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ABSTRACT 

EPA PMF version 5.0 and the underlying multilinear engine executable ME-2 contain three 
methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), 
displacement of factor elements (DISP), and bootstrap enhanced by displacement of factor 
elements (BS-DISP). The goal of these methods is to capture the uncertainty of PMF analyses 
due to random errors and rotational ambiguity. It is shown that the three methods complement 
each other: depending on characteristics of the data set, one method may provide better results 
than the other two. Results are presented using synthetic data sets, including interpretation of 
diagnostics, and recommendations are given for parameters to report when documenting 
uncertainty estimates from EPA PMF or ME-2 applications.  

1. INTRODUCTION  

1.1 EPA PMF and ME-2 

The multivariate factor analysis tools PMF2, ME-2, and EPA PMF (which is built on ME-2) are 
widely used for numerous applications, particularly for analyses of ambient air quality data 
(Poirot et al., 2001; Reff et al., 2007; Kim and Hopke, 2007; Engel-Cox and Weber, 2007; Norris 
et al., 2008; Ke et al., 2008; Ulbrich et al., 2009; Brown et al., 2012). Each tool performs a 
positive matrix factorization (PMF) that decomposes a matrix of speciated sample data into two 
matrices—factor contributions and factor profiles. A speciated data set may be viewed as a data 
matrix X of dimensions n by m in which n samples and m chemical species were measured. 
Rows and columns of X and of related matrices are indexed by i and j, respectively. The goal of 
modeling with PMF is to identify the number of factors p, the species profile fk of each factor k, 
and the amount of mass gk contributed by each factor k to each individual sample (Equation 1): 
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where eij is the residual and cij denotes the modeled part for each sample/species. The method is 
described in greater detail elsewhere (Paatero and Tapper, 1994; Paatero, 1997). Regarding 
notation, capital bold-face letters denote entire matrices, gk denotes columns of the factor 
contribution matrix G, and fk denotes rows of factor profile matrix F.  

Original versions of PMF2, ME-2, and EPA PMF provided uncertainty estimates for F and 
sometimes G. However, these estimates did not explicitly include rotational uncertainty of the 
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results. The present work corrects this deficiency for ME-2 and EPA PMF, presents three 
methods for estimating uncertainty, and discusses each method’s strengths and weaknesses. The 
error estimation methods described in this work have been implemented in version 5.0 of EPA 
PMF, to be released in 2013.  See http://www.epa.gov/heasd/research/pmf.html and Norris et al. 
(2008) for details.    

1.2 Two interpretations of Equation 1 

Equation 1 may be employed in two ways. One is when F and G contain known values. This 
approach is used when generating simulated data that mimics real measurements. In this case, the 
data errors eij are pseudorandom values, often generated from normal distributions with mean 
zero and standard deviation equal to sij. These data uncertainties sij are known values specified 
in a simulation. Multiplying F and G and adding E produces X, the simulated matrix of 
measurements to be modeled by PMF. Fitted values for F and G can then be compared to the 
true values that were used to simulate X. 

Alternatively, Equation 1 may be employed when the measured (or simulated) matrix X is 
known and the matrix of estimated data uncertainties uij has been estimated. This approach is 
used to determine the values of unknown matrices F and G. In simulations, data uncertainties uij 
may be set equal to uncertainties sij. When analyzing real data, data uncertainties uij are estimated 
by the users so that uij approximate the unknown true uncertainties sij. In some situations, 
adjusted data uncertainties are used. For example to downweight species j, one may set 3ij iju s  

for a chosen species j. 

1.3 Details of the PMF model 

In PMF, factor elements are constrained so that no sample can have a significantly negative 
factor contribution. Also, PMF allows each data value to be individually weighted. This feature 
allows analysts to adjust the influence of each data point, depending on the confidence in the 
measurement. For example, data below detection limit can be retained for use in the model with 
the associated uncertainty adjusted to give these data points less influence on the solution than 
data above the detection limit. The PMF solution minimizes the object function Q (Equation 2) 
based upon the estimated data uncertainties (or adjusted data uncertainties) uij and with factor 
matrix elements gik and fkj subject to non-negativity constraints. 
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ME-2 performs iterations via the conjugate gradient algorithm until convergence to a minimum 
Q value.  
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1.4 Origins of uncertainty in PMF analyses 

F1 and G1 are used to denote a solution of Equation 1 obtained by solving Equation 2. 
Uncertainty analysis of PMF modeling attempts to estimate a range or interval of plausible 
values around each element of matrix F1. This interval is estimated so that with a high 
probability it will include the true value of F. The ends of the range will be called upper and 
lower interval estimates of F or simply upper and lower estimates of F. The uncertainty analysis 
must take into account all aspects of solving Equation 2 such as non-negativity constraints.  

Uncertainty in PMF analyses arises from three main causes, as described below: 1) random 
errors in data values; 2) rotational ambiguity; and 3) modeling errors. 

Random errors in data values are those that arise from the measurement process, even if 
measurement systems have been properly calibrated so that no systematic bias is present. All 
measured data contain random errors – measure something twice and two different values will be 
obtained.  

Uncertainty caused by rotational ambiguity is specific to factor analytic models. Rotational 
ambiguity arises because bilinear factor analytic models are ill-posed, meaning there are multiple 
solutions (G, F) with the same value of Q (Henry, 1987). In some special cases, a rotationally 
unique solution is possible if there are a sufficient number of zero values in true matrices G and 
F (Anderson, 1984). In analytical chemistry (AC), presence of zero values is often known a-
priori. For example in chromatograms, each component (“peak”) shape begins with a number of 
zero values. Non-zero values are not possible at a large distance before the peak proper. In 
comparison, presence of zero values in true factors is less predictable in environmental 
measurements. In most cases, some rotational ambiguity remains in environmental modeling. 

The problem of rotations has been discussed in Paatero et al. (2002) and recently in more detail 
in Paatero and Hopke (2009). The present work offers numerical methods for estimating the 
rotational non-uniqueness for any given data set where unknown numbers of zero values may be 
present in true factors. However, the present work does not explicitly consider the effect of 
inserting additional numerical constraints on factors, as suggested by Paatero and Hopke (2009) 
and demonstrated by Amato et al. (2009) and by Amato and Hopke (2012).   

The extent of possible rotations is limited by non-negativity constraints imposed on the solution 
and by the number of zero values present in the fitted G and F (Paatero et al., 2002). With a 
small number of zero values, this uncertainty may dominate other types of uncertainty. In 
extreme cases, presence of large rotations may prevent well-defined modeling altogether, as 
discussed later in detail. With larger numbers of zero values, rotations may be present in small 
amounts, so that a useful albeit non-unique solution is possible.  Sometimes, rotational 
uniqueness may be observed, especially if only a small number of factors is fitted. It is seen that 
measurements should be arranged so that variation between individual samples is as large as 
possible, e.g. making sure that measurements are performed during different weather patterns. 
Note that the terms “rotational ambiguity” and “rotational uncertainty” are used here to represent 
slightly different ideas. “Rotational ambiguity” denotes the concept that multiple mathematical 
solutions can yield the same or practically the same fit (one with almost identical Q values). 
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“Rotational uncertainty” is used when discussing the amount of rotational ambiguity in a more 
quantitative sense. 

Modeling errors are those caused by using a model that is a simplification of the true physical-
chemical phenomena. The PMF model describes what is believed to happen in nature. However, 
modeling errors can arise if the real process in nature is different from what is captured in 
Equation 1. Some examples include variation of source profiles with time (e.g., because of 
chemical transformations during transit or chemical variations in the source itself), incorrectly 
specified number of factors p, incorrectly estimated data uncertainties uij, contamination of 
samples, correlated (i.e., non-random or systematic) errors in data values, and weak or sporadic 
sources that cannot be represented by dedicated factors. Adjustments to measured data may also 
introduce modeling error. For example, if data below detection level are censored, then the 
resulting matrix X will not be in relationship to matrices G and F as stipulated by Equation 1. 
Wrong decisions about outlier status may also introduce modeling error, as pointed out by an 
anonymous reviewer. Example: in difficult snow conditions, highway traffic would be non-
existent and hence, traffic emissions unusually low. Such high-snow samples would be valuable 
for determining correct rotations, especially for the traffic-emissions factor.  However, such 
high-snow samples may appear to be outliers. If they are downweighted as outliers, then a 
serious modeling error is made, leading to loss of critical information. 

Effects of modeling errors are difficult to estimate because the causes of such errors generally 
cannot be explicitly formulated. As emphasized by an anonymous reviewer, it is expected that in 
environmental data, modeling errors are much more significant than in AC measurements. In a 
follow-up paper, to be submitted soon, we apply the error estimation methods described in this 
work to three real data sets where modeling errors may be present. 

It is noted that other definitions of modeling error have been used in literature. For example, 
Tauler (2001) includes rotational ambiguity with modeling error.  

The relative importance of the three causes of uncertainty depends on the size of the data set 
being modeled. As the size of the data set increases, the significance of random errors decreases, 
due to the law of large numbers; the significance of rotational uncertainty also decreases because 
the number of zero entries in true G factors often increases. On the other hand, effects of non-
random modeling errors are not likely to decrease with increasing size because the law of large 
numbers does not apply to non-random disturbances. Thus, the relative significance of modeling 
errors may be assumed to be highest in the largest data sets. Large data sets may, however, 
contain enough information so that their models may be enhanced to include the real data’s 
problematic features, which cannot be modeled with a small data set. 

1.5 Significance of different Q values when comparing alternative models of a data set 

The difference of Q values obtained from alternative PMF models is often used as a criterion for 
rejecting models with “too high” Q values. Examples include comparison of models with 
different numbers of factors and rejection of competing solutions obtained from repeated random 
starts of PMF modeling. In error estimation, Q values are used for similar purposes: acceptable 
solutions must not have “too high” Q values. The obvious question is: how high is “too high”? 
Unfortunately, this question does not have a clear answer. If there were absolutely no modeling 
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errors, then a change in Q (dQ) by for example 20 units might be considered “too high,” and this 
limit would be independent of the number of data values in the data set. In real life, modeling 
errors complicate the situation because modeling errors differ in different types of 
measurements. Even in one type of measurement, modeling errors may depend on details of 
individual experimental situations. It may be assumed that the effect of modeling errors is 
dependent on the number of data values. It appears likely that the variation in Q values caused by 
modeling errors is proportional to the number of data values and hence also proportional to Q 
values. 

It follows that no a priori percentage value may be given for assessing variations of Q values. In 
some data, a significant variation of Q might be 1%. In other data, it might be 5% or 0.5%. It 
seems that an understanding of the significance of Q variations must be based on empirical 
evidence. It is crucial that such evidence be relevant to the case at hand. Thus, for instance, 
observations of Q variations in speciated aerosol measurements may not be applicable to analysis 
of aerosol mass spectra, water quality data, or other datasets. For example, observed variations in 
Q from displacement of factor elements (DISP) for reasonable models of the simulated data 
presented later in this paper appear not to be significant for percentages less than 0.1%.  This 
percentage may or may not be appropriate when analyzing actual ambient measurements, such as 
speciated aerosol data, aerosol mass spectra, water quality data, human exposure data, or other 
types.  Experience applying the error methods described in this work to various types of data and 
numerous data sets is required before it will be known if a fixed percentage is realistic for 
multiple or all types of data. 

1.6 Overview of uncertainty estimation methods 

Many uncertainty estimation methods base their estimates on analyses of a number of perturbed 
versions of the original data set. Each perturbed data set is analyzed in a similar way as the 
original data. The collection of all perturbed results is then used to derive uncertainty estimates 
for the original unperturbed results. Using a collection of results allows analysts to review a 
distribution for each factor element to evaluate the stability of solutions instead of having to rely 
on a single point estimate. 

Pseudorandom (or random) numbers are needed for generation of perturbed versions of the data 
set. For this reason, the generic term “Monte Carlo methods” is sometimes used for the methods 
that generate perturbed versions of the data set. In particular, noise insertion (see below) might 
be called “Monte Carlo”. 

One of the classical methods for estimating uncertainty is error propagation which originates in 
astronomy.  For this method, data uncertainties (i.e., standard deviations of observations) are 
assumed known. Then the covariance matrix of computed results is obtained by applying the 
well-known error propagation formula that is based on a linear approximation around the 
measured values. No perturbed versions are generated in classical error propagation. Noise 
insertion is a computation-intensive variation of the classical error propagation method. In this 
method, a number (br) of perturbed versions of the original data set are generated in the 
following way: Each perturbed version is of same dimensions as the original data set. In each 
version, each original data value is perturbed by a pseudorandom artificial additive noise value 
whose standard deviation equals the estimated uncertainty of the data value to be perturbed. Each 
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perturbed version is modeled similarly as the original data set, creating a collection of br 
perturbed solutions. The variances and covariances of the distribution of perturbed results are 
then used as the uncertainty estimates of original unperturbed results. In comparison to original 
error propagation, noise insertion has the advantage that no linearization is needed and non-
negativity constraints and other imposed constraints are correctly handled. Error propagation and 
noise insertion account for uncertainty caused by random errors in the data but not for 
uncertainty caused by rotational ambiguity or modeling errors. 

Bootstrap analysis (BS) perturbs the original data set by resampling. In each perturbed or 
resampled version, some randomly chosen rows of the original matrix occur multiple times, 
while other rows do not occur at all. Each resampled data set is decomposed into profile and 
contribution matrices using PMF (Norris et al., 2008). BS has an advantage of not depending on 
the average level of error estimates of data values: if all data error estimates are scaled by an 
arbitrary coefficient r, BS results will stay the same, provided that outlier reweighting does not 
induce a change. Uncertainties estimated by BS may be too small or too large if significant 
correlation of data errors is not properly handled by techniques such as blocked resampling. BS 
is not specifically designed to explore rotational ambiguity, although some rotational uncertainty 
is captured in the analysis of the resamples. Since rotational uncertainty is limited by the number 
of zero values in G and F, and since the resampling for BS may omit some or all of the G zero 
values, BS may estimate a large variation in a PMF solution, especially in small data sets. 
Whether this large variation is appropriate depends on the reliability of the zero values. If the 
zero values are erroneous or are not expected to recur, then the large variation is correct. If the 
zero values are reliable, then the large variation is not correct. With regard to modeling errors, it 
is not known how well BS captures the uncertainty from this cause. 

Displacement analysis (DISP) obtains uncertainty estimates for individual variables in fitted F 
by repeatedly fitting the model such that each variable in turn is perturbed (displaced) from its 
fitted value. Each displacement is extended until the object function Q increases by a maximum 
allowed change in Q (dQmax). Each such extended displacement is interpreted as the upper or 
lower interval estimate of the perturbed variable. DISP captures the uncertainty caused by data 
errors, provided that the user-provided data uncertainties are correct for the data and they obey 
the assumptions of the PMF model. DISP uncertainty estimates underestimate real uncertainties 
if data errors are correlated, modeling errors are present, or actual data errors exceed assumed 
data uncertainties. On the other hand, DISP uncertainty estimates overestimate real uncertainties 
if actual data errors are smaller than those assumed. By design, DISP captures the uncertainty 
from rotational ambiguity. As with other methods, it is not known how well DISP captures 
uncertainty from modeling errors. 

2. PREVIOUS WORK 

2.1 Uncertainty of factor analytic results in analytical chemistry 

Most prior work in assessing uncertainties of factor analytic results has been carried out with 
methods applied in AC.  Unfortunately, most of these methods are not applicable for use in 
environmental source apportionment (ESA).  One reason for this is that data uncertainties play a 
lesser role in AC because chromatogram data are usually more precise than ESA data.  A second 
reason is that AC data are more structured than ESA data.  For example, in chromatograms, if the 
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data have been corrected to baseline, then each true component may be assumed to have a 
number of consecutive zero values preceding the peak. The first AC results that are applicable 
are due to Gemperline (1999). In this work, structural features typical of AC are not utilized. 
Instead, rotations of the computed G and F factors are considered under feasibility constraints, 
typically under non-negativity of G and F. By using non-linear optimization algorithms, two 
“extreme” rotation matrices Tk are determined for each factor k of the model. For each factor k, 
those matrices minimize and maximize the fraction Xk of matrix X that is explained by factor k. 

In order to discuss the method of Gemperline, Equation 1 is written in the following form 
(Equation 3): 
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Here, gk denotes column k of G, fk denotes row k of F, and Xk = gkfk is the part of data matrix X 
that is explained by factor k. The non-linear optimization problem for factor k is the following 
(Equation 4): 
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The vectors gk and fk obtained by maximization constitute the upper interval estimates for factor 
k. Similarly, minimization produces lower interval estimates.  

Tauler and co-workers have continued to develop the method originated by Gemperline (Tauler, 
2001; Abdollahi et al., 2009; Jaumot and Tauler, 2010). The last two references contain useful 
literature references to other work in this field. In the 2009 paper, an illustrative example of the 
optimization task is presented for the two-factor case (p=2). In the original Gemperline paper, 
sum of elements was used as the norm in Equation 4. In later papers, other norms have also been 
used, such as the Frobenius norm (square root of sum of squares). It appears that slightly 
different results may be obtained with different norms. Also, scaling of rows and columns of 
matrix X may influence the obtained uncertainty limits. 

There is a fundamental difference between the present work and the works of Gemperline and 
Tauler (G-T). The G-T limits for factor k represent values that might be obtained by factor k in 
one particular solution of the factor analytic problem. Our limits, on the other hand, represent 
limits of values of individual factor elements—these limits are determined individually, without 
regard to each other. Thus, a collection of upper-interval estimate values of factor k computed by 
one of our methods produces a hyperbox that may contain points that are not feasible solutions of 
the problem. It follows that our limits are expected to be wider than the G-T limits. Although the 
two methods produce different results, neither of them is wrong because they solve different 
mathematical problems. 
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2.2 Uncertainty of factor analytic results in environmental research 

The earliest contribution towards understanding rotational ambiguity in factor analysis is 
probably by Henry (1987). In this work, the importance of rotational uncertainty is emphasized, 
while no methods are presented for deriving uncertainty limits. Later, Henry (1997) developed 
Unmix, a model for solving Equation 1 subject to non-negativity constraints. Included with the 
Unmix model are estimates of uncertainty in factor profiles, estimates derived using block 
bootstrapping. 

Hedberg et al. (2005) tested the robustness of the PMF model with a cross-validation method. 
They analyzed randomly reduced data sets that included 85%, 70%, 50%, and 33% of the 
original samples. In this way they tested the ability of the model to reconstruct the factors 
initially found when modeling the original data set. On average, for all factors, the relative 
standard deviation increased from 7% to 25% for the variables identifying the factors, when 
decreasing the data set from 85% to 33% of the samples. 

The cross-validation method of Hedberg et al. is conceptually similar to the bootstrap method 
used in present work. However, they used cross validation only for qualitative confirmation of 
PMF modeling, not for determining uncertainty limits. 

In literature, atmospheric scientists have used the Fpeak rotational tool of program PMF2 to 
understand rotational uncertainty of the solution. This practice provides only a lower limit for 
rotational uncertainty.  Specifically, varying the Fpeak parameter traces a one-dimensional path 
through the rotationally accessible domain.  In most cases, though, the rotationally accessible 
domain is many-dimensional; for these cases, Fpeak will demonstrate only a lower limit for 
rotational uncertainty (Paatero et al., 2002). Rotational error analysis requires an upper limit, and 
this is not achievable by the Fpeak of program PMF-2 nor by the simpler one-parameter Fpeak of 
program ME-2.  DISP and bootstrapping enhanced with DISP (BS-DISP) provide such upper 
limits.   

3. METHODOLOGY 

3.1 Overview of uncertainty estimation methods in ME-2 and EPA PMF 

Three uncertainty estimation methods are now available in ME-2 and EPA PMF: bootstrapping 
(BS), dQ-controlled displacement of factor elements (DISP), and bootstrapping enhanced with 
DISP (BS-DISP). BS is a typical statistical method for estimating uncertainty. As implemented, 
BS involves resampling the input data set, fitting PMF model parameters for this resampled data 
set, and then using the variations among these resampled or “bootstrapped” fitted profiles to 
estimate the uncertainty of the initial PMF solution. BS has been available in EPA PMF v1.1 and 
all subsequent versions, and many publications have reported uncertainty estimates from EPA 
PMF.  

Since BS does not explicitly include rotational ambiguity, DISP was developed. DISP intervals, 
however, are directly impacted by inaccuracies in data uncertainties. Thus, a method combining 
BS’s strength with data errors and DISP’s strength with rotational uncertainty was developed 
into the method BS-DISP. Details of the DISP and BS-DISP methods are presented below. Since 
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BS is a standard statistical method, descriptions of its theoretical foundations are left to 
textbooks (e.g., Efron and Tibshirani, 1993).   

The goal of DISP is to provide uncertainty estimates in such cases where data errors obey the 
assumptions of the PMF model (i.e., uncorrelated data errors with known data uncertainties) and 
there are no modeling errors. DISP uncertainty estimates contain good estimates of rotational 
uncertainty as demonstrated with synthetic data sets (discussed in Section 4). However, DISP 
uncertainty estimates underestimate real uncertainties if data errors are correlated, modeling 
errors are present, or actual data errors exceed assumed data uncertainties. In order to obtain 
more reliable estimation of uncertainty due to data errors, a BS or BS-DISP analysis may 
additionally be performed and results compared to those from DISP. BS or BS-DISP are also 
necessary techniques for estimating uncertainty for species that are downweighted in the PMF 
analysis (i.e., species for which the adjusted data uncertainty values have intentionally been 
increased to reduce their influence in the minimization of Q). For such species, uncertainties 
estimated by DISP are known to be too large.  BS-DISP is a combination of bootstrap and 
displacement methods in which each resampled data set is decomposed into profile and 
contribution matrices and then fitted elements in F are displaced. The collection of all results 
from the process of resampling, decomposing, and displacing is then summarized to derive 
uncertainty estimates. Intuitively, this process may be viewed as follows: each BS resample 
results in one solution that is randomly located within the rotationally accessible space. Then, the 
DISP analysis determines an approximation for the rotationally accessible space around that 
solution. Taken together, all the approximations of rotationally accessible spaces for randomly 
located solutions represent both the random uncertainty and the rotational uncertainty for the 
modeled solution to the complete data set. Since both the BS and DISP phases explore the 
rotationally accessible space, the DISP phase may be executed with weaker displacements than 
when only DISP is used to estimate uncertainties. As a result, BS-DISP is less sensitive to 
inaccuracies in data uncertainties. 

In principle, BS-DISP should determine the rotational uncertainty well. However, data sets with 
a scarcity of rotation-blocking zero values in G factors pose the same problem for BS-DISP as 
with classical BS. Specifically for resamples omitting some or all of the zero values, large 
rotations are possible. To reduce the impact of these large rotations, the 5th percentile of 
minimum interval estimates and 95th percentile of maximum interval estimates may be used. 
There is insufficient practical experience with varied data sets to know whether using these, or 
any, percentiles adequately addresses this issue. 

3.2 Mathematical approach in DISP 

This section describes the computations for DISP, whether DISP is performed alone or as the 
second phase of BS-DISP. Computations are first described for well-defined cases, those for 
which factors do not change so much after displacement that they exchange identities (“factor 
swapping”). Later, computations are presented for the case complicated by factor swapping. 

Superscripts are used for denoting different variants of a matrix. As an example, (G0, F0) and 
(G1, F1) may denote two different solutions of a PMF problem. Usually, (G0, F0) denotes the 
solution obtained by PMF when no displacements are applied. Individual factor elements are 
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then denoted by using both subscripts and superscripts; for example, gik
0 and fkj

0 may denote the 
elements of matrices G0 and F0. 

For DISP analyses, F factor elements are chosen, one by one, to be displaced. The chosen 
element is denoted by fkj, so that k denotes the factor and j denotes the variable. Usually, only a 
subset of all F elements is chosen to be displaced. Details of why and how to choose are 
discussed later. 

The DISP approach is based on the increase of the PMF sum-of-squares function Q. The function 
may be the basic Q defined as follows by Equation 5: 
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where all elements of G and F have been determined so as to achieve best possible fit (i.e., 
lowest possible value of sum-of-squares). However, the function Q may also be any enhanced 
form of the object function, such as a robust sum obtained by reweighting of outlying data values 
or a sum enhanced by penalty terms like those used for pulling chosen factor elements towards 
preferred values. (In special cases, some elements of G and/or F may be constrained by the user 
so that these elements are not variable at all. Such elements are not considered variable in the 
minimization.) 

The notation Qopt denotes the value of Q function for the PMF model that is about to be 
processed by DISP (“DISPed”). For pure DISP, Qopt is thus the Q value obtained in the base case 
PMF run. For BS-DISP,  Qopt is the Q value obtained in PMF modeling of the current resampled 
data set. In both cases, Qopt represents the solution of Equation (5), i.e. a minimum with respect 
to all elements of factor matrices G and F. The numerical values of Qopt from base case and Qopt 
from any of the resampled cases have no obvious relationship, usually they are different and 
either one may be larger. The notation  kjQ f d  denotes the smallest sum-of-squares value 

obtained when constraining the indicated factor fkj to a fixed feasible value d and minimizing 
over all other G and F factor elements. Finally, the increase of Q is denoted by Equation 6: 

     opt
kj kjdQ f d Q f d Q     (6) 

The essence of DISP is to find the largest and smallest feasible values dmax and dmin such that  

 
 
 

max max

min max

kj

kj

dQ f d dQ

dQ f d dQ

 

 
 (7) 

where dQmax is a predetermined maximum allowable change in Q (Equation 7). The values dmax 
and dmin can be determined by using any available non-linear optimization algorithm. In this 
work, the ME-2 program is used under control of an enhanced script. 
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The obtained values dmax and dmin represent upper and lower interval estimates for factor element 
fkj. The limit value dQmax is chosen by the user. In practice, the DISP approach is implemented so 
that estimation is performed using a set of four dQmax values chosen by the user. Thus four pairs 
of upper and lower interval estimates are obtained for each displaced factor element. A typical 
set of dQmax values would be {4, 8, 16, 32} for DISP and {0.5, 1, 2, 4} for BS-DISP. Larger 
dQmax values usually produce wider uncertainty intervals which in turn usually have higher 
probabilities of including true unknown values. However, wider intervals may be so wide that 
they cannot support meaningful conclusions. For DISP, analogy with customary linear least 
squares models suggests that executing with dQmax =4 results in interval estimates that are 
minima for the true uncertainty estimates, provided the user-specified data uncertainties are 
reasonable for the data (see Supplemental Material for additional discussion). If a minimum 
interval estimate is sufficient to support or refute a postulated hypothesis, then no additional 
uncertainty analysis is warranted. 

The choice of dQmax values will depend on assumed magnitudes of modeling errors, as discussed 
in Section 1.5. Reliable estimates of modeling errors are usually not available. It follows that 
dQmax values cannot be deduced from statistical theory. Experimental evidence must be used. 

3.3 Implementation of DISP in ME-2 and EPA PMF 

Equations 5 to 7 would lead to a straightforward and reasonably efficient algorithm. However, 
they cannot be applied as such because of the automatic dynamic reweighting that is used for 
several purposes, most importantly for robust estimation, in PMF. With such reweighting, the 
numerical value of Q changes whenever the weights are recomputed. Such changes of Q are not 
directly related to changes in the fit. Hence, such changes cannot be used as basis of uncertainty 
estimation.  

As a substitute, the DISP approach estimates dQ values using a partial derivative (or gradient) of 
Q with respect to the displaced variable (Equation 8):  
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This definition is based on a sequence of z displaced values dv, generated automatically by the 
algorithm. The model is fitted using each displaced value in turn, and the corresponding gradient 
values are saved. The proxy dQ value is obtained using displacement step lengths and gradients 
at each displaced point. This method is approximate and becomes more accurate if a larger 
number of intermediate displacements are used for reaching the final displacement d. The quality 
of approximation has been observed in cases where no dynamic reweighting is present so that 
actual Q values may be used for computing non-approximate dQ values. The sequences created 
automatically by the current implementation of DISP appear to be a satisfactory compromise 
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between computational efficiency and accuracy of approximation. Determination of the sequence 
of displaced values dv is based on various heuristic principles designed to balance between too-
long displacements (indicated by sudden increase of gradient and dQ or by reversal of gradient) 
and too-short—and hence inefficient—displacements. If a displacement is found to be too long, 
it is rejected and a shorter displacement is attempted instead.  

The sequence of displaced values does not usually hit the desired value for dQ, namely dQ= 
dQmax, as required by the definition of the uncertainty interval in Equation 7. As shown in 
Equation 9, the sequence generally ends so that  
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In order to obtain the desired critical value (dmax or dmin), an interpolation is performed. It is 
assumed that the gradient changes linearly in the interval (dz-1 < d < dz). With this assumption, 
the value dmax for displacing up may be computed (Equation 10) so that  

  max max
kjdQ f d dQ   (10) 

Similarly, when displacing down, the value dmin is obtained so that (Equation 11) 

  min max
kjdQ f d dQ   (11) 

These interpolations are computed separately for each of the four dQmax values. Using the 
interpolated displacement values and factor matrices computed at each displacement, it is 
possible to also interpolate the values of factor matrices G and F so that the interpolated values 
correspond to the solution of Equation 7. In current implementation, only elements of factor 
matrix F are interpolated, however. 

It is to be noted that displacements do not proceed past lower or upper constraints for each 
displaced factor element. Whenever the constraint would be violated, the last displacement is 
truncated so that it exactly corresponds to the constraint for the variable. If the dQ at the 
constraint value does not exceed the chosen dQmax, then the constraint value is used as the 
interval estimate of the variable. For this reason, lower interval estimates of F factor elements 
may appear as exactly zero. 

3.4 Active and passive estimation with DISP and BS-DISP 

The intervals obtained by displacing a factor element fkj include both rotational ambiguity and 
uncertainty due to assumed data uncertainties. In order to speed up computation of BS-DISP, it is 
preferable to displace a small subset of all F factor elements, the active elements of F. Usually, 
one would displace those variables important for factor identification or variables key to a 
particular question.  
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It is possible to estimate uncertainty intervals for those factor elements that are not displaced. 
Intervals for such passive factor elements are obtained as a by-product during displacements of 
active elements. As described, all elements of F are obtained for each (interpolated) 
displacement that solves Equation 7. The DISP algorithm finds largest and smallest values fkj

max 
and fkj

min of each passive element fkj among all interpolated F matrices that occur while 
displacing all active elements. These extreme values constitute passive interval estimates for the 
passive (non-displaced) F factor elements.  

If a sufficient number of F elements are displaced actively, then passive interval estimates reflect 
rotational ambiguity well for the remaining passive elements. In contrast, passive interval 
estimates do not contain uncertainty due to assumed data uncertainties of the passive factor 
elements. In BS-DISP, assumed data uncertainties play a minor role because uncertainty caused 
by data noise is mainly estimated by resampling. Thus passive estimation is useful in BS-DISP, 
provided that the number of active elements is large enough that rotationally accessible space is 
exhaustively visited. In DISP, however, passive interval estimates are less useful because they 
ignore data uncertainties of passive factor elements. For this reason, in pure DISP computations 
one would prefer to displace all factor elements. 

Downweighted variables create a special problem in DISP computations. If such variables are 
displaced, their obtained active interval estimates will be much too long; because the assumed 
data uncertainties are much too large, using the default dQmax limits will result in very large 
residuals for the downweighted variables. The best compromise seems to be that downweighted 
variables are never chosen for active estimation in DISP or in BS-DISP. If not active, 
downweighted variables will obtain passive interval estimates, intervals that may be too short 
from DISP but satisfactory from BS-DISP. 

3.5 Factor swaps in DISP from not-well-defined solutions 

Starting from one good solution, it may be possible to transform the solution gradually, without 
significant increase of Q, so that factor identities change. In the extreme case, factors may 
change so much that they exchange identities. This is called “factor swap.” A solution with 
swapped factors represents the same physical model as the original solution. However, the 
presence of factor swaps means that all intermediate solutions must be considered as alternative 
solutions. In such a case, the modeling supports a many-dimensional infinite population of 
solutions where it is not possible to single out one of these solutions as “the solution,” hence the 
terminology “not-well-defined (NWD) solution.” Often, factor swaps occur only within a subset 
of all factors. Then the modeling may provide useful information about those factors that do not 
participate in swaps. DISP and BS-DISP analyses provide diagnostic output to aid in the 
identification of factors involved with swapping. 

The significance of factor swaps from NWD solutions came as a surprise. There is little practical 
knowledge about these situations, and therefore conclusions in this section are of preliminary 
nature. 

To detect factor swaps, consider two solutions: the original solution (G0, F0) and the transformed 
solution (G1, F1). Testing for swaps may be based on G matrices or on F matrices. In the case of 
complete swaps, testing using either matrix produces identical conclusions. In borderline cases 
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where factors change significantly but a complete swap does not occur, the G and F tests are not 
fully equivalent. Equations 12 through 15 are given for testing G matrices. F tests are obtained 
by replacing G by F in the equations. Two methods are available for detecting factor swaps: one 
based on cross correlations and the other based on regression.   

For cross correlations, “uncentered” correlation coefficient r between two vectors u and v is 
defined by 

 corr( , )r


 
 
u v

u v
u u v v

 (12) 

This differs from Pearson correlation, which is centered and is commonly used both in social and 
biological sciences and also in chemistry and engineering.  
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Because Pearson correlations can be meaningless if some factors are nearly constant, uncentered 
correlations are used to detect factor swaps. Specifically, a matrix of correlation coefficients is 
computed, so that each matrix element is the correlation coefficient between one column of G0 
and one column of G1. A factor swap is seen in this correlation matrix so that two or more 
diagonal entries are small while corresponding off-diagonal entries are ≈ 1. 

In the regression approach, a transformation matrix (or regression matrix) T is computed for 
approximating G1 by a transformed G0. The approximation is defined by  

 1 0 0  G G T E G T  (14) 

where matrix T is obtained from  

   1
0 0 0 1


 T G G G G  (15) 

It is assumed that G0 is of full column rank. If there are no factor swaps, T is approximately 
diagonal, so that off-diagonal elements are small positive and negative values. With a factor 
swap, the rows of T become permuted so that at least two diagonal elements change positions 
with smaller off-diagonal elements. 

3.6 Decrease in Q with DISP 

Occasionally displacements cause a significant decrease of Q, typically by tens or even hundreds 
of units. If such decrease occurs in DISP analysis or when analyzing the complete (not 
resampled) data in BS-DISP, it means that the base case solution was in fact not a global 
minimum, although it was assumed to be such. This is a fatal error and invalidates the DISP 
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analysis. It is necessary to go back to solving the original PMF model again, perhaps using many 
more random starts, to find the global minimum. Then the DISP analysis may be continued. 

Decrease of Q may also occur when performing displacements in the analysis of BS-DISP 
resamples. Such decrease indicates that resampling created a new minimum, different from the 
original base case solution. In one case, the initial not-displaced fit of this BS resample did not 
succeed in finding the new global minimum, while the displacement “nudged” the solution 
towards the global minimum. In such a case, it is best to reject the resample because no 
meaningful error limits can be obtained. The overall BS-DISP analysis remains valid even if a 
few resamples get rejected, though currently there is no way to quantify the number of rejections 
that will yield meaningful results. 

3.7 Development and modeling of synthetic data sets 

Simulated data were designed to demonstrate the three uncertainty estimation methods. The data 
were generated using partial results from a PMF application to PM2.5 speciated data collected in 
Phoenix (Eberly and Reff, 2007). Fitted gk and fk for four of seven factors from the previous 
PMF analysis were selected to represent the true matrices G and F. Four factors—representing 
copper smelting, coal combustion, aged sea salt, and soil—were used to simplify the simulation 
and modeling. Some factors are small contributors on average and others are large, a desired 
characteristic for the simulated data. Specifically, average contributions are 49% for coal 
combustion, 2% for aged sea salt, 9% for copper smelting, and 40% for soil. Sixteen species are 
included: PM2.5, Elemental Carbon (EC), Organic Carbon (OC), Si, S, Cl, K, Ca, Ti, Mn, Fe, Ni, 
Cu, Zn, Se, and Pb. Profiles for the four factors are included in the Supplemental Material, Table 
S-1. 

To generate the simulated data, G and F based on the four previously modeled factors were 
multiplied to form C, per notation described in Equation 1. Error-containing values X were 
obtained from pseudorandom distributions of lognormal variates with mean C and standard 
deviation S, where S was specified by two equations to evaluate impacts of standard deviations 
on uncertainty estimates. Case 1 assumed small errors such that sij = 0.05 cij. Case 2 assumed 
realistic errors such that sij = zjcij, where zj varied from a small value of 0.05 for well-measured 
species to a value of 1.2 for species with large measurement errors. Specifically, values for zj are 
Ca 0.2; Cl 0.5; Cu 0.2; EC 0.12; Fe 0.1; K 0.1; Mn 0.15; Ni 1.25; OC 0.1; Pb 0.5; PM2.5 0.08; S 
0.05; Se 0.4; Si 0.35; Ti 0.9; and Zn 0.13. For this work, a simplifying assumption was made that 
detection limits are approximately zero.  

The object function Q in Equation 2 requires user-provided data uncertainties uij. These were set 
equal to the data uncertainties used in deriving the simulated values, namely uij = sij. In reality, 
the user rarely knows the exact amount of uncertainty in the actual data. To simulate this 
discrepancy, one additional case was modeled. For Case 3, the data were generated using the 
small errors of sij = 0.05 cij, but the uncertainties given for Equation 2 were derived by uij = 0.001 
+ 0.03 xij. Case 3 contained another intentional inconsistency: a total of 5 factors were fitted, one 
more than were used to generate the data.  

Data sets comprised either 50 or 261 samples. Modeling was done through direct interaction with 
ME-2 via PMF_bs_6f1.ini and me2gfP4_1345c4.exe, rather than EPA PMF. The lower limit 
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allowed for fitted G factor elements was -0.10, error model -12 was used, and the block size for 
bootstrapping was 1. For each data set analyzed, 15 base case runs were executed to determine a 
solution presumably associated with the global minimum for Q. 

3.8 Computational workload in different methods 

Rough estimates of computational workload (and hence, of computing times) are given in this 
section. The computing load (=time) of one PMF modeling, using random starting values, is 
denoted by one time unit (t). Thus a typical initial modeling run will amount to 20 t. Denote by 
ad and ab the numbers of actively displaced F elements in DISP and BS-DISP, respectively. 
Assume for this estimation a large data set, having m=30 and p=10. In this example, ad =mp=300 
if all F elements are selected to be active. 

The number of bootstrap resamples (same for BS-only and BS-DISP) is denoted by br. Assume 
br=50. A BS-only run consists usually of  br instances of PMF modeling, each about one unit. 
Thus BS-only amounts to br units. It is seen that a BS-only run, with 50 t, is not much slower 
than the initial run with 20 t. 

In a DISP process acting on one active F element, a varying number of PMF-like models are 
fitted starting from non-random initial values.  In easy cases, with well-defined solutions and no 
rotational ambiguity, the total load from one active F element may be just a few units.  With lots 
of rotational ambiguity and maybe NWD solutions, the load may be tens of units. As an 
example, it is assumed in this estimation that an average DISP process for one active F element 
amounts to 10 t. With the assumed dimensions, the load of one complete DISP run, with all F 
elements active, would amount to 10mp=3000 t. This is about 150 times longer than the initial 
run. Note that the actual results may vary by a large amount, depending on the rotational 
ambiguity and NWD character of the model. 

In a BS-DISP run, the number of DISP processes is br ab. If all F are active, this amounts to 
 br ab = br mp = 15000 DISP processes and estimated workload of  10br ab = 10br mp = 150000 t. 
Again, the actual workload may vary by a large amount, at least by a factor of 3. In the other 
extreme, it might be possible to run with only ab =10, i.e. only one F element active in each F 
row. Then one would have 500 DISP processes and workload of 5000 t. This is comparable to a 
complete DISP run with workload of 3000 t. 

It is seen that computing times may easily grow impossibly long. Hence, even with DISP, it is 
useful to omit less important species from active status. Also, one might keep many elements of 
a weak factor inactive even if all elements of a strong factor are made active. With BS-DISP, it is 
necessary to only have a small number of active elements. For this reason, BS-DISP will in most 
cases need support from a separate DISP run (with an increased number of active elements) in 
order to get realistic estimates for those elements that cannot be active in BS-DISP. 

The authors have identified a method to improve the convergence rate of ME calculations which 
will help with the computational time in future. It is hoped that an order-of-magnitude gain might 
be obtained. If this succeeds, it will make more complete BS-DISP runs possible. 
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3.9 Estimation of errors of factor matrix G 
This work only derives uncertainty estimates of F factor elements. These uncertainty estimates 
apply also to estimates of average pollution contribution from each factor because all modeling is 
performed under the constraint that average G values must be unity in each factor. However, it 
would also be important to obtain uncertainties of specific G values or functions of G values 
such as the largest 10%, weekday/weekend ratios, or seasonal contributions to aid in 
development of air quality management strategies. Also, individual G matrix errors would be 
very useful for future model development since hybrid approaches that combine meteorology 
and source contributions need to account for the uncertainties. Unfortunately, estimation of G 
errors could not be included in this work plan for several reasons. First, F uncertainties were of 
higher priority because they are needed in order that factors may be more reliably identified with 
sources by showing which components were fitted confidently and which components were too 
uncertain to aid with identification. Second, it has not been possible to devise a straightforward 
method for estimating G uncertainties. This is so because the dimensional situation with G and F 
is not symmetric and displacement of G values may not be a reliable method. Rotational 
uncertainty of G values may perhaps be obtained as an extension of the current work in future. 
However, so far it is unclear how to combine rotational G uncertainty with the G uncertainty 
caused by random errors of individual data values. 

 

4.  RESULTS AND DISCUSSION 

DISP, BS, and BS-DISP were run for each of the three synthetic cases. For Cases 1 and 2, the 
correct number of factors, four, was fitted. For Case 3, five factors were fitted, one more than 
needed. Modeling resulted in fitted factors for Cases 1 and 2 of Soil, Salt, Copper, and Coal. For 
Case 3, with the n=50 data set, the factors are Soil, Salt, Copper, Coal, and an extra factor 
composed of some EC, OC, Ni, S, and PM2.5; in the n=261 data set the factors are Soil, Salt, 
Copper, and Coal split into two pieces. No species were downweighted, so all species were 
active in DISP. DISP results were generated with dQmax values of 4, 8, 15, 25, the values used in 
EPA PMF. For BS, factors were assigned to base case factors based on uncentered correlations 
of contributions (i.e., time series). A correlation of 0.80 or larger was required for the assignment 
to be valid. Three hundred bootstraps were used for this demonstration. For BS-DISP, only those 
species key in factor identification were active in the DISP phase: Ca, Cl, Cu, Fe, PM2.5, S, and 
Ti. BS-DISP was executed using 50 BS runs and dQmax values of 0.5, 1, 2 and 4, the values used 
in EPA PMF.  

4.1 Analysis of synthetic data sets – diagnostics 

Table 1 summarizes the diagnostics reported by ME-2 for data sets with 50 or 261 samples. For 
brevity, detailed discussion of these diagnostics is confined to the data sets with 50 samples. 
Diagnostic results were similar for the 261-sample data set. To put decreases of Q into 
perspective, robust Q values for the data set with 50 samples were 500-600 for Cases 1 and 2 and 
340 for Case 3. For the data set with 261 samples, robust Q values were approximately 3,000 for 
Cases 1 and 2 and 1,800 for Case 3. 

Table 1. Summary of Error Estimation Diagnostics by Data Set and Case Study.  
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Data 
Set 

Case 
Study 

DISP BS BS-DISP 
decrease 

in Q 
Factors 

Involved in 
Swaps 

BS Factor 
Assignment to 

Base Case Factors 

# Rejected BS 
Resamples 

decrease 
in Q 

Factors 
Involved in 

Swaps 
N = 
50 
 

Case 1: 
Small 
Errors 

0.1 No swaps. Copper: 99% 
Others: 100% 

0 0.2 No swaps. 

Case 2: 
Realistic 
Errors 

0.0 No swaps. Salt: 67%  
Others: 99%-100% 

12 out of 50, 
some due to 
swapping of 
factors, some 

due to decreases 
in Q 

21 No swaps for 
dQmax=0.5, 

minimal 
swaps (1-4) 

for each 
factor for 

larger dQmax 
Case 3: 
Small 
Errors; 
Too 
Many 
Factors 

2.6 Factors 1-4 
swap 1-8 

times, 
numerous 
swaps for 
Factor 5 
(Extra) 

Extra factor 5: 20% 
Others: 100% 

0 out of 10* 0.5 All factors 
involved in 

swaps. 

N = 
261 

Case 1: 
Small 
Errors 

0.2 No swaps. All: 100% 0 0.4 No swaps. 

Case 2: 
Realistic 
Errors 

0.0 No swaps. Salt: 92% 
Others: 100% 

2 out of 50 due 
to decreases in Q 

75 No swaps. 

Case 3: 
Small 
Errors; 
Too 
Many 
Factors 

28 No swaps 
for Soil, 
Copper, 

Salt, many 
swaps for 
Coal and 

extra factor 

Coal and extra 
factor 5: 80% 
Others: 100% 

0 out of 10* 0.1 All factors 
involved in 
numerous 

swaps, 
usually 

hundreds of 
swaps. 

* Used 10 bootstrap resamples because of the large number of factor swaps. 

 

Decrease in Q for DISP. Small decreases in Q (less than 0.2) were reported for Cases 1 and 2 
indicating that these solutions were global minima. A large value (greater than 2.5) was reported 
for Case 3, providing the first indication that there is something problematic with the modeling.  

Swapped Factors for DISP. For Cases 1 and 2, no factors swapped for any values of dQmax, 
indicating that these were all well-defined PMF solutions. For Case 3, the copper factor was not 
involved in swaps for the smallest dQmax value, so DISP interval estimates for this factor were 
reliable and realistic for the smallest displacement. All other factors of Case 3 were involved 
with swaps for each dQmax value, and therefore DISP cannot provide error estimates for these 
factors. The extra factor (Factor 5) was involved in numerous swaps compared to the other 
factors, confirming that one too many factors was modeled. When only four factors, the true 
number, were modeled for Case 3, the DISP diagnostics indicated no factor swaps. 
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Assigning BS Factors to Base Case Factors. All bootstrap factors were assigned to base case 
factors in 99-100% of every bootstrap resample for Case 1. For Case 2, the salt factor was not 
consistently identified in 33% of the resamples. This lack of reproducibility was likely caused by 
two compounding issues. One was that the factor was composed of just one species, Cl, with a 
small amount of EC. The other was that the factor’s contributions were defined by a few large 
values that could be excluded in BS resamples. For such resamples, this factor could be 
incorporated into other factors. For Case 3, all factors were reproduced in every bootstrap except 
that Factor 5 (the extra factor that is comprised of small pieces of several species), was rarely 
found, confirming that one too many factors was modeled.  

Decrease in Q and swapped factors in BS-DISP. In Case 1, no swaps occurred in the initial 
refitting of the full data set and no BS resamples were rejected because of swaps or large 
decreases in Q. This indicates that Case 1 was a well-defined PMF solution. For Case 2, 
diagnostics showed that 16% of the resamples exhibited large decreases in Q and 8% contained 
swapped factors. The large decrease in Q compared to Case 1 is likely due to the larger data 
uncertainties used in Case 2. This indicates that Case 2 was not as well defined as Case 1, but 
there were few enough rejected resamples that error estimates summarized for the accepted 
resamples were likely reliable and robust. For Case 3, all factors were involved in numerous 
swaps, indicating serious problems with the modeling and warning that interval estimates should 
not be interpreted.  

4.2 Analysis of synthetic data sets – interval estimate examples 
 
Output from DISP, BS, and BS-DISP includes interval estimates for each element for each factor 
and diagnostics for evaluating the trustworthiness of the interval estimates. As discussed in 
Section 3.2, estimates of intervals are calculated as follows: for DISP, endpoints of the 
uncertainty interval for a specific F factor element are the minimum value for that factor element 
observed in all displacements and the maximum value for that factor element observed in all 
displacements. For BS, the endpoints of the uncertainty interval for a factor element are the 5th 
and 95th percentile values for that factor element from all bootstrap resamples. For BS-DISP, 
each bootstrap resample is displaced and minimum and maximum values are calculated for each 
factor element as described for DISP. Then percentiles are taken across the resamples, the 5th 
percentile of the minima and the 95th percentile of the maxima, to create the final interval 
estimate.  
 
Many intervals were estimated: one for each factor element for each error method for each data 
set studied. Table 2 contains upper and lower interval estimates for all error methods for a 
selected case, Case 2, for two selected species: PM2.5, a species of interest across all factors 
(Table 2a), and Cu (Table 2b), a typical example of a key species for identifying one of the 
factors. For the sake of brevity, only Case 2 is presented, since the data uncertainties for this case 
are more typical for ambient measurements. 
 
Table 2a. Lower and upper interval estimates of PM2.5 (µg/m3) by factor for Case 2 (realistic 
errors) for data sets with 50 or 261 samples 
 Salt Factor 

True PM2.5 = 0.10 
Copper Factor 

True PM2.5 = 0.42 
Soil Factor 

True PM2.5 = 1.82 
Coal Factor 

True PM2.5 = 2.24



20 
 

Data Set with 50 Samples 
DISP (0.00, 0.69) (0.12, 0.62) (1.23, 1.97) (2.08, 2.49) 
BS (0.06, 0.75) (0.15, 0.69) (1.16, 1.90) (1.52, 2.38) 
BS-DISP (0.00, 0.85) (0.12, 0.93) (1.17, 2.48) (1.54, 2.64) 

Data Set with 261 Samples 
DISP (0.06, 0.18) (0.33, 0.59) (1.59, 1.92) (2.08, 2.36) 
BS (0.10, 0.28) (0.36, 0.54) (1.56, 1.82) (1.98, 2.27) 
BS-DISP (0.07, 0.32) (0.33, 0.63) (1.52, 1.99) (2.00, 2.37) 

 
Table 2b. Lower and upper interval estimates of Cu (µg/m3) by factor for Case 2 (realistic errors) 
for data sets with 50 or 261 samples 
 Salt Factor 

True Cu = 0.0000 
Copper Factor 

True Cu = 0.0025 
Soil Factor 

True Cu = 0.0007 
Coal Factor 

True Cu =0.0001 
Data Set with 50 Samples 

DISP (0.0000, 0.0001) (0.0017, 0.0022) (0.0003, 0.0009) (0.0000, 0.0003) 
BS (0.0000, 0.0005) (0.0015, 0.0021) (0.0003, 0.0007) (0.0000, 0.0003) 
BS-DISP (0.0000, 0.0011) (0.0012, 0.0023)  (0.0001, 0.0008) (0.0000, 0.0004) 

Data Set with 261 Samples 
DISP (0.0000, 0.0001) (0.0021, 0.0025) (0.0005, 0.0008) (0.0001, 0.0003) 
BS (0.0000, 0.0001) (0.0022, 0.0024) (0.0005, 0.0007) (0.0001, 0.0002) 
BS-DISP (0.0000, 0.0001) (0.0022, 0.0025) (0.0005, 0.0008) (0.0001, 0.0003) 

 

For PM2.5 for the data set with 50 samples, the Salt factor’s overall contribution is uncertain with 
possible values ranging up to 7 times the true amount. Comparatively, the Soil and Coal factors’ 
PM2.5 mass estimates are more robust, with estimates ranging from about half of the true amount 
to just 10% more for DISP and BS and 20-30% more for BS-DISP. The Copper factor is in 
between, with PM2.5 estimates ranging from a third of the true value to 1.5 to 2 times the true 
amount. The size of these intervals may seem large, but this data set contains just 50 samples. 
For comparison, intervals for the data set with 261 samples are included in the lower halves of 
Tables 2a and 2b. The markedly shorter intervals for the larger data set show the power of having 
more data. Intervals estimated from the smaller data set support the idea presented in Section 1.6 
about the sensitivity of BS to zero values in G, as evidenced by the long BS (and therefore BS-
DISP) intervals compared to DISP. This difference nearly disappears for the larger data set, 
supporting the idea presented in Section 1.4 that rotational uncertainty plays a lesser role in 
larger data sets. 

For Cu, again the intervals for the larger data set are markedly shorter than those for the smaller 
data set. Another note is that many of the intervals do not contain the true amount of Cu for the 
Copper factor. That is, these error methods do not always produce intervals that contain the true 
value. 

4.3 Analysis of synthetic data sets – summary of comparisons 

As seen in Table 2, different error methods can produce the shortest interval depending on the 
dataset. Sometimes an error method’s interval includes the true value and sometimes it does not. 
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Given the large number of intervals estimated, it is challenging to determine which error method 
is consistently producing shorter intervals or intervals that include true values. To aid in the 
comparison of one error method to another, summary statistics that aggregated over all factor 
elements were calculated (see Table 3). Three summaries were calculated. One was percent 
coverage, the number of intervals containing true F factor element divided by total number of F 
factor elements. The second and third were median and average ratios for intervals. These were 
calculated as follows: length and midpoint of each interval for each F factor element were 
computed. Then length was divided by midpoint to create a unitless quantity that can be 
compared across factor elements of differing magnitude. Median and average ratios were 
calculated across all F factor elements.  

To test repeatability of results, two replicates of each data set were generated and modeled. The 
original data set contained 783 observations. For the 261-day replicates, every third sample was 
retained, starting with the first sample for Subset 1 and the second sample for Subset 2. For the 
50-day replicates, every 15th sample was retained, starting with the first sample for Subset 1 and 
the second sample for Subset 2. DISP results are presented only if no swaps occurred and if Q 
decreased minimally (less than 0.5). BS was run with 300 resamples and results are presented 
only for assignments of BS factors to base case factors with uncentered correlations of 0.80 or 
higher and for which only one bootstrap factor is allowed to be assigned to each base case factor. 
BS-DISP was run for 50 of the BS resamples. Summaries are formulated only of such BS 
resamples in which no swaps occurred. Interval estimates were summarized over all factors 
(upper row in table cells) and also over all factors excluding the sea salt factor (lower row) since 
modeling of bootstrapped resamples did not always fit a factor highly correlated with the sea salt 
factor (as described in Table 1). Case 3, the case in which modeling error was introduced, was 
excluded from this summary analysis since diagnostics for this case indicated problems, as 
discussed in Section 4.1. Results are presented in Tables 3a and 3b. 

 
Table 3a. Summaries of F interval estimates for data sets with 50 observations 

Method for Estimating Intervals 
(number of bootstraps, dQmax) 

First Row: Summary over All F Factors 
Second Row: Summary over All F Factors Excluding Salt 

(% coverage, median and avg ratios of length to middle of interval) 

Case 1. Small Errors Subset 1 Subset 2 

DISP (n/a, 4) 
98%, 0.82, 1.04 
98%, 0.51, 0.86 

100%, 0.74, 1.00 
100%, 0.54, 0.85 

BS (300, n/a) 
77%, 0.91, 1.05 
73%, 0.57, 0.88 

73%, 0.93, 1.00 
71%, 0.62, 0.87 

BS - DISP (50, 0.5) 
100%, 1.28, 1.25 
100%, 1.01, 1.08 

100%, 1.25, 1.19 
100%, 0.93, 1.05 

Case 2. Realistic Errors    

DISP (n/a, 4) 
95%, 1.49, 1.31 
96%, 1.03, 1.15 

100%, 1.47, 1.32 
100%, 0.93, 1.16 

BS (300, n/a) 
78%, 1.53, 1.36 
81%, 1.16, 1.23 

81%, 1.39, 1.24 
79%, 0.82, 1.06 

BS - DISP (50, 0.5) 
97%, 2.00, 1.54 
96%, 1.59, 1.39 

98%, 1.74, 1.36 
98%, 0.98, 1.21 

 
Table 3b. Summaries of F interval estimates for data sets with 261 observations 

Method for Estimating Intervals 
First Row: Summary over All F Factors 

Second Row: Summary over All F Factors Excluding Salt 
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(number of bootstraps, dQmax) (% coverage, median and avg ratios of length to middle of interval) 

Case 1. Small Errors Subset 1 Subset 2 

DISP (n/a, 4) 
95%, 0.45, 0.77 
94%, 0.32, 0.69 

94%, 0.45, 0.84 
92%, 0.36, 0.71 

BS (300, n/a) 
75%, 0.79, 0.99 
69%, 0.40, 0.80 

56%, 0.39, 0.78 
60%, 0.27, 0.66 

BS - DISP (50, 0.5) 
98%, 0.70, 0.96 
98%, 0.53, 0.81 

97%, 0.57, 0.92 
96%, 0.45, 0.76 

Case 2. Realistic Errors    

DISP (n/a, 4) 
92%, 0.77, 1.01 
90%, 0.49, 0.86 

89%, 0.80, 1.05 
85%, 0.47, 0.86 

BS (300, n/a) 
75%, 0.44, 0.82 
71%, 0.31, 0.69 

59%, 0.58, 0.86 
63%, 0.42, 0.80 

BS - DISP (50, 0.5) 
91%, 0.85, 1.05 
88%, 0.60, 0.90 

83%, 0.82, 1.05 
77%, 0.53, 0.86 

These summaries show that percent coverage is generally high, greater than 90%, except for BS 
and for BS-DISP with the larger data set for Case 2. Also, DISP generally provides the shortest 
intervals except for Case 2 with the larger data set where BS provides the shortest intervals.  

Results from Subset 1 and Subset 2 are similar for DISP and BS-DISP. Unexpectedly, BS results 
vary by subset. The reason is unclear at this time, but it may have to do with the number of zeros 
in G for the two subsets. For the data set with 50 samples, Subset 1 has 3, 3, 7, and 1 zeros and 
Subset 2 has 1, 6, 12, and 1 zeros for Coal, Salt, Copper, and Soil factors, respectively. For the 
data set with 261 samples, Subset 1 has 6, 17, 27, and 8 zeros and Subset 2 has 5, 26, 44, and 7 
zeros for Coal, Salt, Copper, and Soil factors, respectively. It does not take many zeros to reduce 
rotational uncertainty; thus, the larger number of zeros for Subset 2 of the smaller data set could 
explain the shorter intervals. The cause for lower percentage coverages for BS for Subset 2 is 
unknown. 

As expected and seen with the examples presented in the previous section, it is noted that 
intervals are shorter for the larger data set. This is true for all methods and both case studies. 
What is not expected is that percentage coverage is lower for the larger data set. The cause is 
unclear; however, a proposed explanation is that the likelihood of excessively long intervals is 
higher for smaller data sets because there are fewer zeros in G. These excessively long intervals 
will in turn result in unnaturally high coverage. 

The conclusion from the analysis of these synthetic data sets is that DISP consistently provides 
intervals that have high coverage (> 90%) and that are shorter than those provided by BS or BS-
DISP. BS-DISP sometimes provides intervals with higher coverage than DISP, but these 
intervals are generally longer. The performance of error estimation techniques will depend on the 
details of each individual data set. Here, the differences seen for supposedly similar case studies 
1 and 2 illustrate the variability found between data sets.  

Although patterns in relative merits of the three uncertainty estimation techniques are 
developing, applying these inferences to all PMF analyses is premature. Variation in 
characteristics of data sets (e.g., number of samples, number of zeroes in G) and modeling errors 
(e.g., inappropriate number of factors, discrepancies between sij and uij, handling of values below 
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method detection limit) may lead to different relative merits. In order to achieve the best possible 
uncertainty estimations, the evaluation approach of this paper should preferably be repeated 
whenever PMF error estimation is applied to new kinds of data sets: Simulations with realistic 
true data patterns should be performed and merits of uncertainty estimates should be evaluated.  
A forthcoming manuscript (Brown et al. in preparation) will present case studies of ambient data 
and interpretation of results from the three error estimation techniques.   

5. REPORTING RECOMMENDATIONS FOR PMF ANALYSES 

Reff et al. (2007) performed a literature review of publications of PMF applications. The purpose 
of the review was to document the numerous decisions that users of PMF must make to perform 
such applications and to encourage that future publications of PMF applications include enough 
details for readers to evaluate, reproduce, or compare results between different studies. In a 
continuing effort to help make the reporting of results from EPA PMF and ME-2 more 
systematic among researchers, we have summarized recommendations on what to report while 
documenting uncertainty estimates from PMF analyses. This is not an exhaustive list, and every 
data set may require that additional information be reported. To increase the understanding of the 
behavior of these uncertainty estimates with different types of data, it is recommended that all 
three techniques be applied and specific details about and estimated intervals from each method 
be reported.  For cases where this is not possible or reasonable, it is recommended that such 
reasoning be included in the publication. 

BS. Report the number of resamples analyzed and the size of percentiles of the obtained 
distribution of results chosen for error limits, e.g., 5th and 95th percentiles. Also report the 
percentage of BS factors assigned to each base case factor and the number of BS factors not 
assigned to any base case factor. 

DISP. Report species not displaced such as those downweighted, the absolute and relative 
decrease in Q, and the number of factor swaps. If factor swaps occur for the smallest dQmax, it 
indicates that there is significant rotational ambiguity and that the solution is not sufficiently 
robust to be used. If the decrease in Q is greater than 1%, it likely is the case that no DISP results 
should be published unless DISP analysis is redone after finding the true global minimum of Q.  

BS-DISP. As with BS and DISP, report the number of BS resamples analyzed, the size of 
percentiles chosen for error limits, the species actively displaced, the decrease in Q, and the 
number of factor swaps.  

 

6. CONCLUSIONS 

Exercises presented with synthetic data suggest that error intervals estimated by DISP, BS and 
BS-DISP capture with high probability profile values that truly underlie the modeled 
observations. Numerous simulations were performed in addition to those reported in this work. 
All indicate that if data uncertainties are known and there are no modeling errors, then the DISP 
method consistently produces good coverage of true values using the shortest possible 
uncertainty intervals. In the more difficult cases where data uncertainties are not well known, the 
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bootstrap-based methods BS and BS-DISP seem to work satisfactorily provided that there are no 
modeling errors.  A solution's stability can also be evaluated via the fraction of times each factor 
is mapped in BS and if any swaps occur in DISP.  These results provide critical information on 
whether a solution should be interpreted. 

The uncertainty estimation with DISP depends on the user’s defined maximum allowed change 
in Q (dQmax). For simulated data, this dependence was illustrated in this work. For real data, 
mathematical derivation is impossible because of the presence of modeling errors. Practical 
experience is needed in order to understand the dependence on dQmax. Such understanding might 
be attempted by partitioning a real data set in various ways and comparing the partition-partition 
variation of profiles against their DISP uncertainty estimates. In a companion paper, to be 
submitted soon, several real-data analyses will be reported. It should be noted that the 
dependence of uncertainty intervals on dQmax depends on the amount of rotational ambiguity. If 
the model has no rotational ambiguity, then uncertainties computed by DISP are expected to be 
proportional to square root of dQmax. At the other extreme, if the rotational uncertainty is 
dominant, then the computed uncertainties are expected to be almost independent of dQmax.  In 
EPA PMF, the DISP method is implemented so that uncertainties are always computed for four 
different dQmax values. In this way, the influence of dQmax values on uncertainty estimates is easy 
to see for each specific data set.  

In order to speed up computations, some factor elements may be defined passive in DISP and 
BS-DISP processes. Defining some elements as passive has no influence on the uncertainty 
intervals obtained for active (actively displaced) factor elements. Uncertainty intervals for active 
factor elements are reliable regardless of how many and which elements are defined as passive 
provided the user-provided data uncertainties and dQmax are correct.  Thus it is safe to define 
uninteresting factor elements passive in order to speed up computations.  Note though that 
defining a factor element as passive will usually underestimate its computed uncertainty.  
Specifically, the uncertainty for a factor element defined as passive will be less than or equal to 
the uncertainty computed for that factor element if it were defined as active.  Thus factor 
elements critical for associating a factor with a source should always be defined as active. 

Present work offers no quantitative results for the situations where significant modeling errors 
exist. It was seen that one type of modeling error, specifying more factors than the data support, 
leads to diagnostics that suggest to an attentive PMF user that there are too many factors. 
However, it is not currently known whether diagnostics will be as clear if multiple modeling 
errors are present. For example, censoring a large number of values below detection limit, 
another type of modeling error, may invalidate uncertainty analysis by BS, DISP, and BS-DISP. 

It was seen that some data sets produce large rotational uncertainties for some or all factors so 
that interval estimates may extend down to zero even for some of the defining "key" species. In 
such cases, factor identities may become fluid, often indicated by factor swaps. The obtained 
uncertainty intervals are then imprecise because of the difficulty of defining the borderline 
between rotations and swaps. Although the methods will correctly indicate that uncertainties are 
large, they may not produce quantitative results for these large intervals. On the other hand, this 
"weakness" caused by factor swapping may not be important in practical work. Simply put, it 
does not matter whether uncertainty is rather large or very large. 
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When interpreting large uncertainties, there is a conceptual issue that warrants highlighting.  
Suppose a factor is associated with a known source or sources based on the initial computed 
composition.  For example, suppose factor F1 is identified as “Diesel vehicles” based on a high 
value of EC.  Now suppose that the estimated uncertainty for EC for factor F1 shows that there 
may be low or no EC apportioned to the factor.  This would then call into question the 
association of this factor with the postulated source.   Therefore, when discussing uncertainties, 
they should be called uncertainties in factor F1, not uncertainties in the diesel factor.  If the 
uncertainties are small enough that the source or sources associated with a factor are not called 
into question, then it is reasonable to refer to the uncertainties as uncertainties in the source 
profile.  When reporting results, it is important to document each factor for which the size of the 
uncertainties calls into question the source or sources initially associated with that factor. 

If large uncertainties are obtained for a PMF solution, the next step is for the analyst to determine 
whether physical-chemical arguments can be applied to reduce the variability of the results. 
Different constraints can be defined, for example by constraining certain G or F factor elements 
to be zero (Paatero et al., 2002). Narrower uncertainty intervals will be obtained. However, no 
results from such experiments are included in this work. 

It has been customary to report uncertainties in the symmetric form, as "best fit ± uncertainty." In 
the present case, such formulation is not adequate since uncertainty intervals need not be 
symmetric. Uncertainties should be reported in unsymmetric formulation, for example as 
"best fit + u - d" where u and d represent the width of interval up and down from best fit, 
respectively. It should be noted that these intervals are not standard deviations of "errors." Rather 
their nature is that of "Confidence Intervals," meaning that with a high (albeit often unknown) 
probability, the intervals contain the unknown true values. 

The addition of DISP and BS-DISP capabilities in EPA PMF and ME-2 will help users better 
understand sources of variability in their PMF results. Such understanding may include 
identifying samples that are highly influential in the error estimation, identifying species for 
which user-provided data errors are too low or too high, or determining that too many factors 
have been modeled. Using DISP, BS, and BS-DISP as a suite of techniques for estimating 
uncertainty in PMF solutions can be more illuminating than using just one technique, much as 
using multiple receptor models to analyze a data set can provide more insight into the solution 
than using just one.  

Comparing merits of different estimation principles is not straightforward, because widely 
varying characteristics are inherent in data sets and numerous types of modeling errors may 
occur. For the synthetic data developed for this work, it was seen that BS had longer uncertainty 
intervals and lower coverage, DISP had shorter uncertainty intervals and higher coverage, and 
BS-DISP had high coverage with uncertainty interval lengths between those of BS and DISP. 
This suggests that DISP and BS-DISP are better at assessing uncertainty than BS.  

7.  DISCLAIMER 

The United States Environmental Protection Agency through its Office of Research and 
Development funded and collaborated in the research described here under contract EP-D-09-
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097 to Sonoma Technology, Inc. It has been subjected to Agency review and approved for 
publication. 
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