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ABSTRACT 

Biomonitoring data are now available for hundreds of chemicals through state and 

national health surveys.  Exposure guidance values also exist for many of these 

chemicals.  Several methods are frequently used to evaluate biomarker data with respect to a 

guidance value.  The “biomonitoring equivalent” (BE) approach estimates a single biomarker 

concentration (called the BE) that corresponds to a guidance value (e.g., Maximum Contaminant 

Level, Reference Dose, etc.), which can then be compared with measured biomarker data.  The 

resulting “hazard quotient” estimates (HQ = biomarker concentration/BE) can then be used to 

prioritize chemicals for follow-up examinations.  This approach is used exclusively for 

population-level assessments, and works best when the central tendency of measurement data is 

considered.  Complementary approaches are therefore needed for assessing individual biomarker 

levels, particularly those that fall within the upper percentiles of measurement distributions.  In 

this case study, probabilistic models were first used to generate distributions of BEs for 

perchlorate based on the point-of-departure (POD) of 7 g/kg/day.  These distributions reflect 

possible biomarker concentrations in a hypothetical population where all individuals are exposed 

at the POD.  A statistical analysis was then performed to evaluate urinary perchlorate 

measurements from adults in the 2001-2002 National Health and Nutrition Examination Survey 

(NHANES).  Each NHANES adult was assumed to have experienced repeated exposure at the 

POD, and their biomarker concentration was interpreted probabilistically with respect to a BE 

distribution.  The HQ based on the geometric mean (GM) urinary perchlorate concentration was 

estimated to be much lower than unity (HQ ≈ 0.07).  This result suggests that the average 

NHANES adult was exposed to perchlorate at a level well below the POD.  Regarding 

individuals, at least a 99.8% probability was calculated for all but two NHANES adults that a 
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higher biomarker concentration would have been observed compared to what was actually 

measured if the daily dietary exposure had been at the POD.  This is strong evidence that 

individual perchlorate exposures in the 2001-2002 NHANES adult population were likely well 

below the POD.  This case study demonstrates that the “stochastic BE approach” provides useful 

quantitative metrics, in addition to HQ estimates, for comparison across chemicals.  This 

methodology should be considered when evaluating biomarker measurements against exposure 

guidance values, and when examining chemicals that have been identified as needing follow-up 

investigation based on existing HQ estimates.  
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ABBREVIATIONS 

ADME: absorption, distribution, metabolism, elimination; ATUS: American Time Use Survey; 

BE: biomonitoring equivalent; BEPOD: biomonitoring equivalent corresponding to the point of 

departure; BW: body weight; CDC: Centers for Disease Control and Prevention; GM: geometric 

mean; GSD: geometric standard deviation; HQ: hazard quotient; HQGM: hazard quotient 

corresponding to the geometric mean; HQ95: hazard quotient corresponding to the 95
th

 percentile; 

mpd: meals per day; NHANES: National Health and Nutrition Examination Survey; NOAEL: no 

observed adverse effect level; NSC: normalized sensitivity coefficient; PBPK: physiologically-

based pharmacokinetic; POD: point of departure; UO: urine output (L/hr)  
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1. INTRODUCTION 

Humans are exposed to thousands of distinct chemicals every day from both natural and 

man-made sources (USEPA 2013c).  Understanding the impacts of these exposures on human 

health requires accurate and precise exposure estimation.  Conventional methods for exposure 

estimation integrate environmental measurements, records of human time/location activities, and 

other exposure factors (e.g., hand-to-mouth frequency) (USEPA 1992).   Alternative strategies 

now utilize chemical biomarker measurements (USNRC 2006).  Biomarkers of exposure are 

generally parent chemicals or their metabolite(s) measured in biological media (Fields and 

Horstman 1979).  These measurements provide direct evidence of human exposure to a chemical.  

Given the availability of these data in nationwide exposure and health surveys (e.g., the Centers 

for Disease Control and Prevention’s [CDC] National Health and Nutrition Examination Survey 

[NHANES]), there is a move to make use of biomarker measurements to support exposure and 

risk assessments. 

Several approaches exist for evaluating exposures and/or health risks using biomarker 

data.  The “Biomonitoring Equivalent” (BE) approach, developed by Hays and colleagues, is a 

popular screening method for comparing biomarker data to exposure guidance values (Hays et al. 

2007).  This approach uses pharmacokinetic (PK) models or analytical expressions to predict a 

steady state or average biomarker concentration given exposure at an existing guidance value.  

The predicted biomarker concentration (i.e., the BE) is then compared to biomarker 

measurements from a population of interest to estimate a hazard quotient (HQ), where HQ = 

[Biomarker Concentration]/BE.  These HQs can be compared across chemicals to identify those 

that are of higher concern with respect to human health risk. 
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To date, the BE approach has been used to interpret biomonitoring data for approximately 

100 chemicals in a wide range of classes, such as dioxins (Aylward et al. 2008), phthalates 

(Aylward et al. 2009), and heavy metals (Hays et al. 2010).  In a recent article by Aylward and 

colleagues (Aylward et al. 2013), HQs were calculated based on geometric mean (HQGM) and 

95
th

 percentile (HQ95) estimates for a subset of analytes measured as part of the NHANES.  

These calculated HQs were used to prioritize chemicals; a small number had HQGM near unity. 

The number of chemicals with HQ95 near unity increased, but the importance of HQ95 is difficult 

to interpret. 

There is general agreement that the central tendency of a distribution of biomarker 

measurements reflects longer-term average exposures in the sample population (Aylward et al. 

2012, Pleil and Sobus 2013).  Thus, HQ estimates based on GM levels provide insight into these 

longer-term average exposures, where estimates near unity suggest that population-wide 

exposure is likely to be near the guidance level.  However, HQ estimates based on distribution 

tails are much more difficult to interpret.  For distributions of short-lived biomarkers, it is 

difficult and sometimes impossible to tell whether very high levels reflect elevated acute 

exposures, chronic exposures, or a combination of factors that are independent of exposure 

magnitude (e.g., the timing of exposure with respect to sample collection).  This limitation has 

important implications for interpreting biomarker measurements within a risk context since 

regulatory agencies establish tolerable limits based on chronic exposure.  Thus, new strategies 

are needed for interpreting biomarker distribution tails with respect to BEs and other biomarker-

based screening values. 

The current study presents a stochastic approach for estimating a distribution of BEs that 

takes into account both exposure and PK variability.  A statistical methodology is also presented 
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for interpreting tails of a measured biomarker distribution with respect to the estimated BE 

distribution.  These techniques are illustrated using perchlorate as a case study.  Perchlorate was 

chosen because of the abundance of relevant exposure and biomarker data, as well as the 

existence of a physiologically-based pharmacokinetic (PBPK) model that describes the dose-

biomarker relationship.  The stochastic approach presented in this article may be used to 

supplement existing HQ estimates and to facilitate the quantitative interpretation of human 

biomonitoring data.  
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2. METHODS 

2.1 Stochastic BE Approach 

The new stochastic BE approach is based on the original BE approach developed by Hays 

and colleagues (Hays et al. 2007).  Similarities and key differences between approaches are 

illustrated in Figure 1 and are discussed in detail in the following subsections.  Throughout the 

article, perchlorate is used as a case study chemical to demonstrate the stochastic approach.  

Perchlorate is a well-studied chemical that is used in rocket fuel, explosives, and fireworks 

(Motzer 2001).  It also originates from natural sources, and is a byproduct of some water 

disinfection processes (Rao et al. 2012).  Dietary ingestion is considered the major route of 

environmental exposure to perchlorate (Huber et al. 2011, Mendez et al. 2010, Murray et al. 

2008), and is therefore the only exposure route considered in this analysis. 

 

2.1.1 Exposure guidance value 

Generally an existing exposure guidance value is considered the starting point for BE 

derivation (Aylward et al. 2009).  In some cases, the starting point is a point of departure (POD), 

which is the dose-response point that marks the beginning of a low-dose extrapolation (USEPA 

2014).  An example of a POD is a no observed adverse effect level (NOAEL), which is the 

highest dose tested that does not produce an adverse effect (USEPA 2013a, USNRC 2005).  

When a POD is based on studies of laboratory animals, an uncertainty factor (e.g., 10×) is used 

to adjust for interspecies differences prior to the derivation of a BE.  For our case study of 

perchlorate, the POD is a NOAEL of 7 g/kg/day (USNRC 2005) that was determined from 

human studies (Greer et al. 2002).  Therefore, no interspecies uncertainty factor is required, and 

the human POD was chosen to be the starting point of our case study. 
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2.1.2 Exposure model 

Once a guidance value is selected as a starting point, it is incorporated into the BE 

calculation as the exposure concentration.  As shown in Figure 1, the original approach uses a 

simplified scenario of continuous steady state exposure, whereas the stochastic approach uses a 

probabilistic exposure model to simulate real-life scenarios.  In this study, multiple perchlorate 

dietary exposure scenarios (one or three meals per day [mpd] at different meal times) were 

simulated.  One mpd exposures were simulated with the total daily dose (7 g/kg/day) given at 

7:00 am, noon, or a randomized time based on a distribution of meal times gathered from the 

American Time Use Survey (Figure S2).  Three mpd simulations were simulated based on a 

fraction of the total daily dose (7 g/kg/day) given at 7:00 am, noon, and 5 pm, or at three 

randomized times based on the ATUS.  For these 3 mpd cases with randomized meal times, 

simulated days were first segmented into breakfast (midnight – 10:30 am), lunch (10:30 am – 

3:00 pm), and dinner (3:00 pm – midnight) time frames.  Each meal time was then randomized 

using the ATUS by choosing one meal from within each time frame with no meal being allowed 

to take place less than one hour after the previous meal.  The daily dose was split across the three 

meals in one of the two ways: (1) each meal was one third of the total daily dose; or (2) each 

dose was set to a fraction using randomization that was no less than 10% or more than 80% of 

the total daily dose, while constraining the sum of the three meals to add up to 100%. 

 

2.1.3 Dosimetry model 

Dosimetry models, including PBPK models and analytical expressions, can be used to 

predict biomarker concentrations corresponding to known external exposures.  Whereas the 
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original BE approach uses fixed (e.g., at the population median) model parameter values to 

simulate biomarker concentrations, the stochastic BE approach samples from distributions to get 

values of key model parameters.  For this case study, an existing PBPK model for perchlorate 

was used to incorporate physiologic and PK parameter variability into BE estimates (Merrill et al. 

2005, USEPA 2009).  A local sensitivity analysis was performed on the PBPK model to identify 

sensitive parameters for the selected response variables, which were the amount of perchlorate in 

the urinary compartment (g) and the mass flow rate of perchlorate into the urinary compartment 

(g/hr).  Any parameter with a median normalized sensitivity coefficient (NSC) during the 

sampling period greater than 0.1 was considered sensitive (Peters 2012).  For each sensitive 

parameter, the shape (i.e., normal or lognormal), central tendency (i.e., mean or geometric mean), 

and coefficient of variation were obtained from the literature (see supplementary material for full 

details of the distributions of PBPK parameters, Table S1).  In cases where a coefficient of 

variation was not reported, it was assigned a value of 50%. 

 

2.1.4 Urine output model 

Urinary biomarker concentrations are typically measured and reported in units of 

concentration (mass of chemical / volume of urine) or creatinine-adjusted concentration (mass of 

chemical / mass of creatinine).  As previously mentioned, dosimetry models predict the amount 

of chemical in a urinary compartment (g), and mass flow rate into that compartment (g/hr).  

Thus, the volume of urine (L) or urine output rate (L/hr) is needed to convert model predicted 

values into concentration estimates (g/L), and the mass of excreted creatinine (mg) or creatinine 

excretion rate (mg/hr) is needed to convert to creatinine-adjusted concentrations (g/mg).  The 

original BE approach assumes constant rates of urine output or creatinine excretion for 
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estimating steady state or time-averaged biomarker concentrations.  The stochastic BE approach 

samples from distributions of these values, since they are known to vary within and between 

individuals (Fortin et al. 2008).  For this case study, urine output and creatinine excretion data 

subsets were selected from the 2009-2010 NHANES dataset (the only NHANES dataset in 

which these values are reported).  Specifically, data subsets were selected based on participants’ 

gender, age, body weight, and lab session.  Lab session was the time block in which urine 

sampling took place.  It was reported as one of three sessions: morning (8:00 am - 12:30 pm), 

afternoon (1:30 - 5:30 pm), or evening (5:30 - 9:30 pm).  Since urine output and creatinine 

excretion can be influenced by the four factors listed above (Zewdie et al. 2010), measurements 

were binned as follows: gender (male or female); age (20-45 or 46+); weight (≤79.12 kg or 

>79.12 kg); and lab session (morning, afternoon, or evening).  The cutoffs for weight and age 

were determined based on the population median estimates.  Nationally representative means and 

standard deviations (including weighting factors) of lognormal distributions for each 

combination of these four variables were estimated using the VARGEN procedure in SAS-

callable SUDAAN® (RTI International, RTP, NC; SAS version 9.3, SUDAAN version 11.0.0).  

SUDAAN’s VARGEN procedure allows the standard deviation of a distribution to be estimated 

using Taylor Series Expansion while incorporating sample weights and study design information.  

See Table S2 for the estimated distribution statistics. 

 

2.2 Generating distributions of spot perchlorate concentrations 

The original BE approach uses fixed values to simulate a steady state BE, consistent with 

an exposure guidance level.  If the guidance level is a POD or an adjusted POD (for interspecies 

differences), then the predicted value is called the “BEPOD”.  As shown in Figure 1, this estimate 
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is subsequently divided by an uncertainty factor (generally 10× to account for intraspecies 

differences) to get one final BE value.  In contrast, our stochastic BE approach uses a Monte 

Carlo technique, allowing for variation in exposure scenarios, PK, and urine output/creatinine 

excretion (for urinary biomarkers only) to generate a distribution of BEPOD. 

As part of this case study, the stochastic procedures described above (sections 2.1.2 

through 2.1.4) were combined through a series of simulations in order to evaluate the greatest 

sources of variation in predicted BEPOD distributions.  All calculations were carried out using 

MATLAB® version R2013b 8.2.0.701 (MathWorks, Natick, MA, Windows platform).  

Simulated individuals were based on 1617 adults (20+ years old) whose urinary perchlorate 

levels were measured during the 2001-2002 NHANES.  These individuals were chosen as the 

basis for our simulations since several published studies have analyzed the same dataset (Blount 

et al. 2007, Lorber 2009, Yang et al. 2012). 

Figure 1 shows the process for generating a BEPOD distribution.  First, “exposures” at the 

POD were given to simulated individuals as described in section 2.1.2 (i.e., various meal events, 

meal times, and dose fractions).  Next, “exposures” were used as inputs into the PBPK model, 

which was run to pseudo-steady state, with Monte Carlo sampling of sensitive parameters (as 

described in section 2.1.3).  “Sampling times” were chosen based on each NHANES individual’s 

lab session, with a constraint that the sampling time had to be at least 30 minutes after the most 

recent meal.  (A figure illustrating the interaction between lab session [i.e., spot sampling time] 

and dose frequency/timing can be found in the supplementary material, Figure S3.)  Next, the 

mass flow rate (g/hr) into the urinary compartment at the selected sampling time was divided 

by a urine output (L/hr) and matching creatinine excretion rate (mg/hr) sampled from the 

stratified distributions described above to give the instantaneous urinary concentration (g/L) 
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and creatinine-adjusted concentration (g/mg), respectively.  The urine output and creatinine 

excretion values came from stratified distributions, as described in section 2.1.4.  To identify the 

greatest sources of variability to the BEPOD estimates, twelve distributions of BEPOD were 

generated by setting selected parameters to their “average” values and incorporating probabilistic 

sampling of the remaining parameter values (Table 1).  In successive runs, the contribution of 

variability in exposure, PK, and urine output/creatinine excretion was evaluated singly, and then 

all together. 

Cases 1-6 were one mpd simulations with an intake dose of 7 g/kg/day at noon, 7 am, or 

a randomized meal time based on the ATUS data.  Cases 7-12 were three mpd, each with a 

fraction of the total daily intake dose of 7 g/kg/day, with the meal times either fixed (at 7 am, 

noon, 5 pm) or randomized based on the ATUS data.  Fractions of the daily dose per meal were 

either fixed at one third for each meal (cases 7, 9, 10, and 11) or allowed to vary between 10% 

and 80% per meal (cases 8 and 12).  Randomization of sensitive PBPK parameters was 

performed for cases 4, 6, 10, and 12.  Randomization of urine output/creatinine excretion was 

performed for cases 5, 6, 11, and 12.  Case 12 is assumed to represent the most realistic scenario 

in which individuals in a population eat three meals per day at different times, have different 

exposures in each meal (fractions of total daily dose, in this case), have different physiology and 

PK, and produce urine/creatinine at different rates (Table 1). 

 

2.3 Statistical Analysis of BE Distributions 

Distributions generated using the stochastic BE approach can help identify the greatest 

sources of variability in a biomarker distribution, and can be used to statistically evaluate 

biomarker data, including distribution tails, from observational human studies.  For this case 
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study, simulated distributions of BEPOD were compared to perchlorate measurements from the 

2001-2002 NHANES using standard scores (z-scores). 

First, each NHANES urinary perchlorate measurement (concentration and creatinine-

adjusted concentration) was log-transformed and then standardized to the mean and standard 

deviation, both known, of the log-transformed simulated BEPOD distribution.  Under the 

assumption that these standardized NHANES values were from the BEPOD distribution, a one-

sided z-test statistic was used to estimate their probability, .  To identify only those who were 

most likely to have been exposed at or above the POD, individual perchlorate measurements 

from the 2001-2002 NHANES with  > 0.01 were flagged for additional analysis.  We chose this 

one percent probability as our lower bound cutpoint, in part, for robustness across repeated 

simulations of the BEPOD distribution (since the tails of the distribution are most subject to 

change subsequent to repeated probabilistic simulation).  Other approaches for establishing a 

cutpoint, including non-parametric methods (e.g., flagging samples above the 1
st
 percentile of the 

BEPOD distribution), may also be considered when appropriate (e.g., a bimodal instead of a 

lognormal BEPOD distribution).  Additional simulations were conducted for flagged 

measurements, using only matched demographic data (i.e., gender, age, body weight, and lab 

session), to generate targeted BEPOD distributions.  This step essentially removes some inputs 

from probabilistic randomization during the Monte Carlo analysis.  “Targeted ” estimates were 

subsequently calculated by comparing individual perchlorate measurements with the 

corresponding targeted BEPOD distribution using the methods detailed above.  
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3. RESULTS 

3.1 Population-Level Analysis of BE Distributions 

Twelve simulated BEPOD distributions based on urinary perchlorate concentration are 

shown in Figure 2A.  Medians of predicted distributions were fairly similar, ranging from 389 to 

730 g/L; these estimates are roughly two orders of magnitude higher than the median of the 

selected NHANES 2001-2002 sub-population distribution (3.8 g/L).  With the exception of 

case 2, medians based on the one mpd simulations (389 – 567 g/L) were slightly lower than 

those based on the three mpd simulations (455 – 574 g/L).  Cases 7-10 produced the narrowest 

distributions, with ratios of the 95
th

 percentile to the 5
th

 percentile (95:5 ratio) ranging from 2.6 

to 3.3; these three mpd cases varied one of three factors (i.e., dose fraction, dose timing, or 

sensitive PBPK parameters), or varied no factors.  Cases 5, 6, 11, and 12 produced the widest 

distributions, with 95:5 ratio ranging from 18 to 48; these one or three mpd cases varied urine 

output, or varied all factors.  The spread of distributions from cases 11 (95:5 ratio = 18) and 12 

(95:5 ratio = 23) are most comparable to that of the measured 2001-2002 NHANES data, where 

the 95:5 ratio is 18. 

Twelve simulated BEPOD distributions based on creatinine-adjusted perchlorate 

concentration are shown in Figure 2B.  Trends here are very similar to those in Figure 2A.  

Specifically, medians were slightly (except in case 2) lower in the one mpd simulations (0.42 to 

0.55 g/mg) than in the three mpd simulations (0.52 to 0.56 g/mg).  The median creatinine-

adjusted perchlorate concentration from the 2001-2002 NHANES is 0.0035 g/mg, which is 

approximately 150-times lower than median estimates from the three mpd simulations.  Again, 

the narrowest distributions were observed for cases 7-10 (95:5 ratios: 2.6 to 3.3).  The widest 

distributions were observed in cases 5, 6, 11, and 12.  Estimates of 95:5 ratios for these simulated 
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distributions ranged from 12 to 30, which is comparable to the estimate for the  2001-2002 

NHANES data (95:5 ratio = 12). 

Comparisons of case 12 simulated values and 2001-2002 NHANES data are shown in 

Figures 3A (for urinary perchlorate concentrations) and 3B (for creatinine-adjusted 

concentrations).  Estimated geometric standard deviations (GSD) were comparable across 

NHANES and simulated distributions for both urine concentrations (NHANES GSD = 0.386 

g/L; simulated GSD = 0.412 g/L) and creatinine-adjusted concentrations (NHANES GSD = 

0.346 g/mg; simulated GSD = 0.355 g/mg).  Estimated GM levels of the simulated BE 

distributions (479 g/L and 0.523 g/mg) were ~135× larger than those based on the NHANES 

data (3.64 g/L and 0.0037 g/mg). 

 

3.2 Individual Subject-Level Analysis of BE Distributions 

There is little overlap between the lower tails of the simulated BEPOD distributions (case 

12) and the upper tails of the NHANES histograms (Figures 3A and 3B).  A  value was 

estimated for the individuals in the upper tails of the NHANES dataset.  Six NHANES 

individuals were flagged with estimates of  that were larger than 0.01.  The two individuals with 

the highest urinary perchlorate concentration (100 g/L) had  estimates approximately equal to 

0.05 (Table 2).  That is, if these two individuals had been consistently and repeatedly exposed to 

perchlorate at the POD, there was about a 95% chance that the measured biomarker 

concentrations for these individuals would have been larger than 100 g/L.  For the creatinine-

adjusted values, only two subjects had  estimates greater than 0.01; these subjects also had  

estimates greater than 0.01 based on perchlorate concentration.  As such, no new subjects were 

flagged based on their creatinine-adjusted concentrations.  The  estimates for these two subjects 



18 
 

increased when moving from concentration to creatinine-adjusted values.  Since the observed 

creatinine concentrations for their samples were within an acceptable range of 30 – 300 mg/dL 

(WHO 1996), their high biomarker measurements were likely not due to dehydration or impaired 

kidney function.  The  estimate for highest ranked individual based on their creatinine-adjusted 

level (0.25 g/mg) was 0.18, suggesting an 82% chance of observing a creatinine-adjusted 

concentration at or above 0.25 g/mg given repeated daily dietary exposure at the POD. 

The  estimates for flagged individuals were recalculated using targeted BEPOD 

distributions.  For these targeted distributions, some model inputs (such as body weight, age, and 

gender) were set equal to the values for a flagged individual, rather than being allowed to take on 

the full range of values found in the population.  Little change (< 3×) was observed in  estimates 

for four of the six individuals, whereas considerable decreases (more than an order of magnitude) 

in  estimates were observed for the other two who had considerably greater body weights (Table 

2).  Since the simulated fixed dose (POD) was scaled by body weight, these two individuals 

received a larger total dose that shifted the BE distributions to the right, decreasing the extent of 

overlap and resulting in reduced estimates of . 

Only two adults from the 2001-2002 NHANES were identified as having  estimates 

greater than 0.01 considering population and targeted BEPOD distributions of both concentration 

and creatinine-adjusted values.  Based on the targeted BEPOD distributions of creatinine-adjusted 

values, the largest  estimates were 0.16 and 0.025; all other estimates were below 0.002.  In 

other words, our simulation results suggest that for all but two of these NHANES subjects, there 

was at least a 99.8% chance of observing a higher biomarker concentration than what was 

actually measured if the daily dietary exposure had been at the POD.  
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4. DISCUSSION 

The need to prioritize chemicals based on estimated risk is now at the forefront of public 

health and regulatory agendas (USEPA 2012, USEPA 2013b, USNRC 2007, USNRC 2012).  

Indeed, high throughput (HT) screening for exposure and/or toxicity is increasingly used to 

prioritize thousands of chemicals for further testing (Kavlock et al. 2012, Wambaugh et al. 2013, 

Wetmore et al. 2012).  While the original BE approach is also intended as a screening tool, its 

purpose is distinct from that of HT research ─ it is meant to prioritize a smaller set of chemicals 

for which exposure guidance values and biomarker data exist.  Based on the distance between 

biomarker measurements and corresponding BEs, chemicals are classified as low, medium, or 

high priority.  Chemicals classified as medium or high priority may then require follow-up 

actions such as in-depth exposure assessment, risk assessment re-evaluation, or risk mitigation 

actions. 

Deriving a BE requires an exposure guidance value and a mathematical description of the 

exposure-biomarker relationship.  Interpreting biomarkers using a BE requires robust biomarker 

data (e.g., with most measurements above the detection limit), as well as methods for interpreting 

“spot” measurements against a chronic-exposure-based BE.  (A notable exception is when the 

limit of detection is much lower than the BE and many biomarker levels are below the limit of 

detection.  In this case, the large number of non-detects would not offset a conclusion of low 

risk.)  The original BE approach relies on simplified exposure scenarios (e.g., continuous or 

bolus dose) and exposure-biomarker relationships (e.g., linear and deterministic) for BE 

derivation, and central tendency (e.g., GM) or upper percentile (e.g., 95
th

 percentile) estimates of 

measurement data for BE interpretation.  Interpretations based on upper percentile estimates can 

be misleading for non-persistent chemicals due to rapid fluctuations in biomarker levels.  This 
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issue makes cross-chemical evaluation and prioritization challenging.  New methods are 

therefore needed to make informative comparisons between biomarker data and BEs 

(particularly when considering the distribution tails) with the goal of reducing uncertainty in 

prioritization decisions. 

The stochastic BE approach can be adapted for analyzing biomarker data for virtually any 

compound.  While Figure 1 illustrates the fundamental components of the approach, the specific 

structure of any component is subject to the availability of data.  For instance, a simple one-

compartment PK model could be used in lieu of a full PBPK model, and a multi-route exposure 

model could be used to replace the oral-only exposure model.  The distinguishing feature of the 

stochastic BE approach is the consideration of variability in model parameters and predictions.  

As long as variability can be adequately addressed in any of the components, the approach can 

be considered a part of the stochastic BE approach. 

There are three possible scenarios when prioritizing chemicals using the original BE 

approach.  These scenarios are illustrated here using two HQ estimations: one based on 

geometric mean (HQGM) and the other based on a 95
th

 percentile estimate (HQ0.95).  If low values 

(<< 1) are estimated for both HQGM and HQ0.95, then a chemical should be considered low 

priority and probably low risk.  If high values (near or above unity) are estimated for both HQGM 

and HQ0.95, then a chemical should be considered high priority and potentially high risk.  In the 

third scenario, the estimate for HQGM is low (<1), but the estimate of HQ0.95 is high (near or 

above unity).  When multiple chemicals are observed in this category (as they were in Aylward 

et al. 2013), decisions must be made as to which chemicals are higher priority.  To aid decision-

making, the current study presents a stochastic BE approach that has the capability to evaluate 

individual biomarker measurements by comparing them to a stimulated distribution of BEs. 
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For this case study, probabilistic exposure, dosimetry, and urine output/creatinine 

excretion models were first used to generate distributions of BEs for perchlorate based on the 

POD of 7 g/kg/day.  Simulated BE distributions were then carefully examined to identify major 

contributors to BE magnitude and variability.  Overall, urine output/creatinine excretion and 

frequency of exposure (i.e., number of meals per day) were observed to be the largest 

contributors to BE variability (see Figure 2).  One mpd simulations (cases 1-6 in Table 1) 

produced wider BE distributions than did three mpd simulations (cases 7-12).  For three mpd 

simulations, the fraction of the daily dose in each meal (case 8), specific timing of each meal 

(case 9), and PBPK parameters (case 10) all had relatively little impact on BE variability.  The 

magnitude of BEs, as reflected by median estimates, was stable across different scenarios.  

However, three mpd simulations tended to produce higher median BE levels than one mpd 

simulations.  Taken together, these results have implications for both the original and stochastic 

BE approaches.  The original approach approximates continuous exposure, and our results 

suggest that this strategy could overestimate a BE, and underestimate a HQ, if intermittent 

exposures are expected for a given chemical.  With respect to the stochastic BE approach, all 

future studies evaluating urinary biomarkers should take into account variability in urine output 

and/or creatinine excretion.  Assuming constant rates for these values would severely 

underestimate the spread of the urinary biomarker distribution. 

After simulating and evaluating BE distributions, a multi-step analysis was performed to 

interpret urinary perchlorate concentrations and creatinine-adjusted concentrations measured in 

the 2001-2002 NHANES.  We compared the biomarker measurements from NHANES adults 

with the BEPOD distribution based on case 12, which best reflects reality (Figure 3).  This case 

assumes that dietary perchlorate exposure occurs at meals, three times per day, with variations 
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across individuals in meal timing, dose fractions per meal, PBPK parameter values, and urine 

output/creatinine excretion values.  The following discussion highlights key results from our 

analysis, as well as important distinctions between our results and those that would be expected 

from the original BE approach. 

If we were to calculate HQs using the protocol of the original BE approach, a final BE for 

perchlorate could be calculated by dividing the GM of the simulated BEPOD distribution (479 

g/L or 0.523 g/mg) by an uncertainty factor of 10.  Then, this final BE could be used to 

estimate HQGM and HQ0.95 using the GM and the 95
th

 percentile of the NHANES biomarker 

measurements.  Based on this approach, HQGM and HQ0.95 are estimated to be 0.076 and 0.31, 

respectively, for urinary perchlorate concentrations, and 0.071 and 0.26, respectively, for 

creatinine-adjusted concentrations.  Interestingly, these results suggest that perchlorate fits into 

the third scenario described above, where HQGM < 1 and HQ0.95 is near unity.  These HQ 

estimates underscore the need for an approach that could further prioritize perchlorate in relation 

to other chemicals with similar HQ estimates [e.g., di(2-ethylhexyl)phthalate, 1,4-

dichlorobenzene, and benzene in nonsmokers (Aylward et al. 2013)]. 

There are several reasons why the original BE approach is better suited for comparing 

exposure across chemicals rather than evaluating the exposures of individuals to a single 

chemical.  First, the original BE approach is meant for examining biomarker data from a 

population, and not from individuals.  As discussed earlier, it can be challenging to interpret HQ 

estimates at the tails of measurements distributions, particularly when the biomarker of interest is 

short-lived.  Second, the original BE approach indirectly compares biomarker data to a guidance 

value, rather than estimating exposures that are consistent with biomarker data.  It may be 
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difficult to evaluate results based only on HQs for possible follow-up action(s).  Setting 

acceptable cutoff values for HQs at the 50
th

 or 95
th

 percentile is not straightforward. 

Several "exposure reconstruction" methodologies have been utilized to estimate exposure 

levels that are consistent with biomarker data.  For example, Blount et al., Huber et al., and 

Mendez et al. have each estimated perchlorate exposure levels using the 2001-2002 NHANES 

biomarker data (Blount et al. 2007, Huber et al. 2011, Mendez et al. 2010).  These studies benefit 

from framing results in terms of estimated exposure levels (rather than HQ), but are not without 

limitations.  For example, in these studies each biomarker measurement was the basis for a 

"reconstructed" exposure value.  Specifically, each spot measurement was assumed to be related 

to an individual’s exposure by a single constant of proportionality.  This approach contrasts with 

others that have been developed for exposure reconstruction, for instance the Exposure 

Conversion Factor approach where multiple constants of proportionality are estimated, which are 

then used to translate a single biomarker measurement into a distribution of exposures that are 

consistent with that measurement (Tan et al. 2006).  Since spot biomarker concentrations are 

sometimes poor surrogates of longer-term averages (Pleil and Sobus 2013, Rappaport and 

Kupper 2008) these methods should only be considered appropriate at the population level when 

dealing with short-lived biomarkers.  Thus, a need still exists for biomarker-based exposure 

assessment approaches at the individual level. 

The stochastic BE approach does not attempt to reconstruct individual exposures from 

biomarker data, but instead statistically evaluates individual biomarker measurements with 

respect to exposure at a guidance value.  Thus, in principal, the stochastic BE approach is very 

similar to the original BE approach.  However, the stochastic BE approach goes beyond HQ 
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estimation to provide meaningful, quantitative insights into single chemical exposures; these 

insights are expressed probabilistically for each individual with a biomarker measurement. 

Consider that a BEPOD distribution is intended to reflect the possible biomarker 

concentrations in a hypothetical population where all individuals are exposed equally, and 

repeatedly, at a POD.  The stochastic BE approach is used to first generate the BEPOD distribution, 

and then to interpret individual biomarker measurements with respect to that distribution.  Our 

results for perchlorate suggest at least a 99.8% chance, for all but two individuals in the 2001-

2002 NHANES sub-population, of observing a higher biomarker concentration than what was 

actually measured, assuming daily exposure at the POD through the diet.  Even if the most 

extreme individual (i.e., the one with the largest measured perchlorate concentration) had been 

exposed repeatedly at the POD, there was still an 84% chance of observing a higher biomarker 

concentration than what was actually measured.  These probabilistic results help place the 

NHANES biomarker measurements into a quantitative exposure context, and suggest that 

perchlorate exposures among the 2001-2002 NHANES adults were likely well below the POD. 

Estimates of  were calculated for NHANES individuals using population and targeted 

BEPOD distributions, and both concentration and creatinine-adjusted values.  The purpose of this 

iterative process was to ensure that elevated  estimates were not artifacts of compromised 

biological samples (as evaluated by creatinine concentrations) or model restrictions.  While our 

case study example uses urinary perchlorate measurements from the NHANES, the stochastic 

BE approach can certainty be applied to evaluate chemical biomarker data from other studies 

(e.g., targeted epidemiological studies).  Here, the NHANES biometric data may still be useful 

for constructing population-level BE distributions based on certain variables (e.g., body weight).  

However, a lack of matched biomarker and biometric data may ultimately prevent the 
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construction of targeted BE distributions.  Thus, investigators applying the stochastic BE 

approach should evaluate on a case-by-case basis whether targeted BE distributions can be 

calculated (leading to targeted  estimates), or if interpretations must be based on more global 

BE distributions. 

We note that our estimated BEPOD distributions may have been tighter, and our 

estimations of  lower, if urine output and creatinine excretion values had been available for the 

2001-2002 NHANES subjects (these values were sampled from stratified distributions of the 

2009-2010 NHANES dataset – a dataset in which the urinary perchlorate levels are not yet 

available).  Thus, future analyses will benefit from samples with matched chemical concentration, 

urine output, and creatinine concentration values.  Ultimately, refined  estimates for perchlorate 

should be compared to  estimates for other chemicals where existing HQ0.95 levels are near unity.  

This type of multi-chemical evaluation would support refined prioritizations for specific 

chemicals, and perhaps preliminary decisions regarding follow-up research/actions. 

While the stochastic BE approach is useful for evaluating biomarker measurements in an 

exposure context, it is not intended to provide direct risk estimates for individuals.  Rather, it is 

limited to identifying individuals whose biomarker concentrations have exceeded some 

evaluation criterion (e.g.,  ≥ 0.01 in our example).  Examination using quantitative criteria 

should be considered an important step in exposure evaluation, but not a final step in risk 

assessment, for several reasons: 

(1) NHANES biomarkers are single spot measurements, and a spot measurement for an 

individual can fall much higher or lower than the average biomarker concentration for 
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that individual.  Many guidelines are predicated on chronic, rather than acute 

exposures, complicating the analysis of spot measurements in relation to risk. 

(2) In our example, the distribution of BEPOD from case 12 was selected since it was 

considered the most realistic.  If a different case had been used with a much narrower 

distribution (e.g., case 3), then it is possible that no individual in the NHANES sub-

population would have exceeded the evaluation criterion.  If the same analysis had 

been performed using different model inputs or assumptions, it follows that different 

people could have been flagged as exceeding the evaluation criterion. 

(3) In our example, six individuals had  ≥ 0.01 when using concentrations on a volume-

basis; and two had  ≥ 0.01 when using creatinine-adjusted concentrations.  While 

both are “urinary biomarker measurements,” different ways of presenting the data 

result in different individuals being flagged. 

(4) The number of individuals exceeding an evaluation criterion depends on the criterion.  

If the cutoff has been changed to  ≥ 0.001, than 29 individuals would have exceeded 

this new criterion (using concentrations on a volume-basis). 

Item 1 is inherent in any effort to use spot biomarker data for understanding health risk, 

regardless of method, while items 2-4 are specific to our method.  The stochastic BE approach 

has the advantage, being a computational technique, that it can be quickly and easily repeated as 

additional information becomes available and any underlying assumptions are reexamined or 

revised. 

In summary, the  estimate for each individual, as well as the number of individuals 

meeting an evaluation criterion, depend upon: a) the assumptions underlying the models, b) the 

parameters that are considered for BE derivation, c) the population(s) used for model calibration, 
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and d) the units of the biomarker output.  Thus, the generation and evaluation of multiple 

distributions (given different assumptions and scenarios) is recommended prior to calculating 

final  levels.  The goal is to maximize confidence in both the central tendency and spread of the 

simulated BE distribution so that  estimates are meaningful and facilitate comparisons across 

chemicals.  
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5.0 CONCLUSION 

The stochastic BE approach was conceived as a “next step” in using biomarker data for 

chemical prioritization.  Its primary value is in providing quantitative metrics, in addition to HQ 

estimates, to compare across chemicals to identify those most in need of additional research to 

characterize exposure, health and environmental effects, and/or overall risk.  A secondary benefit 

of the approach is its ability to give statistical insight into single chemical exposures with respect 

to exposure at guidance values.  Whenever possible, this approach should be used to: (1) explore 

exposure-biomarker relationships and their impact on BE estimates; (2) statistically evaluate 

biomarker measurements with respect to exposure guidance values; and (3) further examine 

chemicals in need of follow-up investigation based on existing HQ estimates.  
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FIGURE CAPTIONS 

Figure 1.  Flowchart of the original BE approach (solid lines) and stochastic BE approach 

(dotted lines).  Rounded rectangles denote the beginning and end of the approaches, 

parallelograms denote inputs, rectangles denote processes or models, circles denote connection 

points, and diamonds denote a branch (either/or). 

Figure 2.  Case Results: Distribution of BEs for (A) urinary perchlorate concentration (g/L), 

and (B) creatinine-adjusted perchlorate concentration (g/mg).  Whiskers extend to the 5
th

 and 

95
th

 percentiles, red bullets indicate the 1
st
 and 99

th
 percentiles, and red plus signs indicate the 

minimum and maximum values.  See Table 1 for a summary of the experimental setup of each 

case. 

Figure 3.  Overlap between NHANES 2001-2002 urinary perchlorate biomarker data (sub-

population) and the distributions of BEPOD (case 12).  (A) Urinary concentration (g/L).  (B) 

Creatinine-adjusted urinary concentration (g/mg) 
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Table 2.  Results for NHANES 2001-2002 individuals who met the selection criterion (Population  ≥ 0.01). 

SeqN Gender 
Age 

(yr) 

Weight 

(kg) 

Lab 

Session 

Creatinine 

Conc. 

(mg/dL) 

Biomarker 

Conc. 

(g/L) 

Population 

 

Targeted 

 

Creatinine-

Adj. Conc. 

(g/mg) 

Population 

 

Targeted 

 

16435 Female 44 57.1 Afternoon 40 100 0.04929 0.05198 0.2500 0.18308 0.16373 

13589 Male 29 162 Afternoon 149 100 0.04929 0.00667 0.0671 0.00599 0.00054 

20821 Male 56 45.3 Afternoon 132 71 0.02205 0.05102 0.0538 0.00269 0.00673 

10388 Female 59 129.5 Morning 261 71 0.02205 0.00235 0.0272 0.00015 9.09E-07 

18071 Female 83 57.4 Morning 151 62 0.01554 0.03355 0.0411 0.00092 0.00163 

17886 Female 23 49.7 Evening 60 60 0.01424 0.03373 0.1000 0.02144 0.02520 

 

Table 1.  Summary of the differences among the twelve cases. 

Case mpd 
Meal 

Time 
PBPK UO Case mpd 

Variable 

Dose 

Variable 

Time 
PBPK UO 

1 1 12 PM - - 7 3 - - - - 

2 1 7 AM - - 8 3 x - - - 

3 1 random - - 9 3 - x - - 

4 1 12 PM x - 10 3 - - x - 

5 1 12 PM - x 11 3 - - - x 

6 1 random x x 12 3 x x x x 

Tables


