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Abstract 17 

Previous research has demonstrated the ability to use the Weather Research and Forecasting 18 

(WRF) model and contemporary dynamical downscaling methods to refine global climate 19 

modeling results to a horizontal grid spacing of 36 km.  Environmental managers and urban 20 

planners have expressed the need for even finer resolution in projections of surface-level weather 21 

to take in account local geophysical and urbanization patterns.   In this study, the WRF model as 22 

previously applied at 36-km grid spacing is used with 12-km grid spacing with one-way nesting 23 

to simulate the year 2006 over the central and eastern United States.   The results at both 24 

resolutions are compared to hourly observations of surface air temperature, humidity and wind 25 

speed.  The 12- and 36-km simulations are also compared to precipitation data from three 26 

separate observation and analysis systems.   27 

The results show some additional accuracy with the refinement to 12-km horizontal grid 28 

spacing, but only when some form of interior nudging is applied.  A positive bias in precipitation 29 

found previously in the 36-km results becomes worse in the 12-km simulation, especially 30 

without the application of interior nudging.  Model sensitivity testing shows that 12-km grid 31 

spacing can further improve accuracy for certain meteorological variables when alternate physics 32 

options are employed.  However, the strong positive bias found for both surface-level water 33 

vapor and precipitation suggests that the WRF model as configured here may have an 34 

unbalanced hydrologic cycle that is returning moisture from land and/or water bodies to the 35 

atmosphere too quickly. 36 

  37 
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1. Introduction 38 

Many previous efforts to estimate future climate on finer scales have employed dynamical 39 

downscaling where coarsely-resolved global-scale climate simulations were used to provide 40 

temporal and spatial boundary information for fine-scale meteorological models (Giorgi 1990).  41 

A climate downscaling study was recently conducted using the Weather Research and 42 

Forecasting (WRF) model (Skamarock et al. 2008) on a nested 108-/36-km modeling grid (Otte 43 

et al. 2012; Bowden et al. 2013).  These studies demonstrated some optimization of the WRF 44 

model in this regard by using the NCEP-Department of Energy Atmospheric Model 45 

Intercomparison Project (AMIP-II) Reanalysis data (Kanamitsu et al. 2002) as a surrogate for 46 

global climate model information and then comparing the WRF model outputs to finer-scale re-47 

analysis products.  The use of historical meteorological data to provide forcing fields for the 48 

dynamical modeling and to provide data with which to evaluate the results is the only way to test 49 

dynamical climate downscaling methods since there are no future observations with which to 50 

evaluate downscaling results from future climate simulations. 51 

While the previous dynamical downscaling at 108-km and 36-km grid spacing was 52 

successful in providing added detail and accuracy, environmental managers and urban planners 53 

have expressed a desire for future climate projections at even finer scales.  By taking into 54 

account the effect of local geophysical features on surface air temperature, humidity, wind and 55 

precipitation, fine-scale dynamical downscaling has the potential to provide more useful 56 

information to guide local officials in their climate change adaptation efforts. 57 

To take the previous downscaling effort one step further, this work applies one-way nesting 58 

in WRF to provide information on a 12-km horizontal grid for calendar year 2006.  This study 59 

period was chosen based on the availability of over 11 million hourly observations of surface 60 
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temperature, water vapor mixing ratio and wind speed with which to evaluate model 61 

performance.  We restricted our simulations to one year to allow testing of various model 62 

configurations with regard to interior nudging type and nudging strength.  Longer-term (~20 yr) 63 

simulations are anticipated based on the results of this study.  In the course of our investigation 64 

we also tested some alternate physics options.  The WRF model was applied in three modes.  65 

The first is the standard WRF application where the simulation is constrained only by the 66 

provision of meteorological data at the lateral boundaries and surface conditions (e.g., 67 

topography, land surface type, sea-surface temperatures).  For the other two modes, internal 68 

forcing of meteorological variables is also applied.  This internal forcing, also called interior 69 

nudging, is applied in two different ways, “analysis nudging” and “spectral nudging”.  As in Otte 70 

et al. (2012), the basis for all interior nudging was the AMIP-II reanalysis data with 71 

approximately 200-km horizontal grid spacing, hereafter referred to as the R-2 data.   72 

While analysis nudging on a fine grid based on coarser information is known to damp high-73 

resolution features desired from the fine-scale simulation (Stauffer and Seaman, 1994), analysis 74 

nudging was found to be generally superior to spectral nudging at the 36-km scale when 75 

appropriate nudging coefficients were chosen to adjust the strength of the nudging force in the 76 

WRF governing equations (Otte et al. 2012).  This study investigates further adjustments to those 77 

coefficients for 12-km WRF applications.  Spectral nudging, when applied with appropriate 78 

options for the 12-km WRF domain, should not damp high resolution features in the 12-km 79 

simulation the way analysis nudging can.  This study also investigates adjustments to the spectral 80 

nudging strength coefficients to achieve optimal performance. 81 

 82 

2. Model Description 83 
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The WRF-ARW model version 3.3.1 (WRF) was used in a number of different 84 

configurations as outlined in Table 1.  All simulations were initialized at 0000 UTC 2 December 85 

2005 to provide a 30-day spin-up time before the calendar year 2006 test period.  The model was 86 

run continuously through 0000 UTC 1 January 2007 with no re-initialization.  The 108- and 36-87 

km horizontal domains used in Otte et al. (2012) and the 12-km domain used here are shown in 88 

Fig. 1.  WRF was run on the 12-km domain with the same 34-layer configuration and 50 hPa 89 

model top used in Otte et al. (2012).  Initial and lateral boundary data were derived from their 90 

36-km analysis-nudged (“AN”) simulation using standard WRF input data processing software 91 

with a one-hour update interval for the lateral boundaries.  The input data for the lower boundary 92 

and for interior nudging (when applied) were the global T62 Gaussian analyses from the R-2 93 

data which provide a six-hour history interval.    94 

Regarding the lower boundary definitions, we noticed an issue with inland lake surface 95 

temperatures similar to that was recently described by Gao et al. (2012).  Unrealistic 96 

discontinuities in temperature between inland lakes and their surrounding land surfaces were 97 

produced from the water surface temperature data available from the R-2 analysis.  When inland 98 

lakes are far removed from the closest sea-surface temperature data available in the lower 99 

boundary input file, WRF normally uses a nearest-neighbor approach to estimate their surface 100 

skin temperature.  The R-2 data resolve the five Great Lakes with only three data points, and all 101 

other inland lakes in our 12-km WRF domain are not resolved at all.  An alternative method for 102 

setting inland lake water temperatures was tested ("alternate lakes" cases in Table 1) whereby 2-103 

m air temperatures from R-2 were averaged over the previous month and used to set inland lake 104 

surface temperatures.  This alternate lakes method was applied without any nudging and with 105 

spectral nudging. In neither case were we able to simulate realistic lake surface temperatures and 106 
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ice cover.  The Great Lakes could be better resolved by higher-resolution global climate models 107 

or corresponding reanalysis products, but smaller inland lakes will continue to remain 108 

unresolved.  We believe that adding a capability in WRF to realistically simulate the exchanges 109 

of energy between inland lakes and the atmosphere above could significantly improve future 110 

fine-scale dynamical downscaling efforts. 111 

In regard to the WRF physics options used in this study, we generally used the same options 112 

as did Otte et al. (2012). These include the Rapid Radiative Transfer Model for Global climate 113 

models (RRTMG; Iacono et al. 2008) for longwave and shortwave radiation, the Yonsei 114 

University planetary boundary layer (PBL) scheme (Hong et al. 2006), and the Noah land-115 

surface model (Chen and Dudhia 2001). Soil temperature and moisture in the land-surface model 116 

were initialized by interpolating from the 36-km parent domain via the WRF “ndown” program.  117 

For this study, the initialization time was 18 years into the 36-km simulation. We also used the 118 

WRF single-moment 6-class microphysics scheme (Hong and Lim 2006) in most of the 12-km 119 

simulations, but instead applied the Morrison double-moment scheme (Morrison et al. 2009) in 120 

two separate sensitivity tests as indicated in Table 1.  We also used the Grell-3 convective 121 

parameterization scheme (Grell and Dévényi 2002) in most of our 12-km simulations, but as 122 

Table 1 shows, we applied the Kain-Fritsch scheme (Kain 2004) two different ways to test 123 

sensitivity to sub-grid convective parameterization.   124 

All simulations applied nudging towards the lateral boundary values using a 5-point sponge 125 

zone (Davies and Turner 1977).  Regarding interior nudging, three options were used:  no 126 

nudging, analysis nudging and spectral nudging.  Simulation test cases for which no interior 127 

nudging was used are designated with “NN”, cases where analysis nudging was used are 128 

designated with “AN”, and cases where spectral nudging was used are designated with “SN”.  129 
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Both forms of interior nudging have been shown to reduce errors in WRF-based regional climate 130 

modeling (Lo et al. 2008; Bowden et al. 2012).   131 

Analysis nudging in WRF is thought to be most appropriate when the target data fields have 132 

a similar spatial resolution as the model grid (Stauffer and Seaman 1990; Deng et al. 2007).  In 133 

this study the target data for nudging was of considerably coarser resolution than the 12-km 134 

model grid.  It was expected that some adjustments to the analysis-nudging coefficients used by 135 

Otte et al. (2012) for their 36-km simulations might be necessary to optimize model 136 

performance.  In general, weaker nudging is recommended for finer-resolved model grids 137 

(Stauffer and Seaman 1994).  Therefore we tested the analysis-nudging technique at 12-km grid 138 

spacing with nudging strengths varied between one-fourth and equal to the base values used by 139 

Otte et al. (2012) in their 36-km modeling.  Analysis nudging was applied to horizontal wind 140 

components, potential temperature, and water vapor mixing ratio.  This interior nudging was 141 

only applied above the planetary boundary layer (PBL).   142 

Spectral nudging (Miguez-Macho et al. 2004) differs from analysis nudging in that its effect 143 

is scale selective so that fine scale features in the model simulation can be preserved.  Spectral 144 

nudging is based on a spectral decomposition of the same difference field (model solution versus 145 

reference analysis) used in analysis nudging.  By using only the longer spectral waves (lower 146 

wave numbers) to reconstitute the difference field used to nudge the simulation, the effect of 147 

nudging on finer-scale features in the simulation is avoided.  A maximum wave number of two 148 

(i.e., two full waves across the simulation domain) was selected for both horizontal dimensions 149 

to account for the size of the 12-km domain and the limited resolution power of the R-2 data.  150 

Spectral nudging in public releases of WRF can only be applied to the horizontal wind 151 

components, potential temperature, and geopotential.  There is currently no capability to apply 152 
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spectral nudging to water vapor mixing ratio as can be done with analysis nudging.  As with our 153 

analysis nudging tests, spectral nudging was only applied above the PBL in this study.  The 154 

scale-selective effects of spectral nudging should reduce model sensitivity to the nudging 155 

coefficients.  Nonetheless, sensitivity to the spectral nudging coefficients was tested with 156 

simulations using one-half and twice the base values chosen for 12-km modeling.   157 

 158 

3. Evaluation of WRF Simulations against hourly surface observations 159 

Previous dynamical downscaling to 36-km grid spacing by Otte et al. (2012) used North 160 

American Regional Reanalysis (NARR) data with 32-km grid spacing to evaluate WRF 161 

simulation results.  For our 12-km results, more highly resolved “ground-truth” data were 162 

required.  Instead of using a meteorological reanalysis product, hourly observations of 163 

temperature, humidity and wind speed from the NOAA Meteorological Assimilation Data Ingest 164 

System (MADIS) were used.  To assure data quality, we only used METAR and SAO reports 165 

from the MADIS data repository.  These reports provided over 11,000,000 hourly observations 166 

across the 12-km WRF modeling domain during 2006.  Comparisons of simulated and observed 167 

data were made using the Atmospheric Model Evaluation Tool (AMET) described in Appel et al. 168 

(2011).  169 

The first evaluations performed were intended to gauge the improvements offered by 12-km 170 

WRF modeling over the previous 36-km results.  As mentioned previously, the 36-km WRF 171 

results obtained with analysis nudging were deemed to be generally superior and were used in a 172 

one-way nesting operation to define all lateral boundary values for the 12-km modeling.  Figure 173 

2 shows monthly evaluations of mean bias and mean absolute error for the parent 36-km WRF 174 

simulation (36AN) and our base-case 12-km nested simulations with no interior nudging (NN), 175 
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with analysis nudging (AN), and with spectral nudging (SN) compared against hourly surface 176 

data from MADIS.  These analyses were produced with AMET which allows the area of 177 

comparison to be specified in longitude and latitude space.  The area specified for all AMET 178 

products in this study was 25-48°N and 67-108°W, which covers the 12-km model domain to the 179 

greatest extent possible.     The WRF model version and physics options used in these base-case 180 

12-km simulations were the same used in the previous 36-km simulation.  However, it should be 181 

noted that WRF version 3.3.1 was used for the present study while Otte et al. (2012) used version 182 

3.2.1.  Tables 2, 3 and 4 show annual evaluation statistics for temperature, water vapor mixing 183 

ratio and wind speed, respectively, for all four of these WRF simulations.  The equations used to 184 

calculate the evaluation statistics are shown in Appendix A. 185 

In general, the 12-km simulation with no interior nudging has a larger annual mean absolute 186 

error than the parent 36-km simulation.  However, using either analysis or spectral nudging at 187 

12-km grid spacing reduces the mean absolute errors for temperature and wind speed from those 188 

from the 36-km simulation.  12-km simulations with either type of interior nudging improve 189 

anomaly correlation over the 36-km results in all cases, except for water vapor mixing ratio from 190 

spectral nudging where the scores are the same.  This improvement in 12-km accuracy when 191 

WRF is applied with interior nudging is consistent with the results of Bowden et al. (2012), who 192 

found that nudging on the 108-/36-km nested interior domain was beneficial.  A positive bias in 193 

water vapor is apparent in all runs and this bias is stronger in all of the 12-km simulations.  This 194 

suggests that some physics options used at 36-km grid spacing might not be optimal for 12-km 195 

modeling.  This issue is addressed to some degree in sensitivity tests described below. 196 

Figure 3 shows spatial maps of the annual mean bias in 2-m temperature for all four test 197 

cases across the latitude/longitude area of the statistical evaluations described above.  The 36-km 198 
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parent simulation shows a positive bias in temperature over the Plains states and into the 199 

northern Ohio Valley and southern Great Lakes regions.  There is also an indication of positive 200 

bias along the immediate coastline of the Gulf of Mexico and in Atlantic coastal areas.  A 201 

negative temperature bias is seen over the Appalachian and Rocky Mountain regions and over 202 

the northern Great Lakes region.  The 12-km simulation performed without any interior nudging 203 

shows generally the same pattern in temperature bias, but the positive bias areas are diminished 204 

and the negative bias areas are noticeably expanded.  The analysis-nudged and spectral-nudged 205 

simulations both show temperature bias patterns that are more similar to the 36-km results, with 206 

a lesser shift towards negative bias than in the no-nudge case. 207 

Figures 4 and 5 show similar spatial maps for bias in water vapor mixing ratio and wind 208 

speed, respectively.  For water vapor, the 12-km simulations all show an obvious shift towards a 209 

positive bias in nearly all areas relative to the parent 36-km simulation.  The areas of greatest 210 

shift appear to be in the Plains and Midwest states.  There is some indication that spectral 211 

nudging reduces the positive bias in water vapor, but only slightly so.  The analysis nudging 212 

coefficient for water vapor is an order of magnitude less than the coefficient for temperature and 213 

wind and water vapor is not nudged at all in the spectral method.  Also, when nudging is applied 214 

it is only done so above the PBL.  Interior nudging does not appear to offer much help in 215 

overcoming what appears to be a basic model bias toward too much moisture near the surface, 216 

especially in 12-km simulations.  For wind speed, there is very little change in the pattern of bias 217 

between the 36-km and 12-km simulations.  Figure 2 indicates a general decrease in the positive 218 

bias in wind speed for all months in the 12-km simulations, more so when nudging is applied.  219 

But this is poorly evident in the spatial maps of the annual mean (Figure 5).  It is interesting to 220 



11 
 

note that the model bias is generally small in areas of the Great Plains where wind instrument 221 

exposure is less likely to be a factor. 222 

 223 

4.  Evaluation of WRF Simulations of Precipitation 224 

Because of the positive bias that was found for surface-level water vapor, we believed it was 225 

important to also investigate simulated precipitation amounts.  We obtained precipitation data 226 

from three separate sources, gridded analyses from the Multisensor Precipitation Estimator 227 

(MPE) and the Parameter-elevation Regressions on Independent Slopes Model (PRISM), and 228 

site-specific data from the National Atmospheric Deposition Program’s National Trends 229 

Network (NTN) 230 

The MPE is a precipitation analysis system developed by the NWS Office of Hydrology in 231 

March 2000.  It is used by National Weather Service River Forecast Centers to produce gridded 232 

precipitation estimates for various hydrological applications.  Observational data sources include 233 

weather radar data, automated rain gauges and satellite remote sensors.  We obtained “Stage IV” 234 

data sets from the Earth Observing Laboratory at the National Center for Atmospheric Research 235 

(http://data.eol.ucar.edu/codiac/dss/id=21.093).  These provided hourly precipitation analyses at 236 

4-km horizontal grid spacing that we re-analyzed to our 12-km and 36-km modeling domains 237 

using the program “metgrid” which is part of the standard WRF Preprocessing System (WPS).  238 

Specifically, we used the grid-cell average interpolator (option “average_gcell” in 239 

METGRID.TBL) which is described in Chapter 3 of the online WRF User’s Guide 240 

(http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm).  We 241 

restricted our WRF evaluations based on MPE data to non-oceanic areas because of the limited 242 

precipitation information available over oceans.  We also restricted our evaluations of monthly 243 

http://data.eol.ucar.edu/codiac/dss/id=21.093


12 
 

total precipitation to those areas where the hourly MPE data were at least 90% complete for each 244 

month.  Where the MPE data were not 100% complete, we scaled the monthly totals linearly to 245 

100%. 246 

Figure 6a shows a graph of average monthly precipitation from the WRF simulations 247 

compared to the MPE data.   36-km WRF simulation results (from Otte et al. 2012) were 248 

trimmed to match the 12-km modeling domain to allow for proper comparison.  All of the WRF 249 

simulations produced more precipitation than the MPE data indicate, with only one exception 250 

being the 36-km results for October.  The greatest exceedances were in the spring and summer 251 

months.  The 12-km simulations show higher positive bias than the 36-km case in nearly all 252 

instances.  The positive bias is most obvious for the no-nudge 12-km case.  We also calculated 253 

monthly mean absolute error versus MPE (not shown) and found only slight differences between 254 

the WRF simulations.  However, the 12-km cases did show slightly larger error, especially when 255 

no nudging was applied. 256 

The PRISM precipitation data (Daly et al., 1994) provide a second gridded analysis product 257 

with which to evaluate WRF performance.  These high-resolution (0.04167° lat/lon) monthly 258 

precipitation data are fully documented at http://www.prism.oregonstate.edu/docs/.  We used 259 

software from the R Project for Statistical Computing (http://www.r-project.org/) to perform 260 

area-weighted grid-to-grid mapping to upscale the PRISM data to the 12-km and 36-km 261 

modeling grids.  Figure 6b shows a graph of average monthly precipitation from the WRF 262 

simulations compared to PRISM.  Precipitation data from PRISM are only available over land 263 

areas so the results in Figs. 6a and 6b both exclude oceanic areas.  The PRISM results confirm 264 

what was found in our comparisons to MPE.  The lines showing WRF simulated precipitation in 265 

Figs. 6a and 6b are nearly identical, but there are some small differences because the MPE data 266 
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did not cover all land areas of the 12-km WRF domain for some months.  It is interesting to note 267 

how similar the MPE and PRISM values are throughout the entire year.  In the PRISM 268 

evaluation, all WRF simulations exceeded the indicated precipitation for every month with no 269 

exceptions and the exceedances were greatest during the spring and summer.   270 

The NTN is described at http://nadp.sws.uiuc.edu/ntn/.  We obtained weekly NTN 271 

precipitation data at 209 sites within the 12-km WRF modeling domain.  The spatial distribution 272 

of NTN monitors is generally homogeneous across land areas of the 12-km WRF domain with 273 

slightly higher network density in the central and eastern sections.  NTN samples were grouped 274 

by month based on the end of their sampling period.  Most months had four weekly sampling 275 

periods in this analysis, but April, July and September had five.  WRF-simulated precipitation 276 

was compared to NTN samples based on the exact period for each sample.  We calculated the 277 

mean of WRF-simulated and NTN-observed weekly totals for each month, then scaled those 7-278 

day means to match the actual number of days in each month to provide monthly average values 279 

for NTN that could be directly compared to the monthly MPE and PRISM results above.  These 280 

monthly totals based on the WRF-NTN comparisons are shown in Fig. 6c.  Here, as with the 281 

MPE and PRISM comparisons, WRF-simulated precipitation generally exceeded the observed 282 

amounts with the worst excesses generally coming from the 12-km simulation with no interior 283 

nudging.  Because of the higher NTN station density in the central and eastern parts of the study 284 

domain where more precipitation normally falls, the average monthly NTN precipitation values 285 

are slightly higher that indicated for the MPE and PRISM data.  But the average WRF-simulated 286 

precipitation is also higher at the NTN station locations and once again the WRF results exceed 287 

observations in nearly all instances. The exceedances are again especially large in the warm 288 

months and more so for the 12-km WRF when no nudging is used. 289 

http://nadp.sws.uiuc.edu/ntn/
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 290 

5.  Testing Adjustments to Nudging Strength 291 

The results shown above demonstrate that the physics options for WRF employed in previous 292 

dynamical downscaling to 36-km grid spacing can be used at 12-km grid spacing to provide 293 

some additional accuracy for temperature, humidity and wind speed when interior nudging is 294 

applied with reductions in nudging strength to account for finer horizontal resolution.  However, 295 

the reductions we applied were rather arbitrary.  To test model sensitivity to the choice of 296 

analysis-nudging and spectral-nudging coefficients, values of one-half and twice the base values 297 

were also applied.   298 

Figure 7 shows monthly mean absolute error and mean bias for all three analysis nudging 299 

cases (ANlow,AN,ANhigh) and all three spectral nudging cases (SNlow,SN,SNhigh) for 300 

temperature, water vapor mixing ratio and wind speed.  Generally, the differences in mean 301 

absolute error were quite small throughout the year, especially for wind speed.  For temperature, 302 

the differences in mean absolute error are quite small throughout the year.  Nonetheless, the 303 

base-value coefficients for both analysis and spectral nudging produced the lowest errors in 304 

temperature for nearly every month.  However, water vapor error increased during the summer 305 

months as nudging strength increased for both nudging methods.  Nudging of water vapor has 306 

been somewhat controversial because doing so adds or subtracts mass from the simulated 307 

atmosphere.  For this reason, we chose our strength for analysis nudging of water vapor to be 308 

one-tenth the strength of the other variables in all cases.  Nudging of water vapor is not 309 

performed at all with spectral nudging in published WRF codes.  Nonetheless, there are still 310 

discernible differences in the mean absolute error for water vapor between the spectral nudging 311 

cases.  For wind speed, increasing the nudging strength nearly always resulted in a very small 312 
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increase in mean absolute error.  However, this effect was so small as to be nearly undetectable 313 

in Fig. 7. 314 

Figure 7 shows some interesting changes in model bias as nudging strengths are changed.  315 

For temperature, bias is increased with stronger analysis nudging in all months except November 316 

and December.  Model biases were already positive in all months except June, so stronger 317 

analysis nudging generally degraded the temperature results.  This could indicate a positive bias 318 

in the R-2 temperature data the model is being nudged towards.  Temperature bias was only 319 

slightly affected by changes in the strength of spectral nudging with no definite relation of 320 

nudging strength to bias correction.  The positive model bias in water vapor mixing ratio is 321 

improved by stronger analysis nudging and by stronger spectral nudging in every month.  322 

Because water vapor is directly nudged in the analysis-nudging method, we might expect to see 323 

improvement from that form of nudging.  However, the link between stronger spectral nudging 324 

and improved bias in water vapor is not direct and suggests complex interactions of model 325 

physics.  Wind speed bias was improved to a small degree by stronger analysis nudging, but 326 

changes to spectral nudging strength had little effect. 327 

We also tested the effect of nudging strength on the amount of precipitation simulated by the 328 

12-km WRF.  Figure 8a shows the average monthly total precipitation for all 12-km WRF model 329 

cells over land when analysis nudging strength is varied up and down by a factor of two.  Figure 330 

8b shows similar results for spectral nudging.  The 12-km precipitation behavior is much more 331 

sensitive to changes in the strength of analysis nudging than spectral nudging.  The strongest 332 

analysis nudging reduces the simulated precipitation by about 5 to 10% with the greatest effect in 333 

the spring and summer months.  Variations in the strength of spectral nudging have little effect in 334 

any month.  Unlike analysis nudging, spectral nudging is designed to preserve smaller-scale 335 
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features of the simulation.  The lack of sensitivity to spectral nudging strength suggests that the 336 

positive precipitation bias is due more to smaller-scale phenomena.  Analysis nudging strength 337 

has its greatest effect on precipitation amount in the spring and summer when convection is more 338 

dominant.  The evidence here points to small-scale circulations and convection being a critical 339 

component to the large positive bias in precipitation simulated by the 12-km WRF. 340 

    341 

6. Testing alternate physics options 342 

Because of the positive biases found in both water vapor and precipitation, we wanted to see 343 

if alternate choices for convective parameterization and cloud microphysics might reduce these 344 

biases.  The tests we conducted are in no way conclusive, but a brief discussion of their results 345 

are worthy of presentation. 346 

Our physics options based on the previous 36-km modeling included use of the Grell-3 sub-347 

grid convection scheme.  To test model sensitivity to this choice, we conducted simulations with 348 

and without spectral nudging using the Kain-Fritsch (K-F) scheme instead.  The differences we 349 

found in mean absolute error and mean bias for temperature, water vapor and wind speed were 350 

all quite small. The strong positive biases in water vapor and precipitation remained.  Alapaty et 351 

al. (2012) identified a weakness in many convective parameterization schemes where the effects 352 

of sub-grid convective clouds on radiation are not taken into account. Their treatment for the 353 

radiative effects of sub-grid convection significantly reduced simulated precipitation.  Our 354 

research group at the U.S. EPA is also working to modify convective parameterizations in other 355 

ways so as to be applicable at finer scales where current formulations may not be appropriate and 356 

may be contributing to the type of positive precipitation bias we found here.  In the future, we 357 

plan to test these developing techniques for 12-km dynamical downscaling with WRF. 358 
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The WRF configuration for the previous work at 36-km grid spacing and for the base case 359 

12-km simulations performed here used the WRF Single-Moment 6-Class microphysics scheme.  360 

To test model sensitivity, we instead applied the Morrison Double-Moment scheme with and 361 

without spectral nudging.  We found mixed results in terms of model error and bias.  There was a 362 

reduction in surface temperature during the warmer months (May through September) which led 363 

to a negative bias and a general increase in model error.  During these same warm months we 364 

found a decrease in water vapor which reduced model error and bias for that variable.   365 

Obviously, there are other WRF model options that could influence the simulation of water 366 

vapor and precipitation (e.g., land surface model, radiation model).  Correcting the positive bias 367 

in water vapor and precipitation that we found in nearly all of our 12-km WRF simulations will 368 

likely require a follow-on investigation of the entire hydrologic cycle as it is simulated by all 369 

model processes. 370 

 371 

7.   Summary 372 

This work has applied a dynamical downscaling technique previously developed for WRF at 373 

36-km horizontal grid spacing to a finer 12-km grid.  Our one-way nesting technique does 374 

provide more accurate information for surface-level temperature and wind speed as long as 375 

proper adjustments are made to the interior nudging coefficients.  Water vapor and precipitation 376 

remain problems to be addressed.  Mean absolute error in water vapor is not so much degraded in 377 

going from 36-km to 12-km grid spacing as is the mean bias which becomes more positive.  378 

Stronger interior nudging of either type, analysis or spectral, can provide some improvement to 379 

the positive bias in water vapor at the surface.  Stronger analysis nudging can reduce the positive 380 

bias in precipitation, but stronger spectral nudging does not have much effect.  The overall 381 
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optimum adjustments depend somewhat on the time of year and meteorological variables of most 382 

interest, but the base nudging strengths chosen for this study were found to be generally 383 

appropriate when both mean absolute error and mean bias are considered.  The evaluation 384 

against observations demonstrates that interior nudging is required in order to provide additional 385 

accuracy from downscaling to 12-km grid spacing.   386 

Optimum simulation of water vapor mixing ratio and precipitation in 12-km simulations may 387 

require a change in physics options from those applied previously with 36-km grid spacing.  388 

Previously identified positive biases in water vapor and precipitation from 36-km WRF 389 

simulations (Otte et al., 2012) became more pronounced in our 12-km simulations when the 390 

same physics options were used.  Changing to an alternate convective parameterization scheme 391 

had little effect on precipitation bias.  We suspect that at this finer horizontal resolution, some 392 

larger convective elements in the atmosphere may be resolvable by the model and sub-grid 393 

convective parameterizations might be accounting for their precipitation a second time.  But 394 

investigation of this conjecture is beyond the scope of this study.  Besides, surface-level water 395 

vapor was also positively biased.  We are left with a sort of “chicken or egg” conundrum.  Which 396 

came first, too much water vapor or too much precipitation?  Understanding why our surface-397 

level water vapor and precipitation are both too high requires an investigation of the entire 398 

hydrologic cycle that is also beyond the scope of this study. 399 

We intend to move forward with long-term (10-20 year) applications of 12-km dynamical 400 

downscaling with WRF once we have addressed the issues of inland lake surface temperatures 401 

and sub-grid cloud radiation effects. The required computational and data storage resources are 402 

also a concern.  However, more spatially refined climate projections have been identified as a 403 

critical need by hydrologic and urban air quality managers. 404 
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 405 

Appendix A.  Definition of Statistics 406 

The following statistics are calculated as shown with X representing model simulation values 407 

and Y representing observed values. 408 

 409 

Correlation (Pearson): 410 

 

 411 

Mean Absolute Error: 412 

 

 413 

Mean Bias: 414 

 

 415 

Root Mean Squared (RMS) Error: 416 

 

 417 

Anomaly Correlation: 418 

 

 419 
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Table 1.  Specifications for all 12-km WRF test simulations conducted. 490 

 491 

Case Name Nudging 
Type Nudging Coefficient (sec-1) 

Spectral 
wave 

number 

  Potential 
Temperature 

U,V wind 
components 

Water 
Vapor 
Mixing 
Ratio 

Geopotential 
Height X Y 

Base NN None - - - - - - 

Base AN Analysis 5.0 × 10-5 5.0 × 10-5 5.0 × 10-6 - - - 

Base SN Spectral 1.0 × 10-4 1.0 × 10-4 - 1.0 × 10-4 2 2 

Base AN Low Analysis 2.5 × 10-5 2.5 × 10-5 2.5 × 10-6 - - - 

Base AN High Analysis 1.0 × 10-4 1.0 × 10-4 1.0 × 10-5 - - - 

Base SN Low Spectral 5.0 × 10-5 5.0 × 10-5 - 5.0 × 10-5 2 2 

Base SN High Spectral 2.0 × 10-4 2.0 × 10-4 - 2.0 × 10-4 2 2 

Alternate Lakes NN None - - - - - - 

Alternate Lakes SN Spectral 1.0 × 10-4 1.0 × 10-4 - 1.0 × 10-4 2 2 

Morrison NN None - - - - - - 

Morrison SN Spectral 1.0 × 10-4 1.0 × 10-4 - 1.0 × 10-4 2 2 

Kain-Fritsch NN None - - - - - - 

Kain-Fritsch SN Spectral 1.0 × 10-4 1.0 × 10-4 - 1.0 × 10-4 2 2 

  492 
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Table 2.  Annual Evaluation Statistics for Temperature (K) 493 

 36-km AN 12-km NN 12-km AN 12-km SN 

Correlation 0.9660 0.9601 0.9690 0.9692 

Mean Absolute Error 2.2121 2.3452 2.0752 2.0543 

Mean Bias 0.6287 0.2146 0.4052 0.2968 

RMS Error 2.9017 3.0574 2.7260 2.7021 

Anomaly Correlation 0.9644 0.9599 0.9683 0.9688 
 494 

 495 

Table 3.  Annual Evaluation Statistics for Water Vapor Mixing Ratio (g/kg) 496 

 36-km AN 12-km NN 12-km AN 12-km SN 

Correlation 0.9441 0.9396 0.9520 0.9477 

Mean Absolute Error 1.1932 1.3029 1.2014 1.2021 

Mean Bias 0.3488 0.6185 0.6277 0.5559 

RMS Error 1.6802 1.8223 1.6831 1.6871 

Anomaly Correlation 0.9418 0.9325 0.9449 0.9418 
 497 

 498 

Table 4.  Annual Evaluation Statistics for Wind Speed (m/s) 499 

 36-km AN 12-km NN 12-km AN 12-km SN 

Correlation 0.5890 0.5492 0.6071 0.5976 

Mean Absolute Error 1.7036 1.7159 1.5482 1.6038 

Mean Bias 0.8586 0.7233 0.5792 0.6546 

RMS Error 2.2116 2.2362 2.0271 2.0991 

Anomaly Correlation 0.5527 0.5238 0.5875 0.5745 
  500 
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Figure Caption List 501 

 502 

FIG. 1.  Modeling domains used for previous 108- and 36-km dynamical downscaling and 12-km 503 

domain (d03) used for this study. 504 

 505 

FIG. 2.  Monthly evaluations of mean absolute error and mean bias for the 36-km parent 506 

simulation (36AN) and the 12-km no-nudge (NN), analysis-nudge (AN) and spectral-nudge (SN) 507 

simulations. 508 

 509 

FIG. 3.  Annual mean bias of 2-m temperature (C) for the 36-km parent simulation and the three 510 

12-km simulations with no nudging, analysis nudging and spectral nudging. 511 

 512 

FIG. 4.  Annual mean bias of 2-m water vapor mixing ratio (g kg-1) for the 36-km parent 513 

simulation and the three 12-km simulations with no nudging, analysis nudging and spectral 514 

nudging. 515 

 516 

FIG. 5.  Annual mean bias of 10-m wind speed (m s-1) for the 36-km parent simulation and the 517 

three 12-km simulations with no nudging, analysis nudging and spectral nudging. 518 

 519 

FIG. 6.  Average monthly precipitation from WRF simulations compared to observational data 520 

from; (a) the Multisensor Precipitation Estimator (MPE), (b) the Parameter-elevation 521 

Regressions on Independent Slopes Model (PRISM), and (c) the National Trends Network 522 
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(NTN).  The WRF simulations are 36-km resolution with analysis nudging (36AN) and 12-km 523 

resolution with no-nudging (NN), analysis nudging (AN) and spectral nudging (SN). 524 

 525 

FIG. 7.  Monthly mean absolute error and mean bias for WRF simulations testing nudging 526 

strength for analysis nudging (AN) and spectral nudging (SN).  Low nudging strength is one-half 527 

the base value.  High nudging strength is twice the base value. 528 

 529 

FIG. 8.  Average of the monthly total precipitation (mm) simulated by the 12-km WRF over land 530 

with high, base, and low nudging strengths for; (a) analysis nudging, and (b) spectral nudging.   531 

532 
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FIG. 1.  Modeling domains used for previous 108- and 36-km dynamical downscaling and 12-km 533 

domain (d03) used for this study. 534 

 535 

  536 
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FIG. 2.  Monthly evaluations of mean absolute error and mean bias for the 36-km parent 537 

simulation (36AN) and the 12-km no-nudge (NN), analysis-nudge (AN) and spectral-nudge (SN) 538 

simulations. 539 

 540 

  541 
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FIG. 3.  Annual mean bias of 2-m temperature (C) for the 36-km parent simulation and the three 542 

12-km simulations with no nudging, analysis nudging and spectral nudging. 543 

 544 

  545 
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FIG. 4.  Annual mean bias of 2-m water vapor mixing ratio (g kg-1) for the 36-km parent 546 

simulation and the three 12-km simulations with no nudging, analysis nudging and spectral 547 

nudging. 548 

549 
  550 
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FIG. 5.  Annual mean bias of 10-m wind speed (m s-1) for the 36-km parent simulation and the 551 

three 12-km simulations with no nudging, analysis nudging and spectral nudging. 552 

 553 

  554 
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FIG. 6.  Average monthly precipitation from WRF simulations compared to observational data 555 

from; (a) the Multisensor Precipitation Estimator (MPE), (b) the Parameter-elevation 556 

Regressions on Independent Slopes Model (PRISM), and (c) the National Trends Network 557 

(NTN).  The WRF simulations are 36-km resolution with analysis nudging (36AN) and 12-km 558 

resolution with no-nudging (NN), analysis nudging (AN) and spectral nudging (SN). 559 

  560 
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FIG. 7.  Monthly mean absolute error and mean bias for WRF simulations testing nudging 561 

strength for analysis nudging (AN) and spectral nudging (SN).  Low nudging strength is one-half 562 

the base value.  High nudging strength is twice the base value. 563 

 564 
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FIG. 8.  Average of the monthly total precipitation (mm) simulated by the 12-km WRF over land 565 

with high, base, and low nudging strengths for; (a) analysis nudging, and (b) spectral nudging.   566 

 567 


