

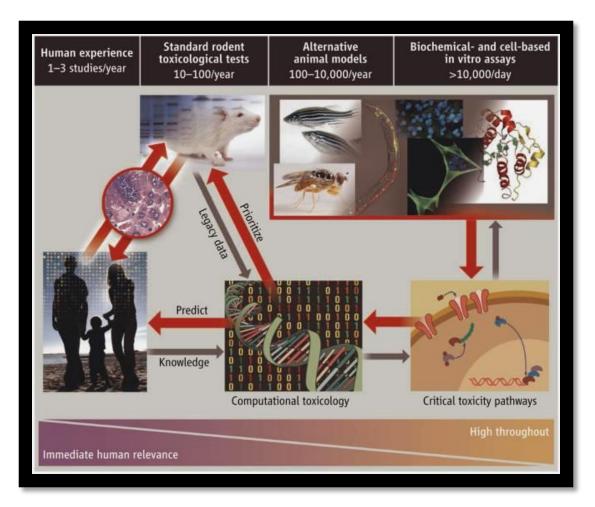
High-Throughput Screening in ToxCast/Tox21

Keith Houck U.S. EPA, National Center for Computational Toxicology Office of Research and Development

NITED STATES ENVIRONMENTAL PROTECTION AGENCY

Future Yox II Chapel Hill, NC 16-17 January 2014

Office of Research and Development National Center for Computational Toxicology

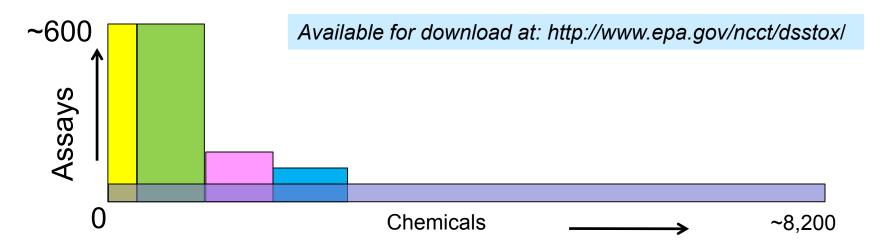

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

- Need for alternative toxicity testing
- Chemical libraries tested
- Biological assays for chemical profiling
- Tox21 Assay Example
- ToxCast Assay Platform Example
- Use of Data in Predictive Modeling
- Summary of Advantages/Challenges

Tox21 Vision: Transforming Toxicity Testing

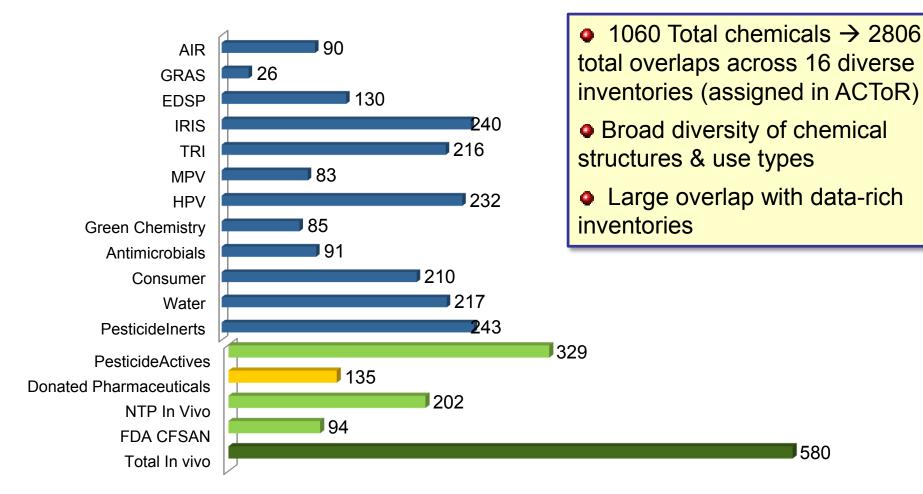
National Center for Advancing Translational Sciences (NCATS) <u>http://www.ncats.nih.gov/</u>

Office of Research and Development National Center for Computational Toxicology SOURCE: Collins, Gray and Bucher (2008) Toxicology. Transforming environmental health protection. Science 319: 906


ToxCast /Tox21 Overall Strategy

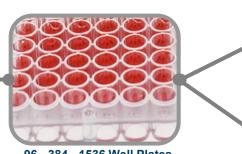
- Identify targets or pathways linked to toxicity (AOP focus)
- Identify/develop high-throughput assays for these targets or pathways
- Develop predictive systems models: in silico/in vitro → in vivo
- Use predictive models (qualitative):
 - Prioritize chemicals for targeted testing
 - Suggest / distinguish possible AOP / MOA for chemicals
- High-throughput Exposure Predictions (ExpoCast)
- High-throughput Risk Assessments (quantitative)

Testing under ToxCast and Tox21 Chemicals, Data and Release Timelines

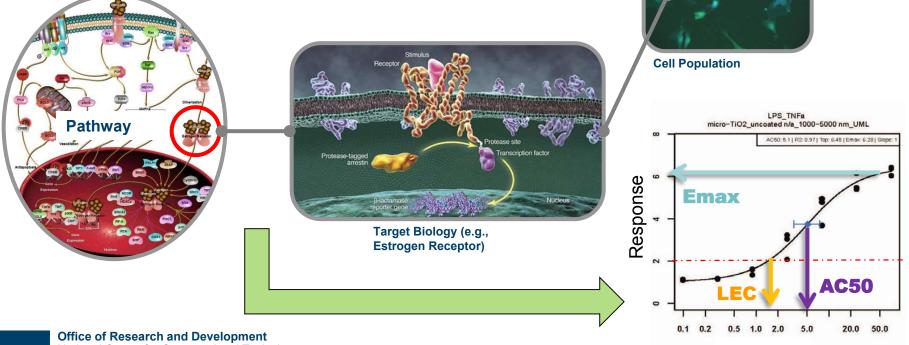

Set	Ch	emicals	Assays	Endpoints	Completion	Available
ToxCast Phase I		293	~600	~700	2011	Now
ToxCast Phase II		767	~600	~700	03/2013	12/2013
ToxCast Phase III		1001	~100	~100	Just starting	2014
E1K (endocrine)		880	~50	~120	03/2013	12/2013
Tox21		8,193	~25	~50	Ongoing	Ongoing

Pesticides , antimicrobials, food additives, green alternatives, HPV, MPV, endocrine reference cmpds, other tox reference cmpds, failed drugs, NTP in vivo, EPA high interest compounds, industrial, marketed drugs, fragrances, ...

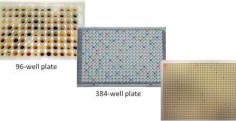
ToxCast PhI & PhII chemicals: Spanning diverse inventories of EPA interest

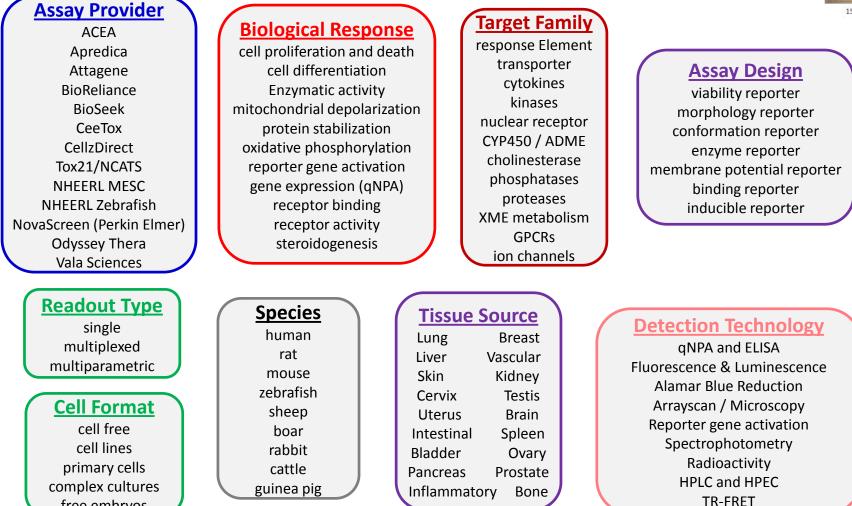


High-Throughput Screening 101 (HTS)


Chemical Exposure

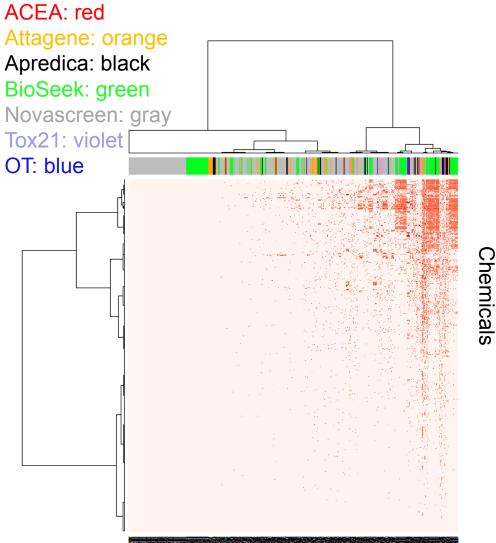
Robots


96-, 384-, 1536 Well Plates


National Center for Computational Toxicology

Conc (ug/ml)

1536-well plate



List of assays and related information at: http://www.epa.gov/ncct/

free embryos

ToxCast Phase II: 1051 Chemicals x 791 Assay Readouts

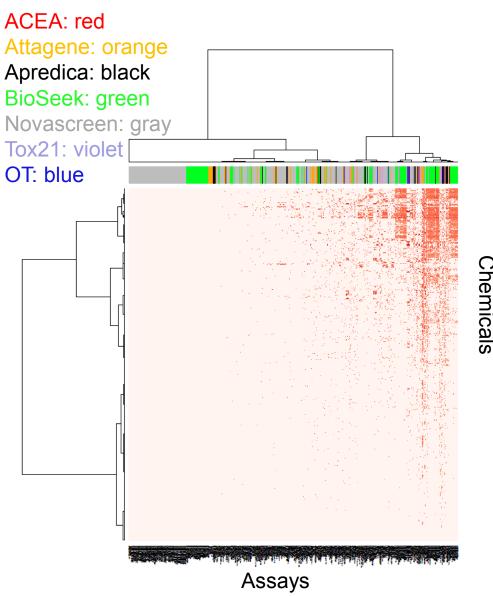
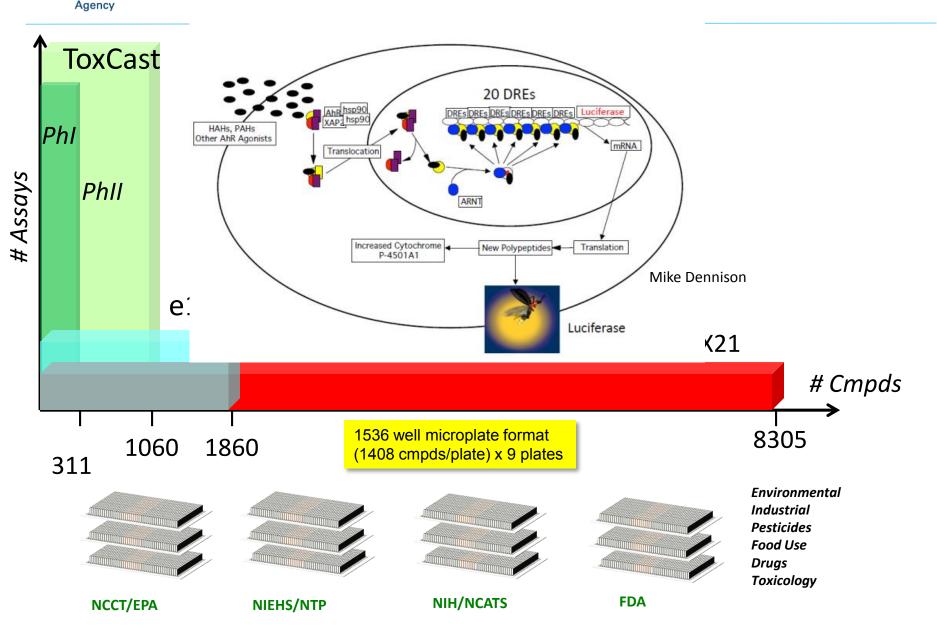


Table 2 Top 20 most promiscuous chemicals ^a			
		AC50s	
Chemical Name	Total	<=10µM	<=1µM
Phenylmercuric acetate	90	47	20
Mancozeb	88	41	13
Gentian violet	86	51	5
Sodium dodecylbenzenesulfonate	82	19	0
Tributyltin methacrylate	79	48	12
Tributyltin chloride	77	45	9
Mercuric chloride	73	45	14
Perfluorooctane sulfonic acid	72	13	2
{4-[3-(aminomethyl)phenyl]piperidin-1-yl}{5-[(2- fluorophenyl)ethynyl]furan-2-yl}methanone			
(pharma)	71	25	4
Dodecylbenzene sulfonate triethanolamine (1:1)	66	7	1
SSR241586 (pharma)	66	30	8
Emamectin benzoate	65	14	2
<pre>{4-[5-(aminomethyl)-2-fluorophenyl]piperidin-1- yl}(4-bromo-3-methyl-5-propoxythiophen-2- yl)methanone hydrochloride (pharma)</pre>	64	19	2
(1R)-1-[(ethoxycarbonyl)oxy]ethyl 1-{[5-(5- chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl}-2-{[1- (propan-2-yl)piperidin-4-yl]carbamoyl}-1H-indole-			
5-carboxylate hydrochloride(pharma)	63	29	2
Maneb	62	31	16
SSR150106 (pharma)	62	41	13
Didecyl dimethyl ammonium chloride	62	30	2
Zamifenacin (pharma)	60	27	11
SSR125047 (pharma)	59	16	3
Metiram	56	16	4

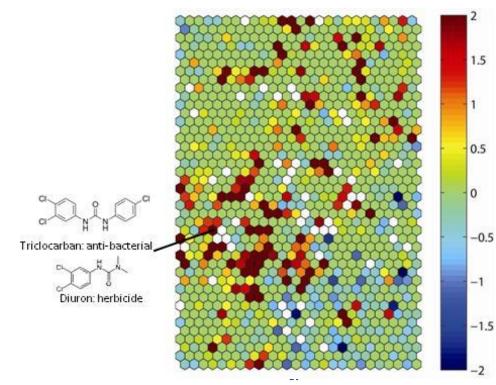
Sipes et al., Chem Res Toxicol. 26:878-95, 2013

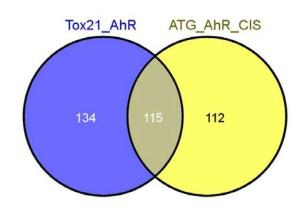


ToxCast Phase II: 1051 Chemicals x 791 Assay Readouts

	Table 3 Top 20 most	promiscuous assays ^a					
				AC50s			
	Assay target	Assay category	Total	<=10µM	<=1µM		
	hCYP2C19	CYP	264	144	53		
	hCYP2C9	CYP	152	81	19		
	rPBR	Transporter	147	62	18		
	hPXR	Nuclear receptor (subfamily 1)	140	73	35		
	hNET	Transporter	136	48	13		
	hPBR	Transporter	117	36	5		
	hDAT	Transporter	117	45	7		
	hCYP1A2	CYP	108	60	16		
	gDAT	Transporter	98	26	4		
	h5HT7	GPCR (aminergic)	96	35	13		
)	hGR	Nuclear receptor (subfamily 3)	96	35	6		
-	hOpiate_mu	GPCR (other)	92	27	5		
	hDRD1	GPCR (aminergic)	89	36	9		
٠l	rNaCh_site2	Ion channel	87	87 37			
	hCYP2B6	CYP	81	43	16		
-	gSIGMA_NonSelective	Other	80	31	13		
	gOpiateK	GPCR (other)	75	18	4		
	rMAOAC	Other enzyme	73	15	6		
	hAR	Nuclear receptor (subfamily 3)	73	33	8		
	hBACE	Protease	73	28	3		

Tox21 qHTS Screen Aryl hydrocarbon Receptor (AhR) Signaling Environmental Protection



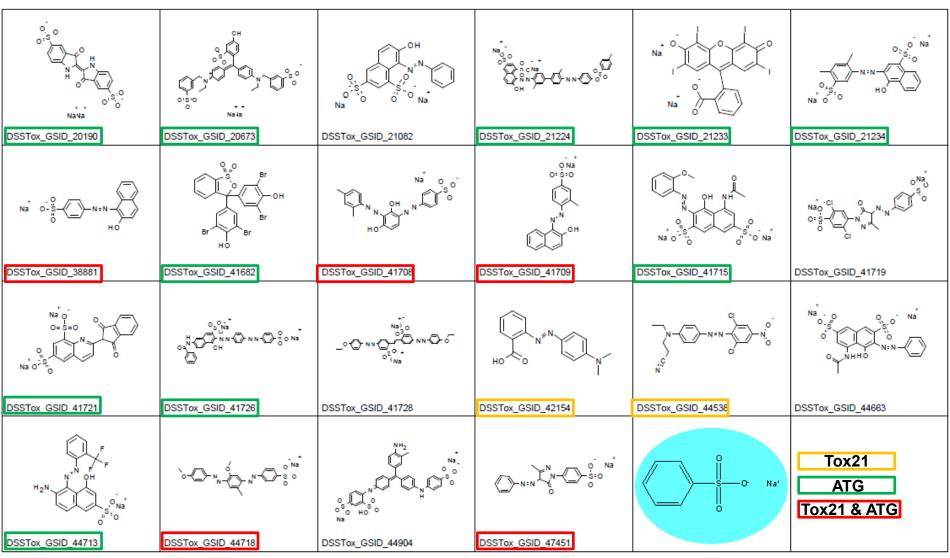

♥FP

United States

Chemical Space of Actives

Agency		Compound Features	Frequency	Frequency	Z-Score	-LOG(AC50)
Level 8 Results Summary		All Compounds Amino acids Bases, nucleosides Benzenes Carbocycles		764 26 3 676 24	-0.465 -0.1735 3.307 0.8749	
No. of HITS	768	Carbohydrates Elements Functional groups		5 31 726	-0.6666 1.598 -1.759	
% HITS	9.2	Heterocycles Naphthalenes Natural products		378 55 8	4.896 0.3566 0.7849	
% Concordance	94.3	Peptidomimetics Pharmacophores Protective groups Spacer groups		0 747 41 177	-2.234 -1.701 -1.309	
		Compounds Without Features		6	-1.802	

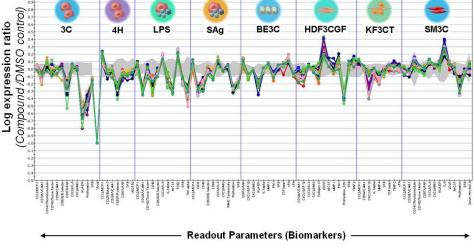
Comparison with actives from AhR reporter in Attagene assays


United States

Agonov

Environmental Protection

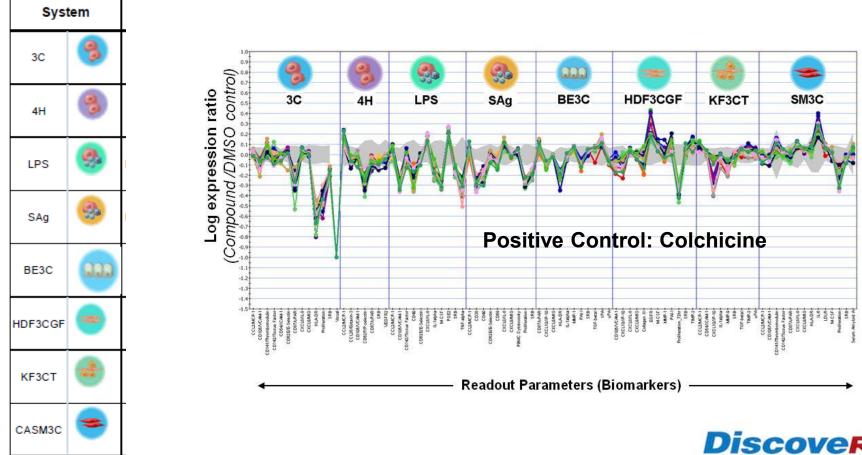
Active Structures: Dyes


Extensively used as colorants in food, cosmetics, waxes, solvents, textiles and so on *Franzosa et al., in prep*

Insights in to Mechanisms: BioMap Profiling Assays

Table 1. Diversity 8 panel of BioMAP Systems utilized in this study.

Syst	tem	Cell Types	Environment	Readouts
3C	3	Endothelial cells	IL-1β+TNF-α+IFN-γ	MCP-1, VCAM-1, ICAM-1, Thrombomodulin, Tissue Factor, E-selectin, uPAR, IL-8, MIG, HLA- DR, Prolif., Vis., SRB (13)
4H	8	Endothelial cells	L-4+histamine	VEGFRII, P-selectin, VCAM-1, uPAR, Eotaxin-3, MCP-1, SRB (7)
LPS	9	Peripheral Blood Mononuclear Cells + Endothelial cells	TLR4	CD40, VCAM-1,Tissue Factor, MCP-1, E- selectin, IL-1a, IL-8, M-CSF, TNF-a, PGE2, SRB (11)
SAg	33	Peripheral Blood Mononuclear Cells + Endothelial cells	TCR	MCP-1, CD38, CD40, CD69, E-selectin, IL-8, MIG, PBMC Cytotox., SRB, Proliferation (10)
BE3C	833	Bronchial epithelial cells	IL-1β+TNF-α+IFN-γ	uPAR, IP-10, MIG, HLA-DR, IL-1a, MMP-1, PAI- 1, SRB, TGF-b1, tPA, uPA (11)
HDF3CGF	-	Fibroblasts	IL-1β+TNF-α+IFN-γ +bFGF+EGF+PDGF- BB	VCAM-1, IP-10, IL-8, MIG, Collagen III, M-CSF, MMP-1, PAI-1, Proliferation, TIMP-1, EGFR, SRB (12)
KF3CT		Keratinocytes + Fibroblasts	IL-1β+TNF-α+IFN-γ +TGF-β	MCP-1, ICAM-1, IP-10, IL-1a, MMP-9, TGF-b1, TIMP-2, uPA, SRB (9)
CASM3C	-	Coronary artery vascular smooth muscle cells	IL-1β+TNF-α+IFN-γ	MCP-1, VCAM-1, Thrombomodulin, Tissue Factor, IL-6, LDLR, SAA, uPAR, IL-8, MIG, HLA- DR, M-CSF, Prolif., SRB (14)

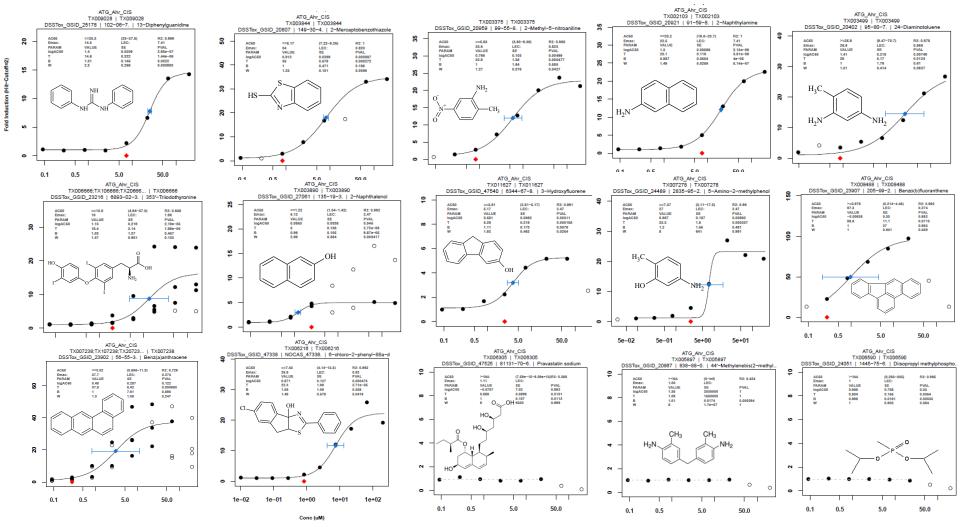

Office of Research and Development National Center for Computational Toxicology

High Throughput Human Biology

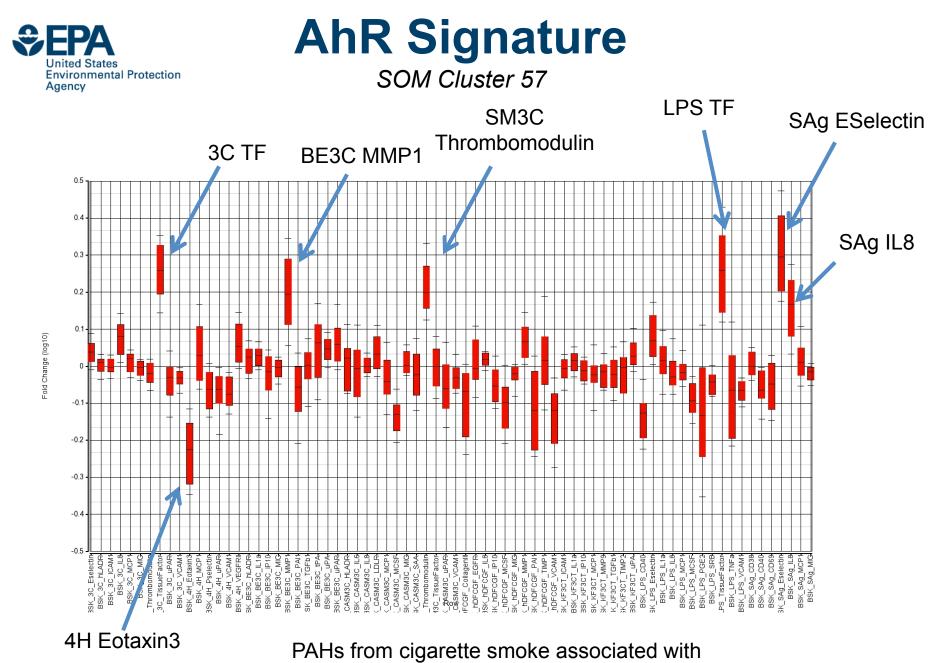
Insights in to Mechanisms: BioMap Profiling Assays

Table 1. Diversity 8 panel of BioMAP Systems utilized in this study.

High Throughput Human Biology

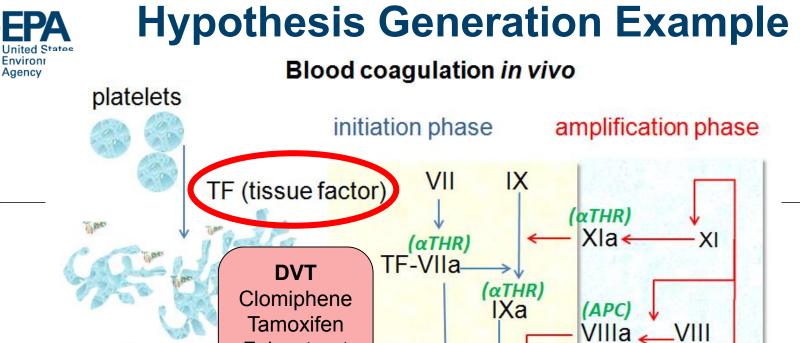

Unsupervised Clustering Analysis

- What can we learn about mechanisms of activity through similarity of activity?
- Chemicals analyzed at single conc level to minimize polypharmacology effect
- Self Organizing Maps (SOM): 10X10 Array/100 Clusters
- Identify clusters enriched with chemicals with known activity
- Two examples:

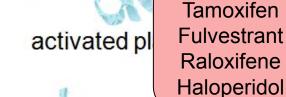

Cluster	Cluster Count	Common Activity	Example Compounds known associations	Example Compounds
57,67	52	AhR ligands	Hydroquinone 4-Chloro-1,2-diaminobenzene 1,2-Phenylenediamine Fenaminosulf	C.I. Solvent yellow 14
				Cyclopamine
48	27	ER antagonists	Clomiphene citrate Tamoxifen citrate Fulvestrant Raloxifene Tamoxifen 4-Hydroxytamoxifen	Amiodarone hydrochloride Haloperidol Reserpine Donated pharma: NK1 receptor antagonist Bradykinin B1 receptor antagonist Lipid-lowering agent

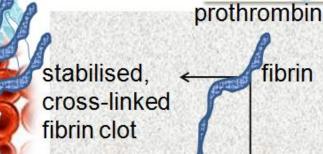
Clusters 57/67 and Relationship to ATG AhR Activity (85% positive)

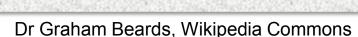
Office of Research and Development National Center for Computational Toxicology All 3 negatives were present at only one conc in the SOM cluster


atherogenesis/thrombosis

Unsupervised Clustering Analysis


- What can we learn about mechanisms of activity through similarity of activity?
- Chemicals analyzed at single conc level to minimize polypharmacology effect
- Self Organizing Maps (SOM): 10X10 Array/100 Clusters
- Identify clusters enriched with chemicals with known activity
- Two examples:


Cluster	Cluster Count	Common Activity	Example Compounds known associations	Example Compounds novel associations
57,67	52	AhR ligands	Hydroquinone 4-Chloro-1,2-diaminobenzene 1,2-Phenylenediamine Fenaminosulf	C.I. Solvent yellow 14
48	27	ER pathway	Clomiphene citrate Tamoxifen citrate Fulvestrant Raloxifene Tamoxifen 4-Hydroxytamoxifen	Cyclopamine Amiodarone hydrochloride Haloperidol Reserpine Donated pharma: NK1 receptor antagonist Bradykinin B1 receptor antagonist Lipid-lowering agent



X

fibrin

XIIIa

(aTHR)

(APC)

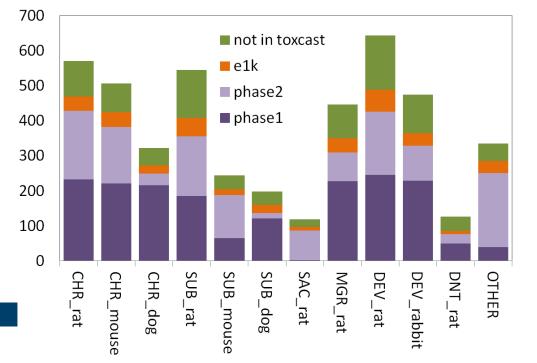
Va←

 (αTHR)

THROMBIN

fibrinogen

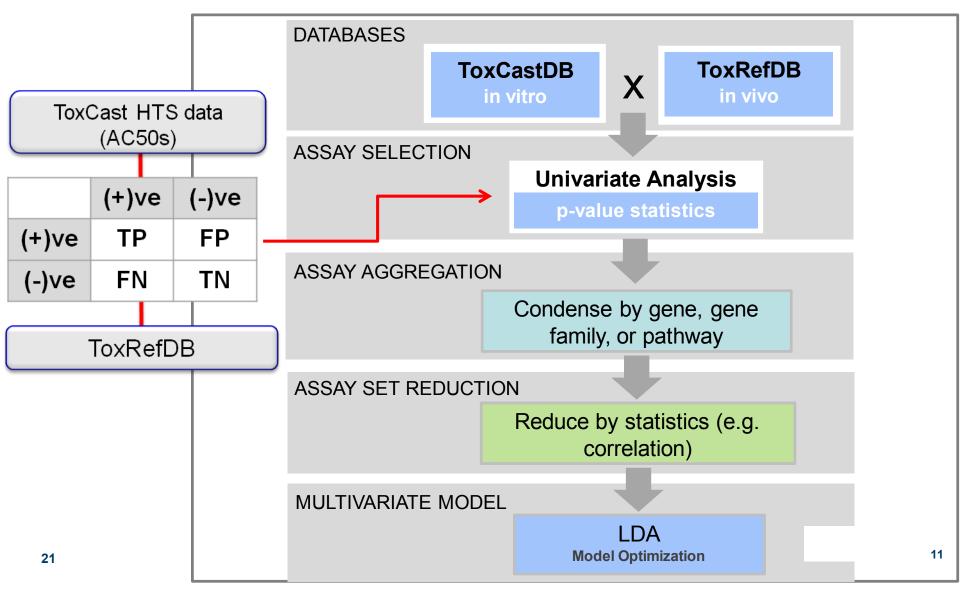
XIII

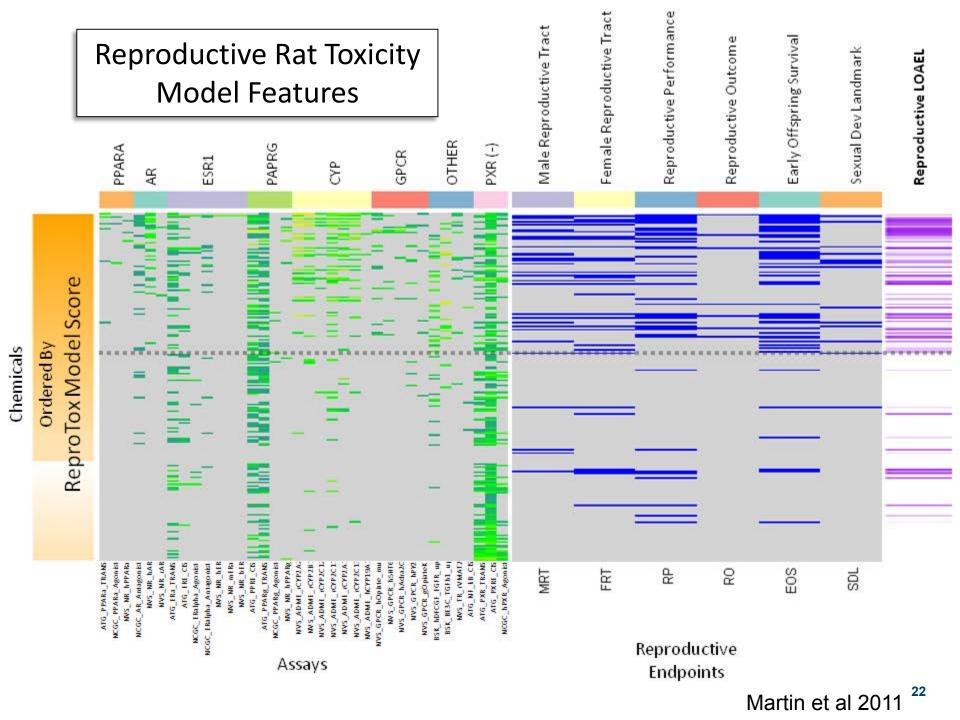

Xa

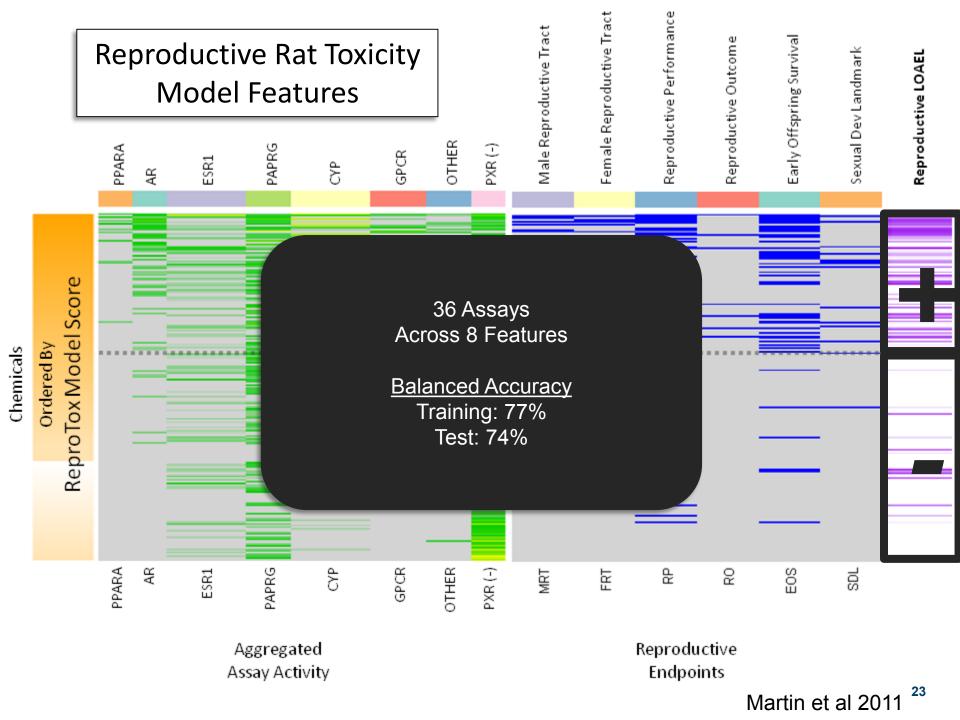
Use of Data in Predictive Modeling

Combine all in vitro assay data following standardization/normalization—ToxCastDB

- Use in vivo data to anchor models—ToxRefDB
 - Holds in vivo endpoint data from animal toxicology studies
 - Currently at 5567 studies on 1049 unique chemicals




Data Source	Study Count
EPA OPP_der	3279
Open Literature	731
National Toxicol Program	666
Sanofi_pharma	222
Unpublished_submissions	50
GSK_pharma	38
Health Canada PMRA_der	23


http://actor.epa.gov/toxrefdb/

Predictive Model Development from ToxCast and Other Data

Predictive Toxicity Modeling Based on ToxCast Data

Predictive models: endpoints

liver tumors: Judson et al. 2010, Env Hlth Persp 118: 485-492 hepatocarcinogenesis: Shah et al. 2011, PLoS One 6(2): e14584 cancer: Kleinstreuer et al. 2013, Toxicol Sci 131:40-55. rat fertility: Martin et al. 2011, Biol Reprod 85: 327-339 rat-rabbit prenatal devtox: Sipes et al. 2011, Toxicol Sci 124: 109-127 zebrafish vs ToxRefDB: Sipes et al. 2011, Birth Defects Res C 93: 256-267

Predictive models: pathways

endocrine disruption: Reif et al. 2010, Env Hlth Persp 118: 1714-1720 microdosimetry: Wambaugh and Shah 2010, PLoS Comp Biol 6: e1000756 mESC differentiation: Chandler et al. 2011, PLoS One 6(6): e18540 HTP risk assessment: Judson et al. 2011, Chem Res Toxicol 24: 451-462 angiogenesis: Kleinstreuer et al. 2011, Env Hlth Persp 119: 1596-1603

Continuing To Expand & Validate Prediction Models

 Generally moving towards more mechanistic/AOP-based models
Office of Research and Development National Center for Computational Toxicology

Understanding Success and Failure

- Why *in vitro* to *in vivo* can work:
 - Chemicals cause effects through direct molecular interactions that we can measure with *in vitro* assays
- Why *in vitro* to *in vivo* does not always work:
 - Pharmacokinetics issues: biotransformation, clearance (FP, FN)
 - Assay coverage: don't have all the right assays (FN)
 - Tissue issues: may need multi-cellular networks and physiological signaling (FN)
 - Statistical power issues: need enough chemicals acting through a given MOA to be able to build and test model (FN)
 - Homeostasis: A multi-cellular system may adapt to initial insult (FP)
 - In vitro assays are not perfect! (FP, FN)
 - In vivo rodent data is not perfect! (FP, FN)

Summary

- Methods developed to use *in vitro* assays to screen and prioritize many data-poor chemicals
- Signature generation uses combination of biological insight and statistics
- Public release of Phase II data will provide opportunity for others to analyze
 - Innocentive & TopCoder Challenges
 - data summit in Spring '14
- Further refinements are in the works
 - More chemicals and assays
 - Use of chemoinformatics
 - Systems-level models
 - Targeted testing approaches

ACKNOWLEDGEMENTS:

***EPA/Office of Research and Development**

Matt Martin Richard Judson **♦ Jill Franzosa¹** Shad Mosher Parth Kothiya¹ Nisha Sipes ☆Ann Richard Tom Knudsen Imran Shah Jimmy Phuong Nicole Kleinstreuer³ Stephanie Padilla Samantha Frady ✤David Reif² Daniel Rotroff² Kevin Crofton ✤David Dix *****Robert Kavlock Amy Wang **Rusty** Thomas

Bioseek/DiscoveRx
Ellen Berg
Mark Polokov
Jian Yang

NIH/NCATS
Menghang Xia
Ruili Huang

1. ORISE

2. North Carolina State University

3. ILS, Inc.