A dual isotope approach using δ 18O and δ D for estimating past relative humidity: deuterium deviations from the global meteoric water line in leaf water (Δ dl) and cellulose (Δ dc)

Steven Voelker, J. Renee Brooks, Frederick Meinzer, John Roden, Anna Pazdur, Slawomira Pawelczyk, Peter Hartsough, Keirith Snyder, Lenka Plavcova

Cellulose δ 18O and δ D in preserved plant material can provide insights on climates and hydrological cycling in the distant past. However, most studies of plant cellulose have used only one isotope, most commonly δ 180, resulting in difficulties partitioning variation between changes in δ 180 of precipitation versus the degree that evaporative conditions affect leaf water isotopic enrichment. Moreover, observations of pronounced diurnal differences from the predictions of the conventional Craig-Gordon (C-G) steady-state model of leaf water isotopic fractionation have cast some doubt on the use of this single isotope modeling approach for separating precipitation and evaporation drivers of cellulose δ 180 or δD . We explore a dual isotope approach akin to the concept of deuterium-excess (d), to estimate past relative humidity influences while accounting for variation caused by isotopes in precipitation. We use paired δ 18O and δ D to establish deuterium deviations from the global meteoric water line in leaf water (Δ dl). C-G models predict relative humidity (RH) will drive Δ dl, while the influence of stomatal conductance or temperature should be negligible. To demonstrate this concept, we first survey studies of leaf water δ 18O and δ D and discuss the implications of these data for cellulose δ 18O and δ D in hardwood and conifer trees. We then use a mechanistic model of cellulose δ 180 and δ D to back-predict deuterium deviations from the global meteoric water line (Δ dc) in Quercus macrocarpa, Q. robur and Pseudotsuga menziesii. For each species Δdc showed strong correlations with RH across sites. Δdc showed good agreement with C-G steady state predictions for Q. macrocarpa, and P.menziesii, but for Q. robur the relationship with RH was steeper than expected. These comparisons provide evidence that C-G steady state-models are appropriate for interpreting cellulose δ 180 and δ D and that Δ dc can be used to establish variability in RH associated with past climatic cycles or across regional climates.