

Computational Embryology and Predictive Toxicology of Hypospadias

M.C.K. Leung¹, N.S. Sipes¹, N.C. Baker², B.K. Ahir¹, C.J. Wolf³, A.W. Seifert⁴, M.S. Hutson⁵, S.D. Perreault³, R.M. Spencer², and T.B. Knudsen¹ ¹ National Center for Computational Toxicology and ³ National Health and Environmental Effects Research Laboratory, U.S. EPA, RTP, NC, United States 27711; ² Lockheed Martin, RTP, NC, United States 27709; ⁴ Department of Biology, University of Kentucky, Lexington, KY, United States 40506; ⁵ Departments of Physics and Biological Sciences, Vanderbilt University, Nashville, TN, United States 37235

mesenchyme

- A cell-level computer simulation was built with a CompuCell3D model (3) by incorporating key signals (e.g. sonic hedgehog (SHH), fibrobla 10 (FGF10), and androgen) and cellular behaviors (e.g., diffe and selective growth) in mouse genital tubercle developmen
- Patterns of mesenchymal growth and urethral remodeling and compared to normal development.

	Leydig cell	Androgen	Urethral plate endoderm and preputial
nt . g were visualized	Core and preputial mesenchyme	FGF10	Core and preputial mesenchyme
II3D model (3) by last growth factor erential adhesion	Core and preputial mesenchyme	FGF10	Urethral plate endoderm

Increase FGF10 response

Growth

Growth

- The current simulation visualized the mesenchymal-endodermal interaction through SHH-FGF10 signaling and physical (cell-level) events.
- SHH had a narrower spatial gradient than FGF10 since it was transported through transcytosis (6).
- o Sexual dimorphorism of the genital tubercle was driven by androgendependent ventral growth of preputial mesenchyme from gestation day 15.
- The simulation demonstrated ventral urethral plate endoderm septation, but urethral fold fusion remained incomplete through gestation day 17, possibly due to missing key events such as EphB2 signaling (7,8).

Abstract # 418a

http://epa.gov/research/sot/

Maxwell C.K. Leung I leung.maxwell@epa.gov I 919-541-2721

- The androgen-dependent mesenchymal growth resulted from an increase in both sensitivity and response to FGF10.
- This behavior was consistent with the presence of androgen response element in the FGFR2 promoter (4); it also suggested the involvement of other molecular targets downstream to AR signaling.

Wild type Mesenchyme Endoderm

- SHH knockout Mesenchyme Endoderm
- FGF10 knockout Mesenchyme
- Endoderm
- AR knockout
- Mesenchyme Fndoderm

- **Conclusions and Future Directions**
- The current results support the hypothesis that a cell-level computer simulation can be used to model the high-level morphogenetic events that result in hypospadias.
- The simulation also demonstrates the timedependent interaction between SHH, FGF10, and AR signaling in genital tubercle development.
- Further simulations will address the missing key events (e.g. EphB2) and model the chemical disruption of genital tubercle development using in vitro data (1,9).

Reference

(1) Kavlock et al., 2012, Chem. Res. Toxicol. 25:1287-302; (2) Baker et al., 2014, 53rd SOT Annual Meeting Poster 459: March 27, 8:30 am - 12 pm; (3) Swat et al., 2012, Methods Cell Biol. 110:325-66; (4) Petiot et al., 2005, Development 132:2441-50; (5) Hynes and Fraher, 2004, Br. J. Plast. Surg. 57:203-14; (6) Dessaud et al., 2008, Development 135:2489-503; (7) Dravis et al., 2004, Dev. *Biol.* **271**:272-90; (8) Lorenzo *et al.*, 2003, *J. Urol.* **170**:1618-23; (9) Leung *et al.*, in prep, Reprod. Toxicol.

