response functions 

more fully and better inform cost-benefit analyses. 

 Enhance data access and management systems to support transparency and efficiency. 

	 Develop and apply effective methods for stakeholder engagement and risk assessment 

training to varied audiences through the Risk Assessment Training and Experience (RATE) 

program. 

Highlights of NIEHS-sponsored research – Mapping the Human Toxome by Systems Toxicology 

(NIEHS 2014c) include: 

	 Comprehensively map pathways of endocrine disruption as a first step toward mapping the 

human toxome (the entirety of pathways of toxicity in humans). 

	 Leverage rapidly evolving scientific understanding of how genes, proteins, and small 

molecules interact to form molecular pathways that maintain cell function, applying 

orthogonal omics approaches (transcriptomics, metabolomics) to map and annotate toxicity 

pathways for a defined set of endocrine disruptors. 

	 Conduct a series of stakeholder workshops to enable development of a consensus-driven 

process for pathway annotation, validation, sharing and risk assessment. 

	 Develop a public database on toxicity pathways, providing a common, community-

accessible framework that will enable the toxicology community at large to map the human 

toxome comprehensively and cooperatively using integrated testing strategies. 

	 Verify the identified pathways of toxicity, and extend the concepts to additional toxicants, 

cell systems, and endocrine disruptor hazards to additional omics platforms and to dose 

response modeling. 

ORD will continue to elaborate the NexGen framework, identify hazards posed by environmental 

factors, estimate potencies of toxic chemicals to cause harm, and characterize risk to the general 

population and sensitive subpopulation. These efforts will incorporate the information from new 

biology targeted to specific risk assessment purposes. ORD also will work with EPA’s Program 

Offices using Tier 1 screening and prioritization approaches to queue up new assessments. Results 

from this work will be used to refine the testing paradigm and inform research. 

Toxicity values informed by new types of knowledge will be developed in each tier and decision 

context, from needs to screen chemicals for future testing to the development of reference values 

for a larger number of chemicals. Levels of confidence in those values will be characterized 

depending on the types and quality of the supporting data. Examples will be identified where 

molecular (and higher level) biology data might be considered for Tier 3 assessments to augment 

traditional assessment methodologies. These examples will provide more opportunities to solicit 

public comment and peer review. A verification process will be developed for new methods and 

data types with a focus on clear articulation of the considerations for incorporating results into 

different decision contexts and into the overall integration of evidence for a risk assessment. The 

goal will be to increase confidence in assessments that include these new approaches. Significant 

September 2014 125 



   

 

 

 

 

 

 

    

  

  

 

scientific gaps will continue to be identified from ongoing prototype development, and addressed in 

future research planning. 

Logistical and methodological challenges in interpreting and using newer data and methods in risk 

assessment remain significant. Despite these challenges, we anticipate that the new approaches 

demonstrated in the prototypes will have a variety of applications for risk managers within EPA 

and the risk assessment community at large in the near future, including identifying safer chemicals 

and processes and reducing risk from exposures to hazardous chemicals in the environment. Near-

term progress will include case-by-case development of additional examples that are made 

available for public input and peer review. The research gaps identified in this report will continue 

to guide research at EPA and throughout the world. The reader is encouraged to frequent the 

internet sites of EPA and other research programs to learn about the latest developments and 

progress toward planned objectives in this rapidly evolving science. 
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Appendix A
 
Advancing the Next Generation of Toxicity Testing and Risk
 

Assessment: Government Activities in Europe and the United States 


European Union 

The European Chemicals Agency (ECHA). In response to environmental concerns, a desire for increased assessment 
efficiencies, and a desire to reduce reliance on in vivo animal testing, the European Union (EU) enacted an expansive new 
program called Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) in June 2007. This legislation 
places greater responsibility on industry to test and manage the risks posed by their chemicals. Under REACH, companies 
must develop detailed technical dossiers and chemical safety reports and submit them to the European Chemicals Agency 
(ECHA). About 12,000 chemicals have been registered for consideration with ECHA. Many more chemicals are anticipated 
in the near future. Additionally, the 7th Amendment to the EU Cosmetics Directive prohibits putting animal tested 
cosmetics on the market in Europe after 2013. Although current alternative methods more closely resemble traditional 
methods, the EU has invested 50M Euros in a research program to further next generation methods (OECD 2014c). 
Current ECHA guidance is available on using quantitative structure activity relationships (QSARs), in vitro assays, and read 
across (also called near analog structure activity relationships) to support assessments. 

REACH and the 7th amendment will significantly impact nearly all multinational companies and are important drivers for 
the development and use of new molecular based methodologies/ Europe’s chemical trade accounts for about 40% of the 
global market, involving 27 countries and almost half a billion people. 

The Joint Research Centre (JRC) is the scientific and technical arm of the European Commission. It provides scientific 
advice and technical support to EU policies. The JRC has seven scientific institutes (featuring laboratories and research 
facilities) located at five sites. �elgium, Germany, Italy, the Netherlands, and Spain/ The JR�’s Institute for Health and 
�onsumer Protection’s main research relevant to NexGen includes integrated risk and benefit assessments of chemical 
substances; fit for purpose analytical tools to help ensure the safety of food and consumer products; and optimization 
and validation of methods that reduce the reliance on animal tests in the safety assessment of chemicals. 

U.S. Activities 

Several documents have guided the NexGen effort, including the Strategic Plan for the Future of Toxicity Testing and Risk 
Assessment at the U.S. Environmental Protection Agency (EPA 2009b), the Toxicology in the 21st Century (Tox21) strategy, 
and the National Institutes of Health Strategic Plan (NIEHS 2014e). Ongoing research activities of several federal agencies 
that have informed and continue to inform the NexGen effort are described below. 

The Centers for Disease Control and Prevention (CDC) has several groups involved in systems biology and computational 
environmental health and occupational research. The National Center for Environmental Health (NCEH) and Agency for Toxic 

Substances and Disease Registry (ATSDR) scientists in the Computational Toxicology Laboratory have applied several new 
approaches for improving chemical risk assessments. They have mined the National Health and Nutrition Examination 
Survey (NHANES) data set to obtain high quality analytical and human health information, which is representative of the 
general U.S. population, and used computer modeling to identify sensitive populations for health outcomes at 
environmental exposure levels. A second project involved use of NHANES public health genomics data to identify allelic 
differences in ALA dehydratase for susceptibility to lead induced hypertension. Another concerned the development and 
application of QSAR, physiologically based pharmacokinetic (PBPK), and molecular docking approaches. These studies 
involved both data mining of the published scientific literature and collaborative laboratory studies with scientists at the 
Food and Drug Administration (FDA). 

The National Institute for Occupational Safety and Health (NIOSH) is investigating susceptibility gene variants that 
contribute to the development and severity of occupational diseases using high density and high throughput (HT) 
genotyping platforms. Understanding the genetic contribution to the development, progression, and outcomes of 
complex occupational diseases will help improve the accuracy of risk assessment and improve safe exposure levels for 
genetically susceptible groups in the workforce. The FDA National Center for Toxicological Research (NCTR) is conducting 
translational research to develop a scientifically sound basis for regulatory decisions and reduce risks associated with FDA 
regulated products. NCTR research evaluates biological effects of potentially toxic chemicals, defines the complex 
mechanisms that govern their toxicity, identifies the critical biological events in the expression of toxicity, discovers 
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biomarkers, and develops new scientific tools and methods to improve assessment of human exposure, susceptibility, and 
risk. Examples of tools created by NCTR include !rrayTrack¯, Decision Forest, Endocrine Disruptor Knowledge �ase 
(EDKB), Gene Ontology for Functional Analysis (GOFFA), and SNPTrack. Efforts include the MicroArray Quality Control 
(MAQC) consortia. 

The National Institutes of Health (NIH) National Center for Advancing Translational Sciences (NCATS) conducts research 
to resolve scientific and technical challenges that might cause barriers to the efficient development of new treatments 
and tests to improve human health. The National Chemical Genomics Center (NCGC) at the National Center for Advancing 
Translational Sciences applies high throughput screening (HTS) assay guidance, informatics, and chemistry resources for 
N�!T s Re engineering Translational Sciences research projects. Specifically, NCGC research programs include assay 
development and HTS, and participation in Tox21. NCGC Assay Biology Teams are researching optimization of biochemical, 
cellular, and model organism based assays submitted by the biomedical research community for HT small molecule 
screening. The results of these screens (probes) can be used to further examine protein and cell functions and biological 
processes relevant to physiology and disease (NIH 2014). 

The National Human Genome Research Institute (NHGRI) was established by NIH in 1989 to implement the International 
Human Genome Project to map the human genome. NHGRI has developed programs for a variety of research projects 
including Encyclopedia of DNA Elements (ENCODE), Gene Expression Omnibus (GEO), and collaborative projects, including 
the Comparative Toxicogenomic Database (CTD), HapMap, and Gene. Through the application of these tools, NHGRI 
hopes to gain a greater understanding of human genetic disease, and develop better methods for the detection, 
prevention, and treatment of genetic disorders. 

The National Institute of Environmental Health Science (NIEHS) and the National Toxicology Program (NTP) have played 
an integral role in the development and application of HTS data. Current research is focused on developing and validating 
Tox21 approaches to improve hazard identification, characterization, and risk assessment (Birnbaum 2012; Serafimova et 
al. 2007). The NTP HTS program has three specific goals: (1) prioritizing substances for in depth toxicological evaluation, 
(2) identifying mechanisms of action for further investigation (e.g., disease associated pathways), and (3) developing 
predictive models for in vivo biological response (i.e., predictive toxicology). NTP is developing innovative and flexible 
approaches to data integration, both across research programs and across different data types (e.g., HT, mechanistic, 
animal studies) (Bucher et al. 2011). These efforts seek to integrate results from new techniques with traditional 
toxicology data to provide a public health context. 

The Engineer Research and Development Center (ERDC), the research organization of the U.S. Army Corps of Engineers, 
conducts research and development in support of warfighters, military installations, and civil works projects involving 
water resources and environmental missions. The ERDC Toxicogenomics research cluster focuses on using genomics to 
develop tools to rapidly assess toxicity of military chemicals in a wide range of animals, identifying gene biomarkers of 
exposure, understanding the mechanisms by which military chemicals cause toxicity, and extrapolating toxicity effects 
across multiple species. Capabilities of the team include advanced instrumentation to characterize impacts of chemicals 
on gene expression with high density gene arrays, DNA sequencing, and real time polymerase chain reaction (RT PCR) 
assays. ERDC Toxicogenomic projects include development of rapid assays to assess whole genome impacts of munitions 
related compounds, including gene arrays with short exposure screening in daphnia, rat cells, rat livers, and fish; 
comparison of genomic and behavioral responses of fathead minnows and zebrafish to chemical exposures; conservation 
of response to nitroaromatics across species; and support for a toxicogenomic assessment framework to integrate 
predictive toxicology of munitions related compounds. 

Several EPA Office of Research and Development (ORD) laboratories and centers have been involved in NexGen/ EP!’s 
National Center for Environmental Assessment (NCEA) has assumed a leadership and coordination role for the NexGen 
effort/ The National �enter for �omputational Toxicology (N��T) is the largest component of EP! s �omputational 
Toxicology Research Program. The Center coordinates computational toxicology research on chemical prioritization and 
screening, informatics, and systems modeling. NCCT research includes the (1) use of informatics, HTS technologies, and 
systems biology to develop accurate and flexible computational tools that can screen the thousands of chemicals for 
potential toxicity; and (2) application of mathematical and advanced computer models to help assess chemical hazards 
and risks/ EP!’s National �enter for Environmental Research (N�ER) supports extramural computational toxicology 
research. The National Health and Environmental Effects Research Laboratory (NHEERL) conducts toxicological, clinical, 
and epidemiological research to improve the process of human health risk assessments, including development of 
biological assays and toxicological assessment methods, predictive pharmacokinetic/pharmacodynamic models, and 
advanced extrapolation methods. 
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Appendix B
 
Science Community and Stakeholder Engagement
 

This appendix provides more details on outreach to the science community and stakeholders. 

Outreach is a principle of the NexGen framework. The following discussion of engagement efforts is 

presented in chronological order. 

Expert Workshop 

EPA convened a 3-day expert workshop, “Advancing the Next Generation of Risk Assessment. The 
Prototypes Workshop” on November 1–3, 2010, in Research Triangle Park, North Carolina to 

discuss the draft framework, draft prototypes, ongoing research, and other project elements. 

Participants were chosen based on their expertise in traditional and more recent approaches in 

molecular, computational, and systems biology, particularly as that expertise pertains to the draft 

prototypes. Individuals from various government agencies and stakeholder categories participated 

in the workshop. Individual advice, rather than consensus, was sought. 

The workshop goals were to (1) explore the best way for developing case studies (termed 

prototypes) that evaluated and demonstrated how molecular biology information can be used in 

health assessments; (2) discuss a variety of new data types and methods with potential to 

characterize data-limited chemicals; (3) consider how this information might augment, extend, or 

replace traditional data in health assessment; and (4) summarize options for expanded future work 

and research needs. The workshop report with the agenda and list of participants is available 

online (EPA 2010). 

Stakeholder Involvement 

Public Dialogue Conference 

EPA sponsored a public dialogue 

conference on February 15 and 16, 

2011, in Washington, DC, “Advancing 

the Next Generation of Risk 

Assessment/” This conference afforded 

stakeholders the opportunity to learn 

about NexGen and provide their 

thoughts on challenges the program 

faced and its proposed path forward. 

Approximately 160 participants, 

representing 11 stakeholder groups, 

attended the conference (Figure A-1). 

A conference report was released (EPA 

2011a) and videos of the presentations 

are also available (EPA 2014e). 

Figure A-1. Categories of Stakeholders that Attended the  
February 2011 NexGen Public Dialogue Conference (EPA 2011a).  
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Public-Interest Group Perspectives 

Ronald White, a faculty member at Johns Hopkins Bloomberg School of Public Health, conducted 

informal interviews with several Washington, DC-based representatives of national environmental, 

public health, and animal welfare public-interest organizations, as part of his research on public 

engagement. He also developed a Web-based assessment in late 2010 to ascertain, from 

nongovernmental public-interest organizations, their knowledge and interest in emerging scientific 

approaches for chemical and pollutant risk assessment. Of the 24 organizations contacted, 8 (33%) 

responded to the assessment. 

A key question in both forums was how relevant the NexGen program is to near-term EPA risk 

assessment procedures and control policies. The stakeholders generally supported the concept of 

integrating the results from emerging biological science and analytical techniques into EPA’s 

approach to chemical health-based risk assessment. They also raised concerns regarding the 

potential to overstate the utility of NexGen approaches; how NexGen prototypes will address key 

methodological issues; and transparency, meaningful public engagement, and applying the 

approaches in risk management. 

Business Community Perspectives 

Dr. Gerald Poje, an environmental health consultant and former member of the U.S. Chemical Safety 

and Hazard Investigation Board, conducted informal interviews with industry and business 

representatives. He met with individuals representing the specialty chemical manufacturing and 

pharmaceutical industries and the retail and energy sectors. The participants generally were 

optimistic about advances in risk assessment, identifying two potential advantages: (1) better 

prioritization of the needs for more expensive and longer duration whole-animal testing and (2) 

saving time and money while rationalizing decisions using high-throughput and other Tiers 1 and 2 

data. They suggested that NexGen’s success will depend on EPA’s ability to prove the value of the 

tiered approach to EPA’s emerging risk assessments, the Agency’s investment in the long-term 

iterative NexGen research effort, and the timely and effective communication of the evidence to 

support science-based risk assessment. Some in the business community expressed concern over 

whether EPA could develop the expertise to guide the program to a successful conclusion. Winning 

over a larger community skeptical of new approaches and the complex associated science might be 

challenging but such challenges are considered surmountable if EPA can build capacity and 

communicate how new data types and approaches can be used for risk assessment. 

Continued Engagement with the Science Community and the Public 

In 2012, the Science Advisory Board and the Board of Scientific Counselors reviewed aspects of the 

NexGen program as part of their evaluations of EPA’s computational toxicology research (BOSC 

2010; SAB 2013). Both boards commended EPA’s Computational Toxicology Research Program’s 

efforts to advance hazard/risk assessment and made recommendations for its continued success: 

Continue further research, engage the scientific community and stakeholders, disseminate scientific 

findings more broadly, gather user feedback from the public, and improve data access. 
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The National Academies formed the Standing Committee on Use of Emerging Science for 

Environmental Health Decisions to facilitate communication among government, industry, 

environmental groups, and academia about scientific advances useful in identifying, quantifying, 

and controlling environmental impacts on human health. New methods and approaches are 

explored in workshops, providing a public forum for exchanging information and discussing 

potential implications for environmental health decisions. These workshops facilitated discussion 

among the scientific community during the development of the NexGen prototypes. 

As mentioned in the introduction, the external peer-review and public comments on the draft 

NexGen report also have been considered. Changes have been incorporated as appropriate, in this 

final version. 
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Appendix C
 
Principles and Methods for Uncertainty and Variability Analysis
 

In A Risk Characterization Framework for Decision-Making at the Food and Drug Administration, the 

National Research Council (NRC) noted methods for uncertainty analyses. These methods are 

applicable to new and traditional data types. 

A white paper written for EPA outlines a general hierarchy of methods that can be used to estimate 

quantities when uncertainty about their “true” values is substantial (Frey et al. 2003). Four general 

categories of methods are described without any implied preferences or priorities: 

1.	 statistical methods based on empirical data, which use classical statistics to draw inferences 

from “hard” data alone; 

2.	 statistical methods based on judgment, in which expert judgments and Bayesian approaches 

to statistical analysis are included, often in combination with “hard” data; 

3.	 other quantitative methods that involve approaches not based on probability theory, such 

as interval methods, fuzzy methods, and meta-analytic methods; and 

4.	 qualitative methods that can be used when key aspects of uncertainty cannot be captured 

by quantitative methods. 

In the report Science and Decisions, NRC articulated principles for uncertainty and variability 

analyses. “The principles in Box 4-7 are consistent with and expand on the ‘Principles for Risk 

Analysis’ originally established in 1995, noted as useful by the National Research Council (NRC 

2007b), and recently re-released by the Office of Management and Budget and the Office of Science 

and Technology Policy (OMB/OSTP 2007)” (NRC 2009). In another report, Environmental Decisions 

in the Face of Uncertainty (NRC 2013), NRC recommended the following principles for uncertainty 

and variability analysis: 

	 Risk assessments should provide a quantitative, or at least qualitative, description of 

uncertainty and variability consistent with available data. The information required to 

conduct detailed uncertainty analyses might not be available in many situations. 

	 In addition to characterizing the full population at risk, attention should be directed to 

vulnerable individuals and subpopulations that might be particularly susceptible or more 

highly exposed. 

	 The depth, extent, and detail of the uncertainty and variability analyses should be 

commensurate with the importance and nature of the decision to be informed by the risk 

assessment and with what is valued in a decision. This might best be achieved by engaging 

assessors, managers, and stakeholders early in the nature and objectives of the risk 

assessment and terms of reference (which must be clearly defined). 

	 The risk assessment should compile or otherwise characterize the types, sources, extent, 

and magnitude of variability and substantial uncertainties associated with the assessment. 

To the extent feasible, treatment of uncertainties among the different components of a risk 

assessment and among different policy options being compared should be homologous. 
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	 To maximize public understanding of, and participation in, risk-related decision-making, a 

risk assessment should explain the basis and results of the uncertainty analysis with 

sufficient clarity to be understood by the public and decision-makers. The uncertainty 

assessment should not be a significant source of delay in releasing an assessment. 

	 Uncertainty and variability should be kept separate conceptually in the risk 

characterization.
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Glossary Term  Description  

AC50 	 The concentration at which activity is 50  percent  of its maximum. This value is useful 
in comparing assay results.  

adverse outcome pathway 	 An  AOP analytical construct that describes a sequential chain of causally linked  
(AOP); AOP network 	 events at different levels of biological organization that lead to an adverse health or 

ecotoxicological effect. AOPs are the central element of  a toxicological knowledge  
framework being  built to support chemical risk assessment based on mechanistic 
reasoning. AOP networks are the interrelated set of AOPs that generally underlie  
disease and are generally analogous to National Institutes of Health’s National 
Center for Biotechnology Information Diagrams for specific diseases.  

 Organization for Economic Cooperation and Development (OECD). The OECD 
Adverse Outcome Pathway (AOP)  program.  Retrieved from  
http://www.oecd.org/env/ehs/testing/adverse-outcome-pathways-molecular
screening-and-toxicogenomics.htm  (accessed August 29, 2014).  

 Ankley GT; Bennett RS; Erickson RJ; Hoff DJ; Hornung MW; Johnson RD; Mount DR;  
Nichols JW Russom CL; Schmieder PK; Serrrano JA; Tietge JE; Villeneuve DL. (2010). 
Adverse outcome pathways:  A conceptual framework to support ecotoxicology 
research and risk assessment. Environmental Toxicology and Chemistry 29 (3): 730
741. 
http://service004.hpc.ncsu.edu/toxicology/websites/journalclub/linked_files/Fall10/ 
Environ%20Toxicol%20Chem%202010%20Ankley.pdf.  

ArrayTrack™ 	 Publicly available toxicogenomics software for DNA microarrays. It contains three 
integrated components: (1) a database (MicroarrayDB) that stores microarray data 
and  associated toxicological information; (2) tools  (TOOL) for data visualization and  
analysis; and (3) libraries (LIB) that provide curated functional data from public 
databases for data interpretation/ Using !rrayTrack¯,  an analysis method can be 
selected from  TOOL and applied to selected microarray data stored in the 
MicroarrayDB.  Analysis results can be linked directly to pathways, gene ontology,  
and other functional information stored in LIB.  

 Food  and Drug !dministration/ !rrayTrack¯ F!Qs/ !vailable online at 
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/ucm135070.h 
tm  (accessed  August 29, 2014).  

assay 	 1. The process of quantitative or qualitative  analysis of a component of a sample; or  
2. Results of a  quantitative or qualitative analysis of a component of a sample.  

 National Library of Medicine. IUPAC Glossary of Terms Used in Toxicology, 2nd Ed. 
Available online at http://sis.nlm.nih.gov/enviro/iupacglossary/frontmatter.html  
(accessed August 29, 2014).  

benchmark dose (BMD)  An approach that uses dose-response modeling used to help describe dose-response 
relationships, that is, the percent of the population exhibiting an adverse effect(s) 
associated with specific doses of a chemical. The BMD corresponds to specific 
response levels near the low end of the observable range of the data. The BMD 
lower limit (BMDL) is a statistical lower confidence limit on the dose at the BMD  
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Glossary Term	 Description 

U.S. Environmental Protection Agency (2012). Benchmark dose technical guidance. 
Available online at 
http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf 
(accessed August 29, 2014). 

bioinformatics	 A field of biology in which complex multivariable data from high-throughput 
screening and genomic assays are interpreted in relation to target identification and 
effects of sustained perturbations on organs and tissues to make biological 
discoveries or predictions. This field encompasses all computational methods and 
theories applicable to molecular biology and areas of computer-based techniques 
for solving biological problems, including manipulation of models and data sets. 

National Institutes of Health’s (NIH) National �enter for �iotechnology Information/ 
Bioinformatics. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=bioinformatics (accessed August 29, 
2014). 

bioassay	 A method of measuring the effects of a biologically active substance using an 
intermediate in vivo or in vitro tissue or cell model under controlled conditions. It 
includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of 
insulin, quantitation of tumor-initiator systems in mouse skin, calculation of 
potentiating effects of a hormonal factor in an isolated strip of contracting stomach 
muscle, etc. 

NIH’s National �enter for �iotechnology Information/ !vailable online at 
http://www.ncbi.nlm.nih.gov/mesh?term=bioassay (accessed August 29, 2014). 

biomarkers	 Measurable and quantifiable biological parameters (e.g., specific enzyme 
concentrations, specific hormone concentrations, a specific gene phenotype 
distribution in a population, presence of biological substances) that serve as indices 
for health- and physiology-related assessments, such as disease risk and 
environmental exposures. 

NIH’s National �enter for Biotechnology Information. Biological Markers. Available 
online at http://www.ncbi.nlm.nih.gov/mesh?term=biological%20markers (accessed 
August 29, 2014). 

BioSystems Database	 A biosystem, or biological system, is a group of molecules that interact in a biological 
system. One type of biosystem is a biological pathway, which can consist of 
interacting genes, proteins, and small molecules. Another type of biosystem is a 
disease, which can involve components such as genes, biomarkers, and drugs. 

A number of databases provide diagrams showing the components and products of 
biological pathways along with corresponding annotations and links to literature. 
The NCBI BioSystems Database was developed as a complementary project to 
(1) serve as a centralized repository of data; (2) connect the biosystem records with 
associated literature, molecular, and chemical data throughout the Entrez system; 
and (3) facilitate computation on biosystems data. 

NIH’s National Center for Biotechnology Information. Available online at 
http://www.ncbi.nlm.nih.gov/Structure/biosystems/docs/biosystems_about.html 
(accessed August 29, 2014). 
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Comparative A publicly available toxicogenomic database on the National Library of Medicine's 
Toxicogenomic Database (NLM) Toxicology  Data Network (TOXNET®)/ The �TD¯ elucidates molecular 
(CTD)™   mechanisms by which environmental chemicals affect human disease. It contains 

manually curated data describing cross-species chemical-gene/protein interactions 
and  chemical- and  gene-disease relationships. The results provide insight into  the 
molecular mechanisms underlying variable susceptibility and environmentally 
influenced  diseases. These data also will provide insights into complex chemical-
gene and protein interaction networks.  

 National Library of Medicine (2012). Fact Sheet. Comparative Toxicogenomics 
Database (�TD)¯/ !vailable online at 
http://www.nlm.nih.gov/pubs/factsheets/ctdfs.html  (accessed August 29, 2014).  

computational models  Computerized predictive tools.  Sometimes referred to as “in silico” models/  

 U.S. Environmental Protection Agency. Glossary of Terms:  Methods of Toxicity 
Testing and  Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html  (accessed August 
29, 2014).  

decision context  Decision context seeks to understand  and describe what management decisions are 
being made, why these decisions are made, and the relationship of these  decisions 
to previous and anticipated decisions. For example, decision context tries to answer 
some of the following questions: Are risks being ranked; if so, why? How will risk 
information be used in future decisions? Is a change in policy or management under  
consideration;  and if so, what is driving the change and what are the underlying  
policy  objectives? What is the general scope of alternatives under consideration and 
why?  
Decision context defines the roles and responsibilities of the ultimate decision 
maker, stakeholders, and key technical experts in relation to the decision process. 
Decision context also identifies the constraints within which a decision must be 
made and outputs that will result from the decision.  

 Structured Decision Making (SDM). (2008). Steps in the Decision Process: 
Introduction. Available online at 
http://www.structureddecisionmaking.org/steps/decisioncontext/  (accessed  August  
29, 2014).   

dbSNP  dbSNP  is world's largest database for nucleotide variations, and is part of the 
National Center for Biotechnology Information (NCBI),  an internationally respected 
resource for molecular biology information. As of this date, dbSNP comprises  a large 
cluster of species-specific databases that contain over 12 million nonredundant 
sequence variations (single nucleotide polymorphisms, insertion/deletions, and  
short tandem repeats) and over 1 billion individual genotypes from HapMap and  
other large-scale genotyping activities—more than  200GB of data and growing daily.  

 National Library of Medicine. General Information about dbSNP as a Database 
Resource. Available online at 
http://www.ncbi.nlm.nih.gov/books/NBK44469/#Info.what_is_dbsnp  (accessed 
August 29, 2014).   
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epigenetics  An emerging field of science that studies heritable changes caused by the activation 
and  deactivation of genes with no change in the underlying  DNA sequence of the 
organism. The word is Greek in origin and literally means over and  above (epi) the  
genome.  

 NIH’s National Human Genome Research Institute/ Talking Glossary of Genetic 
Terms. Available online at  
http://www.genome.gov/glossary/index.cfm?id=528&textonly=true  (accessed 
August 29, 2014).  

functional genomics  The study of dynamic cellular processes such as gene transcription, translation, and 
gene product interactions that define an organism.  

 NIH. Genomics and Advanced Technologies. Available online at 
http://www.niaid.nih.gov/topics/pathogengenomics/Pages/definitions.aspx  
(accessed August 29, 2014).  

gene-environment  The combined  effects of genotypes and environmental factors on phenotypic  
interaction  characteristics.  

NIH’s National �enter for �iotechnology Information/ Gene-Environment 
Interaction. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=gene%20environment%20interaction  
(accessed August 29, 2014).  

gene expression  The phenotypic manifestation of a gene or  genes by the processes of genetic 
transcription and  genetic translation.  

NIH’s National �enter for �iotechnology Information/ Gene Expression/ !vailable  
online at  http://www.ncbi.nlm.nih.gov/mesh/68015870  (accessed  August 29,  2014).  

Gene Expression Omnibus  A public repository that archives and freely distributes microarray, next-generation 
(GEO)  sequencing, and other forms of high-throughput functional genomic data submitted 

by the scientific community. In addition to data storage, a collection of Web-based  
interfaces  and applications is available to help users query  and  download the studies  
and  gene expression patterns stored in GEO.  

 NIH’s National �enter for �iotechnology Information/ Gene Expression Omnibus/ 
Frequently Asked Questions. Available online at 
http://www.ncbi.nlm.nih.gov/geo/info/faq.html  (accessed  August 29, 2014).  

Gene Ontology (GO) A product of the Gene Ontology (GO) proje ct. The GO project provides structured, 
database  controlled vocabularies and classifications that cover several domains of  molecular  

and  cellular biology and are freely available  for community use in the annotation of 
genes, gene products, and sequences. Many model  organism databases  and  genome  
annotation groups use the GO database and contribute their annotation sets to the 
GO resource. The GO database integrates the vocabularies and  contributed 
annotations and provides full access to this information in several formats. 
Members of the GO Consortium continuously work collectively, involving  outside 
experts as needed, to expand and update the GO vocabularies. The GO Web 
resource also provides access to extensive  documentation about the GO project and 
links to applications that use  GO data for functional analyses.  

 Gene Ontology Consortium. The Gene Ontology (GO) data base and informatics 
resource. Nucleic Acids Research 32: Database issue D258-261.  
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genetics  The branch of science concerned with the means and consequences of transmission 
and  generation of the components of biological inheritance. Used for mechanisms of 
heredity and the genetics of organisms, for  the genetic basis of normal and  
pathological  states, and for the genetic aspects of endogenous chemicals. It includes 
biochemical and molecular influence on genetic material.  

 NIH’s National �enter for �iotechnology Information/ Genetics/ !vailable  online at  
http://www.ncbi.nlm.nih.gov/mesh/68005823  (accessed  August 29, 2014).  

genome-wide association  An approach used in genetics research to associate specific genetic variations with 
study (GWAS)  particular diseases. The method involves scanning the genomes from many different 

people and looking for genetic markers that can be used to predict the presence of a 
disease. Once such genetic markers are identified, they can be used to understand  
how genes contribute to the disease and develop better prevention and  treatment 
strategies.  

 NIH. Talking Glossary of Genetic Terms: Genome-wide Association Studies (GWAS). 
National Human Genome Research Institute. Available online at  
http://www.genome.gov/glossary/index.cfm?id=91&textonly=true  (accessed August 
29, 2014).  

green chemistry  The design of chemical products and processes to reduce or eliminate the use and  
generation of  hazardous substances. Green Chemistry framework includes three 
main principles: (1) to incorporate sustainable designs across all stages of the 
chemical lifecycle, (2) to reduce the hazard  of chemical products and processes by 
design, and (3) to work as a cohesive set of design  criteria. Twelve design criteria 
have been developed to fulfill these three principles (prevention, atom economy,  
less hazardous chemical synthesis, designing safer  chemicals, safer solvents and 
auxiliaries, design for energy  efficiency, use of renewable feedstocks, reduce 
derivatives, catalysis, design for degradation, real-time analysis for pollution 
prevention, and inherently safer chemistry for accident prevention).  

 Anastas, P, Eghbali, N. (2010). Green chemistry: Principles  and  practice. Chem Soc 
Rev 39 (1): 301-312.  

high-content screening  A method with multiple simultaneous readouts used to analyze system dynamics at 
(HCS)  assay  any specified level of organization, but generally referring to the whole  body, whole 

cell, or subcellular level of organization.  

 Assay development guidelines for image-based high content screening,  high content 
analysis and high  content imaging. William Buchser, Ph.D., Mark Collins, Ph.D., Tina 
Garyantes, Ph.D., Rajarshi Guha, Ph.D., Steven Haney, Ph.D., Vance Lemmon, Ph.D.,  
Zhuyin Li, Ph.D., and O. Joseph Trask, Jr, B.S.  Available online at   
http://www.ncbi.nlm.nih.gov/books/NBK100913/  (accessed August 29, 2014).  

high-throughput screening A rapid method of measuring the effect of an agent in a biological or chemical assay. 
(HTS)  assay  The assay usually involves some form of automation or a  way to conduct multiple 

assays at the same time using sample arrays.  

 NIH’s National �enter for �iotechnology Information/ High-Throughput Screening 
Assays. Available online at  
http://www.ncbi.nlm.nih.gov/mesh?term=high%20throughput%20screening%20me 
thod  (accessed  August 29, 2014).  
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human toxome  The entirety of pathways of toxicity in humans. A project sponsored by an NIEHS 
grant (R01ES020750) is  an initiative to map  the human toxome using systems 
toxicology approaches.  

 The Human Toxome Project. Available online at  http://humantoxome.com/  
(accessed August 29, 2014).  

in silico  See “computational models” above/  

 National Library of Medicine. (2012). IUPAC Glossary of Terms Used in Toxicology, 
2nd Ed. Available online at 
http://sis.nlm.nih.gov/enviro/iupacglossary/frontmatter.html  (accessed August 29, 
2014).  

IVIV extrapolation (IVIVE)  A method that  uses determinations of protein binding, liver/kidney clearance, and 
oral uptake to  estimate ranges of oral human exposures leading to tissue/plasma 
concentrations similar to in vitro  point-of-departure concentrations.  

knowledgebase  Provides  an alternative approach  for storing and searching the complete networks  
of highly interconnected information produced by linking  bioassays and pathways. 
Developed decades ago to codify human knowledge so that they could be used 
efficiently  to support decisions, knowledgebases are finding  practical applications in  
meaningfully organizing vast amounts of linked biological data using ontologies.  

knowledge mining  Knowledge mining is the computerized extraction of useful, often previously 
unknown, information from large databases or data sets using sophisticated data 
search  capabilities and statistical algorithms to discover patterns and  correlations 
and  then to interpret this  new information in the context of systems biology to 
create new knowledge.  

Kyoto Encyclopedia  of A database resource that integrates genomic,  chemical, and systemic functional 
Genes and Genomes information. In particular, gene catalogs from completely sequenced genomes are 
(KEGG)  linked to higher level systemic functions of the cell, the organism, and the  

ecosystem. KEGG is a reference knowledgebase for integration and interpretation of  
large-scale  data sets generated by genome  sequencing and other high-throughput  
experimental technologies.  

 Kanehisa Laboratories. KEGG: Kyoto encyclopedia of genes and genomes. Available 
online at  http://www.genome.jp/kegg/  (accessed August 29,  2014).  

lift  Lift is a measure of how much better prediction results are  using a  model  than could 
be obtained by chance. For example, say 2  percent  of customers who receive a 
catalog in the mail make a purchase, and when a model is used to select catalog  
recipients, 10  percent  make  a purchase. The lift for the model would be 10/2 or 5.  

 Oracle. Glossary:  “Lift/”  Available online at 
http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/glossary.htm  
(accessed August 29, 2014).  

mechanism of action  ! “sequence of key  events and processes, starting with interaction of an agent with 
a cell, proceeding through operational and anatomical  changes, and resulting in an 
adverse health effect”  
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 OECD (Organization for Economic Cooperation and Development). (2013a). 
Guidance document on developing and assessing adverse outcome pathways.  
Retrieved from  
http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mon 
o%282013%296&doclanguage=en   

 OECD (Organization for Economic Cooperation and Development). (2014c). Other 
activities on molecular screening and toxicogenomics.  Retrieved from 
http://www.oecd.org/env/ehs/testing/toxicogenomics.htm  

meta-analysis  A quantitative, formal, epidemiological study  design used to assess previous 
research studies systematically to derive conclusions about that body of research. 
Outcomes from a meta-analysis can include a more precise estimate of the effect of 
treatment or risk factor for disease, or other outcomes, than any individual study 
contributing to the pooled analysis.  

 Ramasamy A,  Mondry A, Holmes CC, Altman DG. (2008). Key  issues in conducting a  
meta-analysis  of gene expression microarray datasets. Public Library of Science 
Medicine 5: e184.  

metabolomics  Type of global molecular analysis that involves identifying and  quantifying the 
metabolome—all metabolites present in a  cell at a given time.  

 Department of Energy. Human Genome Project Information: Genome Glossary. 
Available online at 
http://web.ornl.gov/sci/techresources/Human_Genome/glossary.shtml  (accessed 
August 29, 2014).  

microarray analysis  The simultaneous analysis, on a microchip,  of multiple samples or targets arranged 
in an  array format.  

 NIH’s National �enter for �iotechnology Information/ Microarray !nalysis/ !vailable 
online at  http://www.ncbi.nlm.nih.gov/mesh/?term=microarray%20analysis  
(accessed August 29, 2014).  

microarray technology  A technology used to study the expression of many genes at once. It involves placing 
thousands of gene sequences in known locations on a glass slide  called a gene chip. 
A sample containing DNA or  RNA is placed in contact with  the gene chip. 
Complementary base pairing between the sample and the gene sequences on the 
chip produces  light that is measured. Areas on the chip producing light identify 
genes that are expressed in the sample.  

 NIH’s  National Human Genome Research Institute. Talking Glossary of Genetic 
Terms. Available online at  
http://www.genome.gov/glossary/index.cfm?id=125&textonly=true  (accessed 
August 29, 2014).  

mode of action  (MOA)  The key steps in the toxic response after chemical interaction at the target site that 
is responsible for the physiological outcome  or pathology of the chemical; how 
chemicals  perturb  normal biological function.  

 U.S. Environmental Protection Agency. Glossary of Terms:  Methods of Toxicity 
Testing and  Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html  (accessed August 
29, 2014).  
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molecular biology  The branch of biology that deals with the molecular basis of biological activity based  
on knowledge  from biology and  chemistry  with a focus on genetics and 
biochemistry.  

molecular epidemiology  The use of all types of biological markers in  the investigation of the cause, 
distribution, prevention, and treatment of disease, in which biological markers are 
used to represent exposures, intervening factors, susceptibility, intermediate 
pathological events, preclinical and clinical disease for prognosis.  

 Schulte PA,  Rothman N, Hainaut FP, Smith MT, Boffetta P, Perea FP. (2011). 
Molecular epidemiology: linking molecular scale insights into population impacts. In:  
N Rothman, P Hainaut,  P Schulte, M Smith,  P Boffetta, F Perea (eds.). Molecular  
epidemiology: principles and practices. IARC Sci Publ. 2011;(163):1-7.  

omics  Refers to a broad field of study in biology,  ending in the suffix ''-omics'' such as 
genomics, proteomics, transcriptomics.  

 U.S. Environmental Protection Agency. Glossary of Terms:  Methods of Toxicity 
Testing and  Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html  (accessed August 
29, 2014).  

ontology  Defines types of data (e.g., chemicals, genes, assays, interactions, pathways, cells, 
species) and their interrelationships (chemicals “activate”  proteins- assays 
“measure” changes in proteins- genes are “part  of” pathways, etc/)/  

physiologically  based PBPK models  emulate  pharmacokinetics in the body and are used to estimate the  
pharmacokinetic (PBPK)  dose to a target tissue or organ by accounting for the rates of absorption,  

distribution among target organs and tissues, metabolism, and excretion. PBPK  
models also are often referred to as physiologically based  toxicokinetic (PBTK) 
models in risk assessment to clearly distinguish the chemical as a toxicant. Both 
terms are in common use, and might appear in the text of this document. They  
relate to the same kind of model and are interchangeable.  

 EPA. (2014g). Vocabulary Catalog List Detail  - Integrated Risk Information System  
(IRIS) Glossary  August 31, 2011. Retrieved from 
http://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossaries 
andkeywordlists/search.do?details=&glossaryName=IRIS%20Glossary  

pharmacokinetics  Pharmacokinetics has  complex meaning that encompasses  both  a remedy and a 
toxicant (and  more broadly any biologically active substance); risk assessors 
sometimes use the word “toxicokinetics” to  distinguish the chemical as a  toxicant. 
Both  terms are in common use, and might appear in the text of this document. They 
relate to the same processes and are interchangeable.  

phenotype  An individual's observable traits, such as height, eye color, and  blood type. The 
genetic contribution to the phenotype is  called the genotype. Some traits are largely 
determined by the genotype,  while other traits are largely  determined by  
environmental factors.  

 National Human Genome Research Institute. Talking Glossary of Genetic  Terms. 
Available online  at 
http://www.genome.gov/glossary/index.cfm?id=152&textonly=true  (accessed 
August 29, 2014).  
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Glossary Term  Description  

polymerase chain reaction A method for amplifying a DNA base sequence using a  heat-stable polymerase and 
(PCR)  two 20-base primers, one complementary to the (+) strand at one end of the 

sequence to be amplified and one complementary to the (-) strand at the other end.  
Because the newly synthesized DNA strands can subsequently serve as  additional  
templates for the same primer sequences, successive rounds of primer annealing,  
strand elongation, and dissociation produce rapid and  highly specific amplification of  
the desired sequence. PCR also can be used to detect the  existence of the defined 
sequence in a DNA sample.  

 Department of Energy. Human Genome Project Information: Genome Glossary. 
Available online at 
http://web.ornl.gov/sci/techresources/Human_Genome/glossary.shtml  (accessed 
August 29, 2014).  

probe  Single-stranded DNA or RNA  molecules of specific base sequence, labeled either  
radioactively or immunologically, that are used to detect the complementary base 
sequence by hybridization.  

 Department of Energy. Human Genome Project Information: Genome Glossary. 
Available online at 
http://web.ornl.gov/sci/techresources/Human_Genome/glossary.shtml#P  (accessed 
August 29, 2014).  

proteomics  The study of the function of all expressed proteins.  

 U.S. Environmental Protection Agency (2012). Glossary of Terms: Methods of 
Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html  (accessed  August 
29, 2014).  

quantitative structure  A mathematical relationship between a quantifiable aspect of chemical structure 
activity relationship  and  a chemical property or reactivity or a well-defined biological activity, such as 
(QSAR)  toxicity. Using a sample set of chemicals, a relationship is established between one  

or many physical-chemical properties a chemical possesses due to its structure and 
a chemical property or biological activity of concern. This mathematical expression is  
then  used to predict the chemical property or biological response expected from  
other chemicals with similar structures. It is based on the presumption that similar 
molecules or chemical structures have similar properties or biological activities or 
toxicity potential.  

 U.S. Environmental Protection Agency. Glossary of Terms:  Methods of Toxicity 
Testing and  Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html  (accessed  August 
29, 2014).  

QSAR Toolbox  A software application intended for use by government, the chemical industry, and  
other stakeholders in filling gaps in (eco)toxicity data needed for assessing the 
hazards of chemicals. The Toolbox incorporates information and tools from various 
sources into a logical workflow. Crucial to this workflow is grouping chemicals into 
chemical categories. The seminal features of the Toolbox are identification of 
relevant structural characteristics and the potential mechanism or mode of action of  
a target chemical, identification of other chemicals that have the same structural 
characteristics or mechanism/mode of action (or both), and use of existing 
experimental data to fill the  data gap(s).  
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Glossary Term Description 

QSAR Toolbox. About: What does the QSAR Toolbox do? Available online at 
http://www.qsartoolbox.org/ (accessed August 29, 2014). 

Registration, Evaluation, 
Authorisation and 
Restriction of Chemicals 
(REACH) 

A regulation of the European Union, adopted to improve the protection of human 
health and the environment from the risks that can be posed by chemicals, while 
enhancing the competitiveness of the European Union chemicals industry. It also 
promotes alternative methods for the hazard assessment of substances to reduce 
the number of tests on animals. REACH requirements went into effect on 1 June 
2007 and are implemented by the European Chemicals Agency (ECHA). 

European Chemicals Agency. About us. Available online at 
http://echa.europa.eu/about-us (accessed August 29, 2014). 

reference value A generic term for an estimate of an exposure for a given duration to the human 
population (including susceptible subgroups) that is likely to be without an 
appreciable risk of adverse health effects over a lifetime. Examples of numerical 
reference values include the reference dose (RfD) and reference concentration 
(RfC). 

U.S. Environmental Protection !gency’s Integrated Risk Information System (IRIS) 
Glossary. (2012). Vocabulary Catalog List Detail. Available online at 
http://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossaries 
andkeywordlists/search.do?details=&glossaryName=IRIS%20Glossary (accessed 
August 29, 2014). 

reverse toxicokinetics 
(RTK) 

Also known as reverse dosimetry, refers to the use of a pharmacokinetic model to 
estimate external dose (exposure) from a known internal concentration. The 
method uses a one-compartment model and makes default assumptions such as 
chemicals are eliminated wholly through metabolism and renal excretion; renal 
excretion is a function of the glomerular filtration rate and the fraction of unbound 
chemical in the blood (i.e., no active transport); and oral absorption is 100 percent. 
Using these assumptions, the plasma concentration of the chemical at steady state 
per unit dose then can be estimated. The two experimental chemical-specific 
parameters required to generate an estimate are the rate of disappearance of 
parent via hepatic metabolism (intrinsic clearance) and fraction bound (or 
conversely unbound) to plasma proteins. Both parameters can be measured 
experimentally in a relatively high-throughput manner. 

Judson RS; Kavlock RJ; Setzer RW; Hubal EA; Martin MT; Knudsen TB; Houck KA; 
Thomas RS; Wetmore BA; Dix DJ. (2011). Estimating toxicity-related biological 
pathway altering doses for high-throughput chemical risk assessment. Chem Res 
Toxicol Chem Res Toxicol 24 (4): 451-462. 

rule A rule describes an association between elements on the left-hand side of the rule 
and items on the right-hand side of the rule. For instance, the rule [diapers, cola] => 
[milk] in a supermarket database might mean that when customers bought diapers 
and cola, they also purchased milk. 

SNPs Refers to single nucleotide polymorphisms, which are single nucleotide variations in 
a genetic sequence that occur at appreciable frequency in the population. 

NIH’s National �enter for �iotechnology Information. SNPs. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=SNPS (accessed August 29, 2014). 
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Glossary Term Description 

systems biology A scientific approach that combines the principles of engineering, mathematics, 
physics, and computer science with extensive experimental data to develop a 
quantitative as well as a deep conceptual understanding of biological phenomena, 
permitting prediction and accurate simulation of complex (emergent) biological 
behaviors. 

Wanjek, C. (2011). Systems biology as defined by NIH. The NIH Catalyst 19 (6): 
November-December. http://irp.nih.gov/catalyst/v19i6/systems-biology-as-defined
by-nih. 

toxicokinetics Risk assessors will sometimes use the word toxicokinetics to distinguish the 
chemical as a toxicant from a drug and the more traditional use of the word 
pharmacokinetics. Both terms are in common use, and appear in the text. They 
relate to the same processes, and are interchangeable. 

Tox21 Tox21 is a collaborative effort among four U.S. government agencies (U.S EPA, 
NIEHS/NTP, NCATs, U.S. FDA) to develop more efficient approaches to predict how 
chemicals might affect human health. In Tox21 studies, substances are tested using 
in vitro rodent and human cell-based and biochemical assays and lower organisms 
as model systems. These assays are run at higher throughput and lower cost than 
animal tests; in some cases, many thousands of chemicals can be tested in a few 
days. Data from these assays can potentially be used to prioritize substances for 
further evaluation, inform our understanding of mechanisms of action, and develop 
improved predictive models for toxicity. Ultimately, test approaches developed and 
data collected via the Tox21 initiative could enable agencies to reduce their reliance 
on animal data for establishing regulations for safe handling of chemicals. ICCVAM 
will evaluate testing approaches developed through the Tox21 collaboration that 
show promise for regulatory applications and make recommendations on their use 
to federal agencies. 

National Toxicology Program. Available online 
http://ntp.niehs.nih.gov/iccvam/docs/annrpt/iccvam-bienrpt-2014-508.pdf 
(accessed August 29, 2014). 

ToxCast ! major part of EP!’s �ompTox research is the Toxicity Forecaster (Tox�ast¯)/ 
ToxCast is a multiyear effort launched in 2007 that uses automated chemical 
screening technologies (called "high-throughput screening assays") to expose living 
cells or isolated proteins to chemicals. The cells or proteins are then screened for 
changes in biological activity that suggest potential toxic effects and eventually 
potential adverse health effects. These innovative methods have the potential to 
limit the number of required laboratory animal-based toxicity tests while quickly and 
efficiently screening large numbers of chemicals. 

U.S. Environmental Protection Agency. Available online 
http://www.epa.gov/ncct/toxcast (assessed August 29, 2014) 

toxicogenomics Study of the roles that genes play in the biological responses to environmental 
toxicants and stressors by the collection, interpretation, and storage of information 
about gene and protein activity. 

U.S. Environmental Protection Agency. Glossary of Terms: Methods of Toxicity 
Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed August 
29, 2014). 
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Glossary Term Description 

transcription The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA 
from an RNA template is called reverse transcription. 

NIH’s National �enter for �iotechnology Information/ Transcription/ !vailable online 
at http://www.ncbi.nlm.nih.gov/mesh/68014158 (accessed August 29, 2014). 

transcriptome The pattern of gene expression, at the level of genetic transcription, in a specific 
organism or under specific circumstances in specific cells. 

NIH’s National �enter for �iotechnology Information/ Transcriptome/ !vailable 
online at http://www.ncbi.nlm.nih.gov/mesh/68059467 (accessed August 29, 2014). 

transcriptomics The study of gene expression at the RNA level. 

U.S. Environmental Protection Agency. Glossary of Terms: Methods of Toxicity 
Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed August 
29, 2014). 

transgenic Produced from a genetically manipulated egg or embryo; containing genes from 
another species. 

NIH’s National �enter for �iotechnology Information/ Transgenic/ !vailable online at 
http://www.ncbi.nlm.nih.gov/mesh/?term=transgenic (accessed August 29, 2014). 

translation The process of translating the sequence of a messenger RNA (mRNA) molecule to a 
sequence of amino acids during protein synthesis. The genetic code describes the 
relationship between the sequence of base pairs in a gene and the corresponding 
amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads the 
sequence of the mRNA in groups of three bases to assemble the protein. 

NIH’s National Human Genome Research Institute/ Talking Glossary of Genetic 
Terms. Available online at 
http://www.genome.gov/glossary/index.cfm?id=200&textonly=true (accessed 
August 29, 2014). 

translesion synthesis A mechanism for DNA damage tolerance that allows the DNA replication machinery 
to move beyond a DNA lesion or abasic site (i.e., a site that lacks a DNA base). 

Virtual Tissue (v-Tissues™) 
models 

Computational cross-scale models of cellular organization and emergent functions 
are used to understand disease progression. Tissues are the clinically relevant level 
for diagnosing and treating the transition from normal to adverse states in chemical-
induced toxicities leading to cancer, immune dysfunction, developmental defects, 
and more. Currently, in vivo rodent experiments are used to evaluate tissue-level 
effects of altered molecular and cellular function; however, the extrapolation of 
animal models to humans is often uncertain. v-Tissues¯ aims to simulate key 
molecular and cellular processes computationally in the context of normal tissue 
biology to (1) help understand complex physiological relationships, and (2) predict 
adverse effects due to chemicals. As the number of chemicals in consumer products, 
the workplace, and the environment continues to rise, v-Tissues¯ offers a more 
efficient, effective, and humane approach for evaluating their impact on human 
health. 

U.S. Environmental Protection Agency, Computational Toxicology Research Program. 
http://www.epa.gov/ncct/virtual_tissues/what.html (accessed August 29, 2014). 
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