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Abstract 7 

A new source-type identification method, Reduction and Species Clustering Using Episodes (ReSCUE), was developed to exploit the 8 

temporal synchronicity typically observed between ambient species in high time resolution fine particulate matter (PM2.5) data to form 9 

clusters that vary together. High time-resolution (30 min) PM2.5 sampling was conducted for a month during the summer of 2006 in 10 

Steubenville, OH, an EPA designated non-attainment area for the U.S. National Ambient Air Quality Standards (NAAQS). When the 11 

data were evaluated, the species clusters from ReSCUE matched extremely well with the source types identified by EPA Unmix 12 

demonstrating that ReSCUE is a valuable tool in identifying source types. Results from EPA Unmix show that contributions to PM2.5 13 

are mostly from iron/steel manufacturing (36% ± 9%), crustal matter (33% ± 11%), coal combustion (11% ± 19%) and residual oil 14 

burning (15% ± 12%).  More importantly, ReSCUE was useful in (i) providing objective data driven guidance for the number of 15 

source factors and key fitting species for EPA Unmix, and (ii) detecting tenuous associations between some species and source types 16 

in the results derived by EPA Unmix. 17 

Introduction  18 

The availability of continuous or semi-continuous instrumentation has been a significant technological advance in the measurement of 19 

air pollutants (1,2).  Highly time-resolved measurements have been reported for a wide range of PM2.5 components  including mass (3, 20 

4, 5, 6), organic and elemental carbon (7, 8), and inorganic compounds (9,10, 11, 12, 13, 14).  Data from these instruments offer 21 

significant advantages over traditional 24-h integrated filter-based measurements.  First, highly time-resolved data can be used to both 22 

spatially and temporally isolate impacts from specific point sources, especially when coupled with meteorological data of similar time 23 

scales.  Secondly, sources can be identified and quantified based on known activity patterns (e.g., vehicular traffic), and recent health 24 

studies have reported acute outcomes at time scales finer than traditional 24-h measurement durations (15,16). 25 

 26 

Despite advances in instrumentation resulting in time-resolved data sets with low associated uncertainties, techniques have not been 27 

specifically developed to process these content-rich data.  Traditional multivariate source-apportionment models use techniques such 28 

as the gradient method (EPA PMF) or the Singular Value Decomposition method (EPA Unmix) to develop species groupings or 29 

fingerprints.  While such models do utilize underlying data characteristics, they do not take advantage of some other features typically 30 



present in highly time-resolved data such as serial correlation.  Thus, these traditional methods not only fail to take advantage of 31 

existing data features but the user implicitly assumes features in their data set (e.g., profile invariance) that may not be true all the 32 

time.  Additional challenges include selection of appropriate input species that adequately characterize the contributors to the air shed, 33 

identifying the number of factors (source types) to model, and interpretation of the resulting source types. 34 

 35 

The most common technique to using traditional receptor models is an iterative approach whereby modelers utilize various analysis 36 

approaches to find the best combination of species and the maximal number of expected or interpretable source types.  ReSCUE can 37 

reduce this iterative process while providing an independent evaluation of the input data set, and is also designed to mine the rich 38 

content of a highly time-resolved data set.  ReSCUE analyzes the data for temporal patterns and creates clusters of species that 39 

represent source types or a combination of sources with similar composition, temporal relationships, and relative location compared to 40 

the sampling site.  ReSCUE can also can be used to evaluate source apportionment assumptions such as profile invariance, made by 41 

the traditional receptor models (17,18,19).  The number of distinct ReSCUE clusters can be viewed as the expected number of sources 42 

and the species can be viewed as input data for traditional receptor models.  Although EPA Unmix (hereinafter, Unmix) can provide 43 

guidance on possible number of recoverable source profile signals using the NUMFACT algorithm (20), it is highly sensitive to the 44 

combination of observations and species.  In Unmix, a small set of observations and/or the selected species can disproportionately 45 

affect the result.  In general, these issues are magnified with highly time-resolved data due to transient high concentration source 46 

impacts and other periods of no observable source impact.  ReSCUE is an independent approach that also helps receptor modelers to 47 

(i) select appropriate species from a data set, (ii) choose the number of source types, (iii) independently investigate source type 48 

groupings without assuming multivariate analysis requirements, and (iv) receive independent confirmation of source profiles. 49 

 50 

This manuscript (i) introduces the ReSCUE algorithm and presents its application to a high time resolution PM2.5 data set collected in 51 

the Ohio River Valley, USA, (ii) compares the ReSCUE results with those from a traditional receptor model (Unmix), (iii) introduces 52 

sector apportionment model to evaluate model results by identification of likely location of known source types, and (iv) discusses 53 

high time resolution data issues related to the scope and applicability of inverse models like ReSCUE and Unmix. 54 

Site Description 55 

In the summer of 2006, 30-minute measurements were made at the Steubenville, OH monitoring site located on the Franciscan 56 

University Campus (40º 22’ 45.69 N 80º 37’ 10.29 W) overlooking the Ohio River.  The industrially impacted site is located in an area 57 

with a high density of large atmospheric emission sources such as coal-fired power plants, iron/steel production, and other general 58 

industrial activity (Figure 1).  Previous long-term source-apportionment studies of wet deposition (21,22) and PM2.5 (20,23,24) in 59 

Steubenville found significant impacts from coal combustion, oil combustion, iron/steel production, and windblown dust. 60 



Sample Collection and Analysis 61 

An EPA modified Semi-Continuous Elements in Aerosol Sampler-III (SEAS-III; OEI, Clarksville, MD) was set up and operated at the 62 

Steubenville, OH site between July 12 and August 17, 2006 during an EPA measurement intensive field experiment.  The SEAS-III 63 

collects 30 min integrated PM2.5 samples as a liquid slurry (suspension of PM2.5 in water) for off-line chemical analysis.  Operation of 64 

the SEAS-III instrument, subsequent analysis of samples, and data QA/QC is discussed by Pancras and Landis (25).  Briefly, the 65 

SEAS-III was configured with a PM2.5 cyclone inlet and sampled at a flow rate of 92 l min-1.  Direct steam injection is used to nucleate 66 

aerosols that are subsequently collected by direct impingement.  Samples were extracted with concentrated ultrapure nitric acid (to 67 

0.2% v/v), sonicated for 2 h, and left to leach for 30 days prior to analysis.  The samples were analyzed for a comprehensive suite of 68 

trace elements using a ThermoFinnigan Element2 (Bremen, Germany) high-resolution magnetic sector field inductively coupled 69 

plasma mass spectrometer (HR-ICPMS) housed in a class 100 clean laboratory at the EPA facility in Research Triangle Park, NC.  A 70 

total of 1453 valid 30 min samples were used in this analysis.  The final species matrix included 24 trace elements, 2 criteria gases, 71 

and PM2.5 mass (Table 1).  Meteorological data including wind direction and wind speed (10 m above ground level) were measured 72 

using RM Young (Traverse City, MI) instrumentation.  Ambient concentrations of NOx and SO2, were continuously measured at 1 73 

min intervals using ThermoEnvironmental (Franklin, MA) models 42CTL and 43CTL, respectively.  PM2.5 mass was continuously 74 

measured using a Rupprecht & Patashnick Model 1400b Tapered Element Oscillating Microbalance (TEOM) at a 1 min resolution.  A 75 

summary of the observed criteria gas and PM2.5 species concentrations, and the SRM recoveries are presented in Supporting 76 

Information (SI) Table 1 and SI Table 2, respectively. 77 

ReSCUE Algorithm 78 

ReSCUE analyzes data to identify time series synchronicity and uses it to create intra-species clusters.  The annotated ReSCUE 79 

algorithm code is provided in the Supporting Information and consists of the following steps: 80 

Step 1. Episodes are identified for each species separately.  An episode is identified as a set of temporally ordered values that starts 81 

and stays consistently above the base value followed by an eventual decrease to the base value.  Due to the consistency 82 

requirement, excursions above the base value alone may not be enough to be categorized as an episode (Figure 2).  For this 83 

study, the 5th percentile value was assigned to be the base value.  Also, only those data identified as being part of an episode 84 

will be retained for further analysis.  For instance, only 46% of Fe was flagged as episodic in nature (Figure 2). 85 

Step 2. Pair-wise Pearson correlations between species during identified episodes, Episodic Species Correlations , , are 86 

calculated using Equation 1.  This measures the synchronicity between any two species during episodes and does not include 87 

any contributions from non-episodic intervals.  If  and  were species values associated with two species  and , with 88 

their associated respective means  and , then ,  is defined as: 89 
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Step 3. The fraction of observations over which any two species share their episodes, Episodic Intersection Fraction (EIF), is then 91 

calculated using Equation 2.  For each species, the rows associated with the episodes are assigned a value of 1 and the non-92 

episodic rows are assigned a zero value.  This is called the indicator function associated with the criteria.  A dot product of 93 

the indicator functions associated with two species divided by the total number of observations provides the fraction of 94 

episodic overlap. 95 

,
 ,  
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       (2) 96 

where I   denotes the indicator function associated the chosen species and parenthesis in the numerator indicates the dot 97 

product. 98 

Step 4. Episodic Species Correlations are weighted by their Episodic Intersection Fraction using Equation 3, and the resulting value 99 

is a Weighted Episodic Species Correlation ,  Value with ,  as weights. 100 

,  , •   ,       (3) 101 

Step 5. For each species (X), its associated species are categorized using their WESC values as follows:  “Very Strong” (values > 102 

0.85), “Strong” (0.75-0.85), and “Moderate” (0.60-0.75).  These descriptions are meant to capture the strength of association 103 

between species. 104 

Step 6. Finally, for each species, the associated species cluster is formed using two steps: 105 

I. First, an initial cluster is formed by combining the “Very Strong”, “Strong”, and the “Moderate” species associated with 106 

the species using the criteria stated in Step 5. 107 

II. Next, the species in the “Very Strong” category (from the previous step) are re-considered in turn.  For each of those 108 

species, the species that are in its “Strong” and “Moderate” categories are also combined with the initial cluster of the 109 

chosen species.  For these secondary associations, the cutoffs are more stringent: “Strong” (>0.80) and “Moderate" (> 110 

0.70). 111 

A comparison of Steubenville PM2.5 ReSCUE clusters (episodic data only) to the clusters formed using simple correlations (all data) is 112 

presented in SI Table 3, and shows that only ReSCUE clusters closely resemble emission profiles of known source types (13) in the 113 

region. 114 



Results obtained using ReSCUE 115 

A total of 27 species (Table 1) were used in the ReSCUE analysis.  As previously described, the ReSCUE algorithm creates clusters of 116 

species that are episodically correlated.  Species in the “Very Strong” and “Strong” categories of a cluster are boldfaced in Table 1.  117 

Source type associations were identified by looking for the presence and absence of known tracer species.  For each species, its 118 

associated species are listed in the order of the strength of their association.  For example, Cr is strongly associated with the base 119 

species Ni while Fe, Ba, K, and Mo are progressively less associated.  Trace metals such as Ce, La are categorized as multi-source 120 

components due to their (“Moderate”) associations with many other source-defining species.  Conversely, Cd is not strongly 121 

associated with any species and is categorized as a sole species source type.  In some cases, two species may be associated in a species 122 

cluster but also be exclusively associated with other clusters.  For instance, Fe and Ge are temporally correlated enough to be 123 

clustered.  But, there were also enough periods when there were Fe or Ge episodes, but not both (SI Figure 1).  This implies that Fe 124 

and Ge have both common and distinct sources.  In this way ReSCUE clusters can be identified as either distinctive emission source 125 

types such as local/regional coal combustion (presence of S, Se, SO2), long range transported coal-combustion (presence of S and Se 126 

and the absence of SO2), or as part of a composite coal combustion emission source. 127 

Results obtained from Unmix and comparison with ReSCUE Results 128 

Unmix is one of the most widely used receptor modeling methods.  The current version of Unmix (v 6.0) uses measured data only and 129 

does not require any a priori knowledge of sources or their emission characteristics.  The algorithm assumes that, for every 130 

identifiable source type, there are at least a few observations that contribute insignificantly to that source and uses them to construct 131 

the edges that define the region of feasible solutions (26).  Periods of absence (or near absence) of at least one source are more likely 132 

in a highly time-resolved data set.  Therefore, Unmix has been found to be highly suitable for identifying and apportioning the PM2.5 133 

mass (12). 134 

 135 

The same high time resolution PM2.5 species and criteria gases that were screened and used in the ReSCUE analysis were also utilized 136 

by Unmix.  Seven profiles resulting from using Unmix were identified to be those that are typically found in the Steubenville air shed 137 

(Table 2).  The last column in Table 1 shows the closest associated Unmix source with each ReSCUE cluster.  This association was 138 

created by comparing the strong species from ReSCUE that are usually used by receptor modelers to identify source types.  These 139 

clusters fall in two broad categories:  closest matching Unmix source and multi-source component. 140 

 141 

Profile1 has the highest loading of Zn and smaller portions of Rb, Mg, Mn, Fe and K.  This matches quite well with ReSCUE’s Zn 142 

cluster:  Rb, Mn, K, Fe, Mg, Ge, NOX, La, Ce.  Roughly 80% of the apportioned Zn is associated with this profile and is most likely 143 

associated with iron/steel manufacturing.  The basic oxygen furnace (BOF) and the Electric Arc Furnace (EAF) usage in steel 144 



production is a significant source of Zn.  The BOF flue dust is known to contain high levels (1.5%-4.0%) of Zn and the EAF contains 145 

even higher amounts (15% - 25% of the resulting flue dust) of Zn (27, 28).  There are multiple steel manufacturing facilities (Figure 1) 146 

within 30 km of Steubenville producing Zn-coated (galvanized) steel.  Zinc can also be emitted from iron/steel production facilities 147 

charging recycled scrap steel into the BOF (29) and steel galvanizing operations.  Manganese is also used in ferroalloy production and 148 

steel coating operations which accounts for the strong association of Zn with Mn.  Connell et al. (23) found a similar Zn-Mn 149 

dominated factor when apportioning PM2.5 in Steubenville using 24-h integrated samples and attributed the source to local metal 150 

related industries.  The US EPA’s 2001 Toxic Release Inventory (TRI) reported that over 90% of Zn emissions and over 80% of Mn 151 

emissions are attributable to steel production near Steubenville. 152 

 153 

Profile 2 is dominated by Ni and Cr with small contributions from Al and Fe.  ReSCUE did not associate Al with this cluster.  The 154 

corresponding ReSCUE cluster is the Cr cluster:  Ni, Fe, Mo, V, Ba, La.  Thus, it appears that Ni/Cr is almost a complete source 155 

cluster by itself due to the unique nature of Cr and Ni time series.  There are two matching episodes (both Cr and Ni exceeding 15 µg 156 

m-3) at the beginning of the intensive followed by no discernible activity simultaneous or otherwise.  This profile may be attributable 157 

to steel processing industries and their associated use of Ni and Cr in ferroalloys production and plating in and around Steubenville.  158 

In addition, austenitic stainless steels (over 70% of total stainless steel production) have a typical composition of 18% Cr and 10% Ni 159 

(30). 160 

 161 

Over 75% of Cd is present in Profile 3 along with smaller loadings of Pb and K.  ReSCUE, essentially identifies Cd as a single species 162 

cluster.  The presence of Pb in this source type is not confirmed by ReSCUE.  It is likely that Unmix edges (resulting in the Pb 163 

loading) were disproportionately influenced by a small set of co-varying values (see SI Figure 2).  Thus, it may be appropriate to 164 

interpret this profile as a Cd-only source type.  The major anthropogenic sources of atmospheric Cd emission (31) are both ferrous 165 

production (e.g., iron/steel manufacturing) and non-ferrous metal operations (e.g., Zn smelting).  Other sources include coal 166 

combustion and residual heavy fuel oil combustion.  The time series shows Steubenville being affected with Cd peaks from both the 167 

northeast and the south.  SI Figure 2 highlights the wind events from the northeast (0° – 90°) and the south (120° – 240°) as being 168 

significant contributors of Cd.  Hence, it is most likely that the iron/steel production facilities and the power plants from the south may 169 

be the primary sources of the Cd found in Steubenville.  A thin coating (<25 µm) of Cd is usually applied to iron and steel to 170 

withstand atmospheric corrosion (32). 171 

 172 

The strong presence of Se and SO2 in Profile 4 suggests a local/regional coal combustion source (33, 34).  ReSCUE’s Se cluster (SO2, 173 

S, PM2.5) appears to be the closest to this profile.  Again, Pb is associated with this source by Unmix (and not by ReSCUE).  The 174 

ubiquitous nature of Pb emitted by a variety of combustion sources and manufacturing processes in and around Steubenville is most 175 



likely the reason for the smeared presence of Pb in a majority of the profiles generated by Unmix for this data set.  The time series 176 

data shows that winds from the south accounted for almost all of Se and SO2 measured at the site.  One of the largest coal-fired power 177 

plants in the US (Cardinal Power) is located in Brilliant, OH less than 16 km south of the receptor site.  While PM2.5 mass and S track 178 

each other well, SO2 peaks appear have a corresponding S peak only when the wind comes from the south.  Since S is emitted from 179 

fossil fuel combustion primarily as SO2 which is subsequently oxidized to particulate SO4
- in the atmosphere, the presence of 180 

simultaneous SO2 and Se peaks indicates a local/regional coal combustion source.  The observation of simultaneous S and Se peaks 181 

without SO2 would be indicative of aged or transported coal combustion source(s).  In fact, there are quite a few S peaks for which the 182 

corresponding SO2 values are not significant (SI Figure 3).  This weak association between SO2 and S could be the reason why Unmix 183 

did not associate S with this profile. 184 

 185 

Profile 5 is the source with the least amount signal amplitude, likely representing mixed industrial emissions from the local air shed 186 

yielding an often present moderate source signal.  This profile is a diverse mix of metals associated with iron/steel production.  The 187 

ReSCUE cluster that appears closest to this profile is the Fe cluster (Ge, Rb, K, Mn, Mg, Zn, La, Cu, Ce, Cr, Ni, NOX, Ba, S, Sr, Pb, 188 

As).  Unmix attributes over 70% of Ge to this profile along with elevated loadings of Fe, Cu, Mn, Rb, Pb, and Mg that matches 189 

ReSCUE results.  This is remarkable considering the different numerical approaches that the Unmix (whole data set approach) and 190 

ReSCUE (pair-wise episodic weighted correlation approach) models utilize, which may not highlight the same underlying data 191 

features.  Along with NOx, this profile aptly characterizes the expected emissions from integrated iron/steel production and 192 

slag/sintering operations (35, 13).  Profile 6 is crustal in nature with substantial loadings of Al, Sr, Mg, S and PM2.5 mass.  The closest 193 

matching ReSCUE cluster is the Sr cluster: Mg, Mn, Al, Ce, Ba, Fe, Ge, Rb, Zn, K, NOX.   The other cluster that resembles this source 194 

type from Unmix is the Al cluster: Sr, Mg.  But all associations in this cluster are weak.  However, even in Sr cluster, ReSCUE seems 195 

to have been influenced by species such as Fe, Ge, and Rb that appear to be ubiquitous in Steubenville air shed. 196 

 197 

The strong presence of V, Ti, Mo, As, Cr and NOX in Profile 7 is indicative of iron/steel production or heavy residual oil burning.  The 198 

closest ReSCUE cluster is the V cluster: Ti, As, Cr, Mo, NOX.  Note that the associations are all moderate.  Even in Unmix, this source 199 

type is calculated as the last source due to low signal strength.  About 90% of worldwide V production is used in iron/steel production 200 

due to its high tensile strength, hardness, and fatigue resistance (36, 37).  Thus, Profile 7 may be attributed to multiple iron/steel 201 

production facilities or residual heavy fuel oil combustion near Steubenville (38). 202 

Identification of Sources Using Sector Apportionment Methods 203 

One way to evaluate receptor modeling results is to investigate the link between estimated source contribution estimates and the 204 

physical location of known sources in the area.  But, complications in associating physical sources to identified source types include 205 



co-linearity of sources, diffused sources, topographic impediments (e.g., mountains), and changes to emission profiles due to 206 

photochemical reactions.  Nevertheless, for many source types identified using highly time-resolved data, it is possible to identify the 207 

origin of the identified source type using additional information such as meteorology (14). 208 

The Sustained Wind Incidence Method (SWIM) is a spatial apportionment model that highlights regions of highest contribution using 209 

measured concentrations (or predicted source contributions) and meteorological data (39).  The method uses a kernel smoothing 210 

approach to highlight directional domains of significant contributions.  Then, by utilizing resources like the EPA Toxics Release 211 

Inventory (TRI), specific sources may be identified.  The SWIM model is a directional apportionment tool and is not capable of 212 

determining the distance.  If the directional domain suggested by SWIM is devoid of a known local (< 30 km) source(s), then it is 213 

likely that the source type is primarily non-local.  However, it is unlikely that both local and non-local sources will be identified by 214 

receptor models together from a highly time-resolved data due to distinct variance structures (important to factor analytic models) of 215 

local and non-local source types.  Nevertheless, source types that contain both local and non-local contributions may still be identified.  216 

For instance, measured Se may be a combination of near field and regional power plant emissions.  In such cases, it would be a 217 

mistake to apportion all the Se contributions only to the local source.  Additional analysis (e.g., Wavelet) must be done to be able to 218 

find the appropriate share of the local source. 219 

Using the SWIM model on the Steubenville receptor modeling results, all source types identified by ReSCUE/Unmix were confirmed 220 

(Figure 3a-d).  For instance, Figure 3b shows that almost all the high values of the source type 1 (Zn-source) are from the south 221 

whereas the source type 4 in Figure 3c have contributors in both in the southwestern and northeastern sector.  The lack of any 222 

contribution from the northwestern sector is due to lack of wind events from that sector (Figure 3a).  The Ohio River, just east of the 223 

receptor site, runs from north-northeast to south-southwest direction.  The river valley channels the wind to be predominantly from 224 

either from the southwest or the northeast. 225 

Implications from using ReSCUE on highly time resolved data 226 

The fact that nearly identical results for major source types were derived using the two unrelated numerical approaches of ReSCUE 227 

and Unmix (once the species selection and number of factors were optimized using ReSCUE) strengthens the results from both 228 

models.  The results from any source apportionment analysis gain credibility through weight of evidence provided by the application 229 

of multiple receptor modeling tools.  When Unmix produces a model solution, it is nearly impossible to know if those solutions were 230 

influenced by a representative subset of the data.  Bootstrapping resampling tools are available to evaluate the robustness of the 231 

factors, but having an independent, data value based model such as ReSCUE is a valuable interpretive tool.  The ReSCUE method is 232 

especially relevant to highly time-resolved measurements, where comparatively short signal or plume impact periods can be 233 



numerically obscured by relatively more numerous and noisy baseline periods by whole data set models like Unmix.  The 234 

disadvantage of ReSCUE is that the results are qualitative and it does not provide quantitative source contributions. 235 

 236 

Limitations of traditional source-apportionment methods, including an assumption of source invariance and source interpretation, can 237 

be evaluated by ReSCUE by exploiting the autocorrelation structure typically present in highly time-resolved environmental data.  238 

One example from this study was the obfuscating effect of Pb in the Steubenville air shed, an effect revealed only by examining the 239 

ReSCUE clusters.  Designations of weighted species correlations (e.g., “Strong,” “Moderate”) can further refine source 240 

interpretations, and clusters with multiple species associations likely indicate ubiquitous or non-unique sources.  In addition, the very 241 

nature of time-resolved data calls into question the traditional definition of a source.  The sporadic nature of some source types 242 

identified in this study (e.g., the Ni-Cr source) is likely the result of temporal changes to industrial emissions (e.g., batch processes, 243 

raw materials, fuels).  This is especially relevant in areas with a variety of industrial sources (e.g., Steubenville), where multiple 244 

profiles could be attributable to the same physical source. 245 

 246 

As previously discussed, ReSCUE helped elucidate the Unmix “smeared” apportionment of Pb.  Another instance of differences 247 

between Unmix and ReSCUE is the trace metal Sm.  Unmix associates Sm with iron/steel production and crustal source types whereas 248 

ReSCUE does not associate Sm with any major species.  There are two potential explanations for this observation.  First, as a 249 

mathematical model, Unmix tries to associate every input species with some source type whether or not the alignment is natural.  If 250 

the signal strength were strong, Sm would have been identified as its own source type.  However, Sm was smeared across most Unmix 251 

source types.  From the air pollution emission source perspective, the most likely explanation is that Sm may be a part of the raw 252 

material processed to obtain iron (e.g., taconite), resulting in a weak association with the crustal source as part of wind-blown dust.  253 

Irrespective of the reasons, Sm should not be interpreted with confidence.  Thus, use of both ReSCUE and Unmix can prevent over-254 

interpretation of trace metals with low signal strengths. 255 

 256 

An additional advantage of ReSCUE is its ability to test scenarios that may be unrealizable using another traditional multivariate 257 

receptor model.  For instance, it is desirable to help associate P to appropriate sources but Unmix was unable to find a feasible solution 258 

when P was added to the species list.  By using ReSCUE however, it is possible to test this scenario.  ReSCUE associated P with the 259 

crustal source along with Al, Sr, and Mg.  This grouping can be strongly identified with windblown dust with P most likely associated 260 

with farm applications as fertilizer.  Thus, ReSCUE can be used in situations where the inclusion of species in Unmix is precluded.  261 

Perhaps one of the more compelling reasons to use ReSCUE is its ability to identify more factors or source types than Unmix by using 262 

all of the available episode data to resolve the source solution.  Clearly in a complex air shed like Steubenville there are more than the 263 

seven sources types that were identified by Unmix contributing to the measured PM2.5 mass.  ReSCUE can resolve additional sources 264 



such as local/regional coal combustion versus long range transported coal combustion emissions that may further investigated by 265 

methods such as SWIM and are of importance to the community.  The ReSCUE algorithm has been found to be a useful data 266 

screening and receptor modeling tool, and as a result EPA is planning to incorporate it into the next EPA Unmix model release. 267 
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Mass 
Rank 

Species Associated Species Source Type Association Associated 
Unmix 
Source 

1 PM2.5  S, Se Coal Combustion 4 
2 S PM2.5, Se, SO2, Fe Coal Combustion 4 
3 K Rb, Mg, Fe, Zn, Mn, La, Ce, Ge, Cu, Cd, NOX, As, Ni, Ba,  Multi-source Component  
4 Zn Rb, Mn, K, Fe, Mg, Ge, NOX, La, Ce,  Zinc 1 
5 Al Sr, Mg Crustal 6 
6 Fe Ge, Rb, K, Mn, Mg, Zn, La, Cu, Ce, Cr, Ni, NOX, Ba, S, Sr, Pb, As Iron/Steel Industries 5 
7 Mg Mn, Sr,  Rb, K,  Fe, Zn, Ge, Ce, NOX, Ba, La, Al Multi-source Component  
8 NOX La, Ce, Rb, Mn, Ge, Mg, As, K, Zn, Fe, Ti, Ba, V Multi-source Component  
9 Pb Cu,SO2,Fe Secondary emission  

10 SO2 Se, S, Pb Coal Combustion 4 
11 Mn Rb, Mg, Ge, Zn, NOX,K, Fe, Ce, La, Sr Multi-source Component  
12 Cu Fe, K, Ge, Pb, Ce, La, Rb Iron/Steel Industries 5 
13 Ba Fe, NOX, Mg, Cr, Ni, Sr, K, Cd, Rb Iron/Steel Industries 5 
14 Se SO2,S,PM Fine Coal Combustion 4 
15 As La, NOX, Rb, Ge, Ce, V, K, Cd, Fe Multi-source Component 5 
16 V Ti, As, Cr, Mo, NOX Oil Combustion 7 
17 Mo Cr, V, Ti Oil Combustion 7 
18 Ti V, NOX, Mo Oil Combustion 7 
19 Sr Mg, Mn, Al, Ce, Ba, Fe, Ge, Rb, Zn, K, NOX Crustal 6 
20 Cd K, As, Ba Cadmium 3 
21 Ni Cr, Fe, K, Ba, Mo Nickel/Chromium 2 
22 Cr Ni, Fe, Mo, V, Ba, La Nickel/Chromium 2 
23 Ge Rb, Mn, Fe, NOX, Ce, La, Mg, Zn, K, Cu, As, Sr Multi-source Component  
24 Rb Zn, Mn, K, Ge, Mg, La, NOX, Fe, Ce, As, Cu, Ba, Cd Multi-source Component  
25 Ce La,  NOX,  Rb, Ge, Fe, K, Mg, Mn, As, Cu, Zn, Sr, Sm Multi-source Component  
26 La Ce, NOX, Rb, Ge, K, Fe, As, Mn, Cu, Zn, Mg, Cr Multi-source Component  
27 Sm Ce Trace component  

Table 1:  Summary of ReSCUE results.  NOTE: Strong associations (WESC values >0.75) are boldfaced. 280 
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Source 
Types 

Source 1 
Zn  

Source 2 
Ni/Cr 

Source 3 
Cd  

Source 4 
Coal Combustion 

Source 5 
Iron/Steel 

Source 6 
Crustal 

Source 7 
Ti/V/Mo 

Mg  2.25 ± 0.29 1.3 ± 0.294 1.2 ± 0.334 0.0295 ± 0.26 5.32 ± 0.473 8.66 ± 0.687 3.25 ± 0.348 

Al  3.97 ± 1.01 2.73 ± 0.756 30.2 ± 1.88 

S  123 ± 44.7 532 ± 95.3 1160 ± 110 1000 ± 110 171 ± 53.2 

K  7.54 ± 0.623 3.5 ± 0.645 11.4 ± 1.85 11.2 ± 1.65 12 ± 1.58 3.82 ± 1.7 

Ti  0.0261 ± 
0.00958 

0.0391 ± 
0.0132

0.0535 ± 0.0124 0.197 ± 0.0232 0.651 ± 
0.0355

V  0.319 ± 0.0318 0.119 ± 0.0265 0.24 ± 0.0491 1.06 ± 0.0551 

Cr  0.0286 ± 
0.00967 

0.232 ± 0.0142 0.0137 ± 0.00874 0.11 ± 0.0341 0.317 ± 
0.0345

Mn  0.705 ± 0.057 0.108 ± 0.0419 0.0173 ± 0.0559 1.41 ± 0.0779 0.893 ± 0.094 0.721 ± 0.075 

Fe  3.8 ± 0.348 2.72 ± 0.321 1.28 ± 0.358 10.3 ± 0.657 6.5 ± 0.675 2.18 ± 0.486 

Ni  0.442 ± 0.0179 0.0755 ± 
0.0502

0.114 ± 0.0356 

Cu  0.0292 ± 0.0366 0.16 ± 0.0431 0.573 ± 0.0645 0.243 ± 0.0501 1.46 ± 0.109 0.497 ± 0.0765 

Zn  36.8 ± 1.5 3.51 ± 0.632 4.04 ± 0.91 

Ge  0.0414 ± 0.0052 0.00709 ± 
0.00871

0.205 ± 0.0102 0.0289 ± 
0.0097

As  0.0834 ± 0.0155 0.281 ± 0.0218 0.431 ± 0.0345 0.643 ± 
0.0363

Se  0.097 ± 0.0449 1.39 ± 0.261 0.536 ± 0.158 0.252 ± 0.168 0.157 ± 
0.0643

Rb  0.0439 ± 
0.00257 

0.00242 ± 
0.00176 

0.0143 ± 
0.00286

0.0649 ± 
0.00395

0.0204 ± 
0.00376

0.0215 ± 
0.00324

Sr  0.00224 ± 
0.00698 

0.0312 ± 0.00729 0.0304 ± 
0.00675

0.0203 ± 0.00636 0.118 ± 0.0125 0.221 ± 0.0177 0.133 ± 
0.0102

Mo  0.0174 ± 0.0235 0.107 ± 0.0495 0.0843 ± 0.0259 0.16 ± 0.0554 1.44 ± 0.0831 

Cd  0.0415 ± 0.0111 0.0108 ± 0.0145 0.495 ± 0.0367 0.0797 ± 
0.0303

Ba  0.0475 ± 0.0257 0.162 ± 0.0262 0.27 ± 0.0503 0.168 ± 0.0321 0.641 ± 0.0682 0.566 ± 0.0756 0.642 ± 
0.0535

La  0.00594 ± 
0.00108 

0.00133 ± 
0.000898 

0.00803 ± 
0.000973

0.00705 ± 0.0013 0.0303 ± 0.0023 0.0163 ± 0.0023 0.0378 ± 
0.00219

Ce  0.00526 ± 
0.00132 

0.00367 ± 
0.00121 

0.00792 ± 
0.00122

0.0086 ± 0.00153 0.0351 ± 
0.00285

0.0298 ± 
0.00326

0.0413 ± 
0.00242

Sm  0.00123 ± 
0.000244 

0.000179 ± 
0.000179 

0.000244 ± 
0.000299

0.00137 ± 
0.000348

0.00332 ± 
0.000523

0.00305 ± 
0.000478

0.0101 ± 
0.00053

Pb  0.244 ± 0.0921 1.56 ± 0.3 1.51 ± 0.267 1.71 ± 0.352 0.813 ± 0.308 

SO2  0.0604 ± 0.223 4.12 ± 0.961 0.267 ± 0.699 0.433 ± 0.194 

NOX  1.51 ± 0.187 0.445 ± 0.308 0.43 ± 0.179 5.17 ± 0.361 7.16 ± 0.476 

PM2.5 Mass  1.18 ± 0.36 3 ± 0.57 9.49 ± 0.836 8.56 ± 0.923 4.03 ± 0.501 

Strong 
species 

Zn, Rb Ni, Cr Cd, Pb SO2, Se, Pb Fe, PM Fine, 
Cu, S, NOX, 

Mn, Ge, Rb, As, 
Pb 

Al, Mg, Sr, S,  
PM Fine 

V, Ti, Cr, 
Mo, As, NOX 

Table 2:  Seven-source solution from Unmix (µg m-3).  Bold numbers signify source defining species, blank cells indicated non-282 
significant contributions, and uncertainties were calculated using the Unmix bootstrap function. 283 
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 285 
Figure 1:  Steubenville site (marked in red) in the Ohio River Valley and surrounding industrial sources. 286 
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 288 

 289 
Figure 2:  Time series plot of all 30 m SEAS-III PM2.5 Fe results (ppb), the red overlay indicates the ReSCUE identified "episodes". 290 

 291 

  

  

Figure 3: SWIM model spatial probability results for Unmix source contribution factors.  Concentration units are g m-3 and wind 292 
speed is m s-1.  Source 1 values range from 0 g m-3 (blue) to 0.0018 g m-3 (red).  Source 4 values range from 0 g m-3 (blue) to 293 

0.0008 g m-3 (red).  Source 5 values range 0 g m-3 (blue) to 0.015 g m-3 (red). 294 
 295 
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