Retrospective dual-isotope tree-ring analysis reveals higher responsiveness of crown gas exchange to environmental variation with reduced competition in ponderosa pine (Pinus ponderosa)

Julia Sohn, Jurgen Bauhus, J. Renee Brooks, Martin Kohler, Thomas Kolb, Nate McDowell

We analysed the oxygen isotopic values of wood (δ 180w) of 12 ponderosa pine (Pinus ponderosa) trees from control, moderately, and heavily thinned stands and compared them with existing wood-based estimates of carbon isotope discrimination (Δ 13C), basal area increment (BAI), and gas exchange to examine if increases in water availability and thus changes in stomatal conductance (gc) were causing higher growth rates after thinning. We conducted a sensitivity analysis to identify additional factors that may influence observed differences in δ 180w among treatments. We found that heavy thinning (HT) led to more depleted δ 180w relative to the control throughout the first post-thinning decade, whereas moderate thinning (MT) was not significantly different from controls in δ 180w. Both HT and MT treatments varied more in

analysis suggest six potential drivers of δ 180w, including source water, environmental drivers and physiological effects. When modelling δ 180w time-series of the first post-thinning decade using surrogate data of multiple potential drivers at once, the best fit with measured time-series was obtained with a model including relative humidity and δ 180 of source water. We conclude that direct effects of physiological parameters were only a minor determinant of δ 180w in our trees. However, we found insufficient reasons to assume that the

in relative humidity or source water usage between treatments. Rather, as modelled δ 180w time series overestimated the magnitude of δ 180w variation for all treatments but most for control trees, a higher environmental sensitivity maybe due to decreasing reliance on remobilized compounds after thinning. Consequently, the more depleted δ 180w of HT trees was likely caused by a greater expression of the common trend towards more depleted δ 180w apparent in all series in the post-thinning period.